An ESCRT-III Polymerization Sequence Drives Membrane Deformation and Fission

The endosomal sorting complex required for transport-III (ESCRT-III) catalyzes membrane fission from within membrane necks, a process that is essential for many cellular functions, from cell division to lysosome degradation and autophagy. How it breaks membranes, though, remains unknown. Here, we ch...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cell 2020-09, Vol.182 (5), p.1140-1155.e18
Hauptverfasser: Pfitzner, Anna-Katharina, Mercier, Vincent, Jiang, Xiuyun, Moser von Filseck, Joachim, Baum, Buzz, Šarić, Anđela, Roux, Aurélien
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1155.e18
container_issue 5
container_start_page 1140
container_title Cell
container_volume 182
creator Pfitzner, Anna-Katharina
Mercier, Vincent
Jiang, Xiuyun
Moser von Filseck, Joachim
Baum, Buzz
Šarić, Anđela
Roux, Aurélien
description The endosomal sorting complex required for transport-III (ESCRT-III) catalyzes membrane fission from within membrane necks, a process that is essential for many cellular functions, from cell division to lysosome degradation and autophagy. How it breaks membranes, though, remains unknown. Here, we characterize a sequential polymerization of ESCRT-III subunits that, driven by a recruitment cascade and by continuous subunit-turnover powered by the ATPase Vps4, induces membrane deformation and fission. During this process, the exchange of Vps24 for Did2 induces a tilt in the polymer-membrane interface, which triggers transition from flat spiral polymers to helical filament to drive the formation of membrane protrusions, and ends with the formation of a highly constricted Did2-Ist1 co-polymer that we show is competent to promote fission when bound on the inside of membrane necks. Overall, our results suggest a mechanism of stepwise changes in ESCRT-III filament structure and mechanical properties via exchange of the filament subunits to catalyze ESCRT-III activity. [Display omitted] •ESCRT-III subunits polymerize sequentially at the membrane driven by the ATPase Vps4•The ESCRT-III polymerization sequence ends by Did2/Ist1 to catalyze membrane fission•Subunit exchange triggers changes in ESCRT-III polymers shape and properties•Tilt introduction in the polymer-membrane interface mediates filament buckling The ESCRT-III machinery works by sequential recruitment, polymerization, and replacement of different subunits, resulting in constriction—and, finally, fission—of the membrane.
doi_str_mv 10.1016/j.cell.2020.07.021
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7479521</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0092867420309296</els_id><sourcerecordid>2435755890</sourcerecordid><originalsourceid>FETCH-LOGICAL-c521t-321fb72e6dd33155c71d61229882f1136cd30d9c59cb0f188c04c8adf649a5883</originalsourceid><addsrcrecordid>eNp9kU1P3DAQhi3UqizQP8AB5dhL0hknjh0JVULLR1faCgT0bHltp_UqiamdXQl-PU4XEL30NB75mXdm3iHkGKFAwPrrutC26woKFArgBVDcIzOEhucVcvqBzAAamouaV_vkIMY1AAjG2CeyX1KBFSCbkeXZkF3czW_v88Vikd347rG3wT2p0fkhu7N_NnbQNjsPbmtj9sP2q6CGlNvWh34HqcFkly7G9D4iH1vVRfv5JR6Sn5cX9_Pv-fL6ajE_W-aaURzzkmK74tTWxpQlMqY5mhopbYSgLWJZa1OCaTRr9ApaFEJDpYUybV01iglRHpJvO92Hzaq3RtthDKqTD8H1KjxKr5z892dwv-Uvv5W84k0aIQl8eREIPq0YR9m7OJmZlvObKGlVMs6YaCChdIfq4GMMtn1rgyCnM8i1nCrldAYJXMJf_ZP3A76VvPqegNMdYJNNW2eDjNpNVhsXrB6l8e5_-s_93Jiy</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2435755890</pqid></control><display><type>article</type><title>An ESCRT-III Polymerization Sequence Drives Membrane Deformation and Fission</title><source>MEDLINE</source><source>Cell Press Free Archives</source><source>ScienceDirect Journals (5 years ago - present)</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Pfitzner, Anna-Katharina ; Mercier, Vincent ; Jiang, Xiuyun ; Moser von Filseck, Joachim ; Baum, Buzz ; Šarić, Anđela ; Roux, Aurélien</creator><creatorcontrib>Pfitzner, Anna-Katharina ; Mercier, Vincent ; Jiang, Xiuyun ; Moser von Filseck, Joachim ; Baum, Buzz ; Šarić, Anđela ; Roux, Aurélien</creatorcontrib><description>The