miR-331-3p is involved in glucocorticoid resistance reversion by rapamycin through suppression of the MAPK signaling pathway

Glucocorticoids (GCs) are commonly used as therapeutic agents for immune-mediated diseases and leukemia. However, considerable inter-individual differences in efficacy have been reported. Several reports indicate that the inhibitor of mTOR rapamycin can reverse GC resistance, but the molecular mecha...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cancer chemotherapy and pharmacology 2020-09, Vol.86 (3), p.361-374
Hauptverfasser: Lucafò, Marianna, Sicari, Daria, Chicco, Andrea, Curci, Debora, Bellazzo, Arianna, Di Silvestre, Alessia, Pegolo, Chiara, Autry, Robert, Cecchin, Erika, De Iudicibus, Sara, Collavin, Licio, Evans, William, Decorti, Giuliana, Stocco, Gabriele
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 374
container_issue 3
container_start_page 361
container_title Cancer chemotherapy and pharmacology
container_volume 86
creator Lucafò, Marianna
Sicari, Daria
Chicco, Andrea
Curci, Debora
Bellazzo, Arianna
Di Silvestre, Alessia
Pegolo, Chiara
Autry, Robert
Cecchin, Erika
De Iudicibus, Sara
Collavin, Licio
Evans, William
Decorti, Giuliana
Stocco, Gabriele
description Glucocorticoids (GCs) are commonly used as therapeutic agents for immune-mediated diseases and leukemia. However, considerable inter-individual differences in efficacy have been reported. Several reports indicate that the inhibitor of mTOR rapamycin can reverse GC resistance, but the molecular mechanism involved in this synergistic effect has not been fully defined. In this context, we explored the differential miRNA expression in a GC-resistant CCRF-CEM cell line after treatment with rapamycin alone or in co-treatment with methylprednisolone (MP). The expression analysis identified 70, 99 and 96 miRNAs that were differentially expressed after treatment with MP, rapamycin and their combination compared to non-treated controls, respectively. Two pathways were exclusively altered as a result of the co-treatment: the MAPK and ErbB pathways. We validated the only miRNA upregulated specifically by the co-treatment associated with the MAPK signaling, miR-331-3p. Looking for miR-331-3p targets, MAP2K7, an essential component of the JNK/MAPK pathway, was identified. Interestingly, MAP2K7 expression was downregulated during the co-treatment, causing a decrease in terms of JNK activity. miR-331-3p in mimic-transfected cells led to a significant decrease in MAP2K7 levels and promoted the reversion of GC resistance in vitro. Interestingly, miR-331-3p expression was also associated with GC-resistance in patient leukemia cells taken at diagnosis. The combination of rapamycin with MP restores GC effectiveness through the regulation of different miRNAs, suggesting the important role of these pharmacoepigenetic factors in GC response.
doi_str_mv 10.1007/s00280-020-04122-z
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7479018</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2432860446</sourcerecordid><originalsourceid>FETCH-LOGICAL-c508t-19ef25d4284499247072f8867860fb073ddc3052b13cafba975a8ef0f798176d3</originalsourceid><addsrcrecordid>eNp9kk1v1DAQhi0EotvCH-CAInGhh8D4I7FzQVpVQBGLQAjOluM4iaskDnYStBU_HoeUAj1wGHk088w7Y3sQeoLhBQbgLwMAEZACicYwIen1PbTDjJIUBKP30Q4oY2nGgZ2g0xCuACJG6UN0QgnnOSHFDv3o7eeUUpzSMbEhscPiusVU0UmabtZOOz9Z7WyVeBNsmNSgTXQX44N1Q1IeE69G1R91LJha7-amTcI8jpH-Bbg6hk3yYf_pfRJsM6jODk0yqqn9ro6P0INadcE8vjnP0Nc3r79cXKaHj2_fXewPqc5ATCkuTE2yihHBWFEQxoGTWoicixzqEjitKk0hIyWmWtWlKnimhKmh5oXAPK_oGXq16Y5z2ZtKm2HyqpOjt73yR-mUlf9mBtvKxi2SM14AFlHgfBNo75Rd7g9yjQEpSEEZWXBkn9808-7bbMIkexu06To1GDcHSeIHxcEZyyP67A565WYf32ilGPAcMFmbk43S3oXgTX07AQa5LoLcFiEOEW1dBHkdi57-feXbkt8_HwG6ASGmhsb4P73_I_sTNli_Kw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2440760128</pqid></control><display><type>article</type><title>miR-331-3p