endosomal sorting complex required for transport-III (ESCRT-III) catalyzes membrane fission from within membrane necks, a process that is essential for many cellular functions, from cell division to lysosome degradation and autophagy. How it breaks membranes, though, remains unknown. Here, we characterize a sequential polymerization of ESCRT-III subunits that, driven by a recruitment cascade and by continuous subunit-turnover powered by the ATPase Vps4, induces membrane deformation and fission. During this process, the exchange of Vps24 for Did2 induces a tilt in the polymer-membrane interface, which triggers transition from flat spiral polymers to helical filament to drive the formation of membrane protrusions, and ends with the formation of a highly constricted Did2-Ist1 co-polymer that we show is competent to promote fission when bound on the inside of membrane necks. Overall, our results suggest a mechanism of stepwise changes in ESCRT-III filament structure and mechanical properties via exchange of the filament subunits to catalyze ESCRT-III activity. [Display omitted] •ESCRT-III subunits polymerize sequentially at the membrane driven by the ATPase Vps4•The ESCRT-III polymerization sequence ends by Did2/Ist1 to catalyze membrane fission•Subunit exchange triggers changes in ESCRT-III polymers shape and properties•Tilt introduction in the polymer-membrane interface mediates filament buckling The ESCRT-III machinery works by sequential recruitment, polymerization, and replacement of different subunits, resulting in constriction—and, finally, fission—of the membrane.</description><identifier>ISSN: 0092-8674</identifier><identifier>ISSN: 1097-4172</identifier><identifier>EISSN: 1097-4172</identifier><identifier>DOI: 10.1016/j.cell.2020.07.021</identifier><identifier>PMID: 32814015</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Adenosine Triphosphatases - metabolism ; Cell Line, Tumor ; Cell Membrane - metabolism ; CHMP1 ; CHMP4 ; Did2 ; Endosomal Sorting Complexes Required for Transport - metabolism ; Endosomes - metabolism ; ESCRT ; ESCRT-III ; HeLa Cells ; Humans ; in vitro reconstitution ; Ist1 ; membrane fission ; Membrane Fusion - physiology ; membrane remodeling ; Polymerization ; Protein Transport - physiology ; Snf7 ; Vps2</subject><ispartof>Cell, 2020-09, Vol.182 (5), p.1140-1155.e18</ispartof><rights>2020</rights><rights>Crown Copyright © 2020. Published by Elsevier Inc. All rights reserved.</rights><rights>Crown Copyright © 2020 Published by Elsevier Inc. 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c521t-321fb72e6dd33155c71d61229882f1136cd30d9c59cb0f188c04c8adf649a5883</citedby><cites>FETCH-LOGICAL-c521t-321fb72e6dd33155c71d61229882f1136cd30d9c59cb0f188c04c8adf649a5883</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.cell.2020.07.021$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,3548,27923,27924,45994</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32814015$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Pfitzner, Anna-Katharina</creatorcontrib><creatorcontrib>Mercier, Vincent</creatorcontrib><creatorcontrib>Jiang, Xiuyun</creatorcontrib><creatorcontrib>Moser von Filseck, Joachim</creatorcontrib><creatorcontrib>Baum, Buzz</creatorcontrib><creatorcontrib>Šarić, Anđela</creatorcontrib><creatorcontrib>Roux, Aurélien</creatorcontrib><title>An ESCRT-III Polymerization Sequence Drives Membrane Deformation and Fission</title><title>Cell</title><addtitle>Cell</addtitle><description>The endosomal sorting complex required for transport-III (ESCRT-III) catalyzes membrane fission from within membrane necks, a process that is essential for many cellular functions, from cell division to lysosome degradation and autophagy. How it breaks membranes, though, remains unknown. Here, we characterize a sequential polymerization of ESCRT-III subunits that, driven by a recruitment cascade and by continuous subunit-turnover powered by the ATPase Vps4, induces membrane deformation and fission. During this process, the exchange of Vps24 for Did2 induces a tilt in the polymer-membrane interface, which triggers transition from flat spiral polymers to helical filament to drive the formation of membrane protrusions, and ends with the formation of a highly constricted Did2-Ist1 co-polymer that we show is competent to promote fission when bound on the inside of membrane necks. Overall, our results suggest a mechanism of stepwise changes in ESCRT-III filament structure and mechanical properties via exchange of the filament subunits to catalyze ESCRT-III activity. [Display omitted] •ESCRT-III subunits polymerize sequentially at the membrane driven by the ATPase Vps4•The ESCRT-III polymerization sequence ends by Did2/Ist1 to catalyze membrane fission•Subunit exchange triggers changes in ESCRT-III polymers shape and properties•Tilt introduction in the polymer-membrane interface mediates filament buckling The ESCRT-III machinery works by sequential recruitment, polymerization, and replacement of different subunits, resulting in constriction—and, finally, fission—of the membrane.</description><subject>Adenosine Triphosphatases - metabolism</subject><subject>Cell Line, Tumor</subject><subject>Cell Membrane - metabolism</subject><subject>CHMP1</subject><subject>CHMP4</subject><subject>Did2</subject><subject>Endosomal Sorting Complexes Required for Transport - metabolism</subject><subject>Endosomes - metabolism</subject><subject>ESCRT</subject><subject>ESCRT-III</subject><subject>HeLa Cells</subject><subject>Humans</subject><subject>in vitro reconstitution</subject><subject>Ist1</subject><subject>membrane fission</subject><subject>Membrane Fusion - physiology</subject><subject>membrane remodeling</subject><subject>Polymerization</subject><subject>Protein Transport - physiology</subject><subject>Snf7</subject><subject>Vps2</subject><issn>0092-8674</issn><issn>1097-4172</issn><issn>1097-4172</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kU1P3DAQhi3UqizQP8AB5dhL0hknjh0JVULLR1faCgT0bHltp_UqiamdXQl-PU4XEL30NB75mXdm3iHkGKFAwPrrutC26woKFArgBVDcIzOEhucVcvqBzAAamouaV_vkIMY1AAjG2CeyX1KBFSCbkeXZkF3czW_v88Vikd347rG3wT2p0fkhu7N_NnbQNjsPbmtj9sP2q6CGlNvWh34HqcFkly7G9D4iH1vVRfv5JR6Sn5cX9_Pv-fL6ajE_W-aaURzzkmK74tTWxpQlMqY5mhopbYSgLWJZa1OCaTRr9ApaFEJDpYUybV01iglRHpJvO92Hzaq3RtthDKqTD8H1KjxKr5z892dwv-Uvv5W84k0aIQl8eREIPq0YR9m7OJmZlvObKGlVMs6YaCChdIfq4GMMtn1rgyCnM8i1nCrldAYJXMJf_ZP3A76VvPqegNMdYJNNW2eDjNpNVhsXrB6l8e5_-s_93Jiy</recordid><startdate>20200903</startdate><enddate>20200903</enddate><creator>Pfitzner, Anna-Katharina</creator><creator>Mercier, Vincent</creator><creator>Jiang, Xiuyun</creator><creator>Moser von Filseck, Joachim</creator><creator>Baum, Buzz</creator><creator>Šarić, Anđela</creator><creator>Roux, Aurélien</creator><general>Elsevier Inc</general><general>Cell Press</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20200903</creationdate><title>An ESCRT-III Polymerization Sequence Drives Membrane Deformation and Fission</title><author>Pfitzner, Anna-Katharina ; Mercier, Vincent ; Jiang, Xiuyun ; Moser von Filseck, Joachim ; Baum, Buzz ; Šarić, Anđela ; Roux, Aurélien</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c521t-321fb72e6dd33155c71d61229882f1136cd30d9c59cb0f188c04c8adf649a5883</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Adenosine Triphosphatases - metabolism</topic><topic>Cell Line, Tumor</topic><topic>Cell Membrane - metabolism</topic><topic>CHMP1</topic><topic>CHMP4</topic><topic>Did2</topic><topic>Endosomal Sorting Complexes Required for Transport - metabolism</topic><topic>Endosomes - metabolism</topic><topic>ESCRT</topic><topic>ESCRT-III</topic><topic>HeLa Cells</topic><topic>Humans</topic><topic>in vitro reconstitution</topic><topic>Ist1</topic><topic>membrane fission</topic><topic>Membrane Fusion - physiology</topic><topic>membrane remodeling</topic><topic>Polymerization</topic><topic>Protein Transport - physiology</topic><topic>Snf7</topic><topic>Vps2</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pfitzner, Anna-Katharina</creatorcontrib><creatorcontrib>Mercier, Vincent</creatorcontrib><creatorcontrib>Jiang, Xiuyun</creatorcontrib><creatorcontrib>Moser