is involved in glucocorticoid resistance reversion by rapamycin through suppression of the MAPK signaling pathway</title><source>MEDLINE</source><source>SpringerLink Journals - AutoHoldings</source><creator>Lucafò, Marianna ; Sicari, Daria ; Chicco, Andrea ; Curci, Debora ; Bellazzo, Arianna ; Di Silvestre, Alessia ; Pegolo, Chiara ; Autry, Robert ; Cecchin, Erika ; De Iudicibus, Sara ; Collavin, Licio ; Evans, William ; Decorti, Giuliana ; Stocco, Gabriele</creator><creatorcontrib>Lucafò, Marianna ; Sicari, Daria ; Chicco, Andrea ; Curci, Debora ; Bellazzo, Arianna ; Di Silvestre, Alessia ; Pegolo, Chiara ; Autry, Robert ; Cecchin, Erika ; De Iudicibus, Sara ; Collavin, Licio ; Evans, William ; Decorti, Giuliana ; Stocco, Gabriele</creatorcontrib><description>Glucocorticoids (GCs) are commonly used as therapeutic agents for immune-mediated diseases and leukemia. However, considerable inter-individual differences in efficacy have been reported. Several reports indicate that the inhibitor of mTOR rapamycin can reverse GC resistance, but the molecular mechanism involved in this synergistic effect has not been fully defined. In this context, we explored the differential miRNA expression in a GC-resistant CCRF-CEM cell line after treatment with rapamycin alone or in co-treatment with methylprednisolone (MP). The expression analysis identified 70, 99 and 96 miRNAs that were differentially expressed after treatment with MP, rapamycin and their combination compared to non-treated controls, respectively. Two pathways were exclusively altered as a result of the co-treatment: the MAPK and ErbB pathways. We validated the only miRNA upregulated specifically by the co-treatment associated with the MAPK signaling, miR-331-3p. Looking for miR-331-3p targets, MAP2K7, an essential component of the JNK/MAPK pathway, was identified. Interestingly, MAP2K7 expression was downregulated during the co-treatment, causing a decrease in terms of JNK activity. miR-331-3p in mimic-transfected cells led to a significant decrease in MAP2K7 levels and promoted the reversion of GC resistance in vitro. Interestingly, miR-331-3p expression was also associated with GC-resistance in patient leukemia cells taken at diagnosis. The combination of rapamycin with MP restores GC effectiveness through the regulation of different miRNAs, suggesting the important role of these pharmacoepigenetic factors in GC response.</description><identifier>ISSN: 0344-5704</identifier><identifier>EISSN: 1432-0843</identifier><identifier>DOI: 10.1007/s00280-020-04122-z</identifier><identifier>PMID: 32776229</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Antibiotics, Antineoplastic - pharmacology ; Apoptosis ; Biomarkers, Tumor - genetics ; Biomarkers, Tumor - metabolism ; Cancer Research ; Cell Proliferation ; Chemical compounds ; Drug Resistance, Neoplasm ; ErbB protein ; Gene Expression Regulation, Neoplastic ; Glucocorticoids ; Glucocorticoids - pharmacology ; Humans ; Leukemia ; Life Sciences ; MAP kinase ; Medicine ; Medicine &amp; Public Health ; Methylprednisolone ; MicroRNAs - genetics ; miRNA ; Mitogen-Activated Protein Kinases - genetics ; Mitogen-Activated Protein Kinases - metabolism ; Oncology ; Original ; Original Article ; Pharmaceutical sciences ; Pharmacology ; Pharmacology/Toxicology ; Precursor Cell Lymphoblastic Leukemia-Lymphoma - drug therapy ; Precursor Cell Lymphoblastic Leukemia-Lymphoma - genetics ; Precursor Cell Lymphoblastic Leukemia-Lymphoma - metabolism ; Precursor Cell Lymphoblastic Leukemia-Lymphoma - pathology ; Prognosis ; Rapamycin ; Signal transduction ; Sirolimus - pharmacology ; Synergistic effect ; TOR protein ; Tumor Cells, Cultured</subject><ispartof>Cancer chemotherapy and pharmacology, 2020-09, Vol.86 (3), p.361-374</ispartof><rights>The Author(s) 2020</rights><rights>The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Attribution</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c508t-19ef25d4284499247072f8867860fb073ddc3052b13cafba975a8ef0f798176d3</citedby><cites>FETCH-LOGICAL-c508t-19ef25d4284499247072f8867860fb073ddc3052b13cafba975a8ef0f798176d3</cites><orcidid>0000-0002-9714-6246</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00280-020-04122-z$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00280-020-04122-z$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32776229$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-02929342$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Lucafò, Marianna</creatorcontrib><creatorcontrib>Sicari, Daria</creatorcontrib><creatorcontrib>Chicco, Andrea</creatorcontrib><creatorcontrib>Curci, Debora</creatorcontrib><creatorcontrib>Bellazzo, Arianna</creatorcontrib><creatorcontrib>Di Silvestre, Alessia</creatorcontrib><creatorcontrib>Pegolo, Chiara</creatorcontrib><creatorcontrib>Autry, Robert</creatorcontrib><creatorcontrib>Cecchin, Erika</creatorcontrib><creatorcontrib>De Iudicibus, Sara</creatorcontrib><creatorcontrib>Collavin, Licio</creatorcontrib><creatorcontrib>Evans, William</creatorcontrib><creatorcontrib>Decorti, Giuliana</creatorcontrib><creatorcontrib>Stocco, Gabriele</creatorcontrib><title>miR-331-3p is involved in glucocorticoid resistance reversion by rapamycin through suppression of the MAPK signaling pathway</title><title>Cancer chemotherapy and pharmacology</title><addtitle>Cancer Chemother Pharmacol</addtitle><addtitle>Cancer Chemother Pharmacol</addtitle><description>Glucocorticoids (GCs) are commonly used as therapeutic agents for immune-mediated diseases and leukemia. However, considerable inter-individual differences in efficacy have been reported. Several reports indicate that the inhibitor of mTOR rapamycin can reverse GC resistance, but the molecular mechanism involved in this synergistic effect has not been fully defined. In this context, we explored the differential miRNA expression in a GC-resistant CCRF-CEM cell line after treatment with rapamycin alone or in co-treatment with methylprednisolone (MP). The expression analysis identified 70, 99 and 96 miRNAs that were differentially expressed after treatment with MP, rapamycin and their combination compared to non-treated controls, respectively. Two pathways were exclusively altered as a result of the co-treatment: the MAPK and ErbB pathways. We validated the only miRNA upregulated specifically by the co-treatment associated with the MAPK signaling, miR-331-3p. Looking for miR-331-3p targets, MAP2K7, an essential component of the JNK/MAPK pathway, was identified. Interestingly, MAP2K7 expression was downregulated during the co-treatment, causing a decrease in terms of JNK activity. miR-331-3p in mimic-transfected cells led to a significant decrease in MAP2K7 levels and promoted the reversion of GC resistance in vitro. Interestingly, miR-331-3p expression was also associated with GC-resistance in patient leukemia cells taken at diagnosis. The combination of rapamycin with MP restores GC effectiveness through the regulation of different miRNAs, suggesting the important role of these pharmacoepigenetic factors in GC response.