von Filseck, Joachim</creatorcontrib><creatorcontrib>Baum, Buzz</creatorcontrib><creatorcontrib>Šarić, Anđela</creatorcontrib><creatorcontrib>Roux, Aurélien</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Cell</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pfitzner, Anna-Katharina</au><au>Mercier, Vincent</au><au>Jiang, Xiuyun</au><au>Moser von Filseck, Joachim</au><au>Baum, Buzz</au><au>Šarić, Anđela</au><au>Roux, Aurélien</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An ESCRT-III Polymerization Sequence Drives Membrane Deformation and Fission</atitle><jtitle>Cell</jtitle><addtitle>Cell</addtitle><date>2020-09-03</date><risdate>2020</risdate><volume>182</volume><issue>5</issue><spage>1140</spage><epage>1155.e18</epage><pages>1140-1155.e18</pages><issn>0092-8674</issn><issn>1097-4172</issn><eissn>1097-4172</eissn><abstract>The endosomal sorting complex required for transport-III (ESCRT-III) catalyzes membrane fission from within membrane necks, a process that is essential for many cellular functions, from cell division to lysosome degradation and autophagy. How it breaks membranes, though, remains unknown. Here, we characterize a sequential polymerization of ESCRT-III subunits that, driven by a recruitment cascade and by continuous subunit-turnover powered by the ATPase Vps4, induces membrane deformation and fission. During this process, the exchange of Vps24 for Did2 induces a tilt in the polymer-membrane interface, which triggers transition from flat spiral polymers to helical filament to drive the formation of membrane protrusions, and ends with the formation of a highly constricted Did2-Ist1 co-polymer that we show is competent to promote fission when bound on the inside of membrane necks. Overall, our results suggest a mechanism of stepwise changes in ESCRT-III filament structure and mechanical properties via exchange of the filament subunits to catalyze ESCRT-III activity. [Display omitted] •ESCRT-III subunits polymerize sequentially at the membrane driven by the ATPase Vps4•The ESCRT-III polymerization sequence ends by Did2/Ist1 to catalyze membrane fission•Subunit exchange triggers changes in ESCRT-III polymers shape and properties•Tilt introduction in the polymer-membrane interface mediates filament buckling The ESCRT-III machinery works by sequential recruitment, polymerization, and replacement of different subunits, resulting in constriction—and, finally, fission—of the membrane.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>32814015</pmid><doi>10.1016/j.cell.2020.07.021</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0092-8674
ispartof Cell, 2020-09, Vol.182 (5), p.1140-1155.e18
issn 0092-8674
1097-4172
1097-4172
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7479521
source MEDLINE; Cell Press Free Archives; ScienceDirect Journals (5 years ago - present); EZB-FREE-00999 freely available EZB journals
subjects Adenosine Triphosphatases - metabolism
Cell Line, Tumor
Cell Membrane - metabolism
CHMP1
CHMP4
Did2
Endosomal Sorting Complexes Required for Transport - metabolism
Endosomes - metabolism
ESCRT
ESCRT-III
HeLa Cells
Humans
in vitro reconstitution
Ist1
membrane fission
Membrane Fusion - physiology
membrane remodeling
Polymerization
Protein Transport - physiology
Snf7
Vps2
title An ESCRT-III Polymerization Sequence Drives Membrane Deformation and Fission
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T23%3A04%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20ESCRT-III%20Polymerization%20Sequence%20Drives%20Membrane%20Deformation%20and%20Fission&rft.jtitle=Cell&rft.au=Pfitzner,%20Anna-Katharina&rft.date=2020-09-03&rft.volume=182&rft.issue=5&rft.spage=1140&rft.epage=1155.e18&rft.pages=1140-1155.e18&rft.issn=0092-8674&rft.eissn=1097-4172&rft_id=info:doi/10.1016/j.cell.2020.07.021&rft_dat=%3Cproquest_pubme%3E2435755890%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2435755890&rft_id=info:pmid/32814015&rft_els_id=S0092867420309296&rfr_iscdi=true