</description><subject>Antibiotics, Antineoplastic - pharmacology</subject><subject>Apoptosis</subject><subject>Biomarkers, Tumor - genetics</subject><subject>Biomarkers, Tumor - metabolism</subject><subject>Cancer Research</subject><subject>Cell Proliferation</subject><subject>Chemical compounds</subject><subject>Drug Resistance, Neoplasm</subject><subject>ErbB protein</subject><subject>Gene Expression Regulation, Neoplastic</subject><subject>Glucocorticoids</subject><subject>Glucocorticoids - pharmacology</subject><subject>Humans</subject><subject>Leukemia</subject><subject>Life Sciences</subject><subject>MAP kinase</subject><subject>Medicine</subject><subject>Medicine &amp; Public Health</subject><subject>Methylprednisolone</subject><subject>MicroRNAs - genetics</subject><subject>miRNA</subject><subject>Mitogen-Activated Protein Kinases - genetics</subject><subject>Mitogen-Activated Protein Kinases - metabolism</subject><subject>Oncology</subject><subject>Original</subject><subject>Original Article</subject><subject>Pharmaceutical sciences</subject><subject>Pharmacology</subject><subject>Pharmacology/Toxicology</subject><subject>Precursor Cell Lymphoblastic Leukemia-Lymphoma - drug therapy</subject><subject>Precursor Cell Lymphoblastic Leukemia-Lymphoma - genetics</subject><subject>Precursor Cell Lymphoblastic Leukemia-Lymphoma - metabolism</subject><subject>Precursor Cell Lymphoblastic Leukemia-Lymphoma - pathology</subject><subject>Prognosis</subject><subject>Rapamycin</subject><subject>Signal transduction</subject><subject>Sirolimus - pharmacology</subject><subject>Synergistic effect</subject><subject>TOR protein</subject><subject>Tumor Cells, Cultured</subject><issn>0344-5704</issn><issn>1432-0843</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNp9kk1v1DAQhi0EotvCH-CAInGhh8D4I7FzQVpVQBGLQAjOluM4iaskDnYStBU_HoeUAj1wGHk088w7Y3sQeoLhBQbgLwMAEZACicYwIen1PbTDjJIUBKP30Q4oY2nGgZ2g0xCuACJG6UN0QgnnOSHFDv3o7eeUUpzSMbEhscPiusVU0UmabtZOOz9Z7WyVeBNsmNSgTXQX44N1Q1IeE69G1R91LJha7-amTcI8jpH-Bbg6hk3yYf_pfRJsM6jODk0yqqn9ro6P0INadcE8vjnP0Nc3r79cXKaHj2_fXewPqc5ATCkuTE2yihHBWFEQxoGTWoicixzqEjitKk0hIyWmWtWlKnimhKmh5oXAPK_oGXq16Y5z2ZtKm2HyqpOjt73yR-mUlf9mBtvKxi2SM14AFlHgfBNo75Rd7g9yjQEpSEEZWXBkn9808-7bbMIkexu06To1GDcHSeIHxcEZyyP67A565WYf32ilGPAcMFmbk43S3oXgTX07AQa5LoLcFiEOEW1dBHkdi57-feXbkt8_HwG6ASGmhsb4P73_I_sTNli_Kw</recordid><startdate>20200901</startdate><enddate>20200901</enddate><creator>Lucafò, Marianna</creator><creator>Sicari, Daria</creator><creator>Chicco, Andrea</creator><creator>Curci, Debora</creator><creator>Bellazzo, Arianna</creator><creator>Di Silvestre, Alessia</creator><creator>Pegolo, Chiara</creator><creator>Autry, Robert</creator><creator>Cecchin, Erika</creator><creator>De Iudicibus, Sara</creator><creator>Collavin, Licio</creator><creator>Evans, William</creator><creator>Decorti, Giuliana</creator><creator>Stocco, Gabriele</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><general>Springer Verlag</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>H94</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-9714-6246</orcidid></search><sort><creationdate>20200901</creationdate><title>miR-331-3p is involved in glucocorticoid resistance reversion by rapamycin through suppression of the MAPK signaling pathway</title><author>Lucafò, Marianna ; Sicari, Daria ; Chicco, Andrea ; Curci, Debora ; Bellazzo, Arianna ; Di Silvestre, Alessia ; Pegolo, Chiara ; Autry, Robert ; Cecchin, Erika ; De Iudicibus, Sara ; Collavin, Licio ; Evans, William ; Decorti, Giuliana ; Stocco, Gabriele</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c508t-19ef25d4284499247072f8867860fb073ddc3052b13cafba975a8ef0f798176d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Antibiotics, Antineoplastic - pharmacology</topic><topic>Apoptosis</topic><topic>Biomarkers, Tumor - genetics</topic><topic>Biomarkers, Tumor - metabolism</topic><topic>Cancer Research</topic><topic>Cell Proliferation</topic><topic>Chemical compounds</topic><topic>Drug Resistance, Neoplasm</topic><topic>ErbB protein</topic><topic>Gene Expression Regulation, Neoplastic</topic><topic>Glucocorticoids</topic><topic>Glucocorticoids - pharmacology</topic><topic>Humans</topic><topic>Leukemia</topic><topic>Life Sciences</topic><topic>MAP kinase</topic><topic>Medicine</topic><topic>Medicine &amp; Public Health</topic><topic>Methylprednisolone</topic><topic>MicroRNAs - genetics</topic><topic>miRNA</topic><topic>Mitogen-Activated Protein Kinases - genetics</topic><topic>Mitogen-Activated Protein Kinases - metabolism</topic><topic>Oncology</topic><topic>Original</topic><topic>Original Article</topic><topic>Pharmaceutical sciences</topic><topic>Pharmacology</topic><topic>Pharmacology/Toxicology</topic><topic>Precursor Cell Lymphoblastic Leukemia-Lymphoma - drug therapy</topic><topic>Precursor Cell Lymphoblastic Leukemia-Lymphoma - genetics</topic><topic>Precursor Cell Lymphoblastic Leukemia-Lymphoma - metabolism</topic><topic>Precursor Cell Lymphoblastic Leukemia-Lymphoma - pathology</topic><topic>Prognosis</topic><topic>Rapamycin</topic><topic>Signal transduction</topic><topic>Sirolimus - pharmacology</topic><topic>Synergistic effect</topic><topic>TOR protein</topic><topic>Tumor Cells, Cultured</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lucafò, Marianna</creatorcontrib><creatorcontrib>Sicari, Daria</creatorcontrib><creatorcontrib>Chicco, Andrea</creatorcontrib><creatorcontrib>Curci, Debora</creatorcontrib><creatorcontrib>Bellazzo, Arianna</creatorcontrib><creatorcontrib>Di Silvestre, Alessia</creatorcontrib><creatorcontrib>Pegolo, Chiara</creatorcontrib><creatorcontrib>Autry, Robert</creatorcontrib><creatorcontrib>Cecchin, Erika</creatorcontrib><creatorcontrib>De Iudicibus, Sara</creatorcontrib><creatorcontrib>Collavin, Licio</creatorcontrib><creatorcontrib>Evans, William</creatorcontrib><creatorcontrib>Decorti, Giuliana</creatorcontrib><creatorcontrib>Stocco, Gabriele</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Cancer chemotherapy and pharmacology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lucafò, Marianna</au><au>Sicari, Daria</au><au>Chicco, Andrea</au><au>Curci, Debora</au><au>Bellazzo, Arianna</au><au>Di Silvestre, Alessia</au><au>Pegolo, Chiara</au><au>Autry, Robert</au><au>Cecchin, Erika</au><au>De Iudicibus, Sara</au><au>Collavin, Licio</au><au>Evans, William</au><au>Decorti, Giuliana</au><au>Stocco, Gabriele</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>miR-331-3p is involved in glucocorticoid resistance reversion by rapamycin through suppression of the MAPK signaling pathway</atitle><jtitle>Cancer chemotherapy and pharmacology</jtitle><stitle>Cancer Chemother Pharmacol</stitle><addtitle>Cancer Chemother Pharmacol</addtitle><date>2020-09-01</date><risdate>2020</risdate><volume>86</volume><issue>3</issue><spage>361</spage><epage>374</epage><pages>361-374</pages><issn>0344-5704</issn><eissn>1432-0843</eissn><abstract>Glucocorticoids (GCs) are commonly used as therapeutic agents for immune-mediated diseases and leukemia. However, considerable inter-individual differences in efficacy have been reported. Several reports indicate that the inhibitor of mTOR rapamycin can reverse GC resistance, but the molecular mechanism involved in this synergistic effect has not been fully defined. In this context, we explored the differential miRNA expression in a GC-resistant CCRF-CEM cell line after treatment with rapamycin alone or in co-treatment with methylprednisolone (MP). The expression analysis identified 70, 99 and 96 miRNAs that were differentially expressed after treatment with MP, rapamycin and their combination compared to non-treated controls, respectively. Two pathways were exclusively altered as a result of the co-treatment: the MAPK and ErbB pathways. We validated the only miRNA upregulated specifically by the co-treatment associated with the MAPK signaling, miR-331-3p. Looking for miR-331-3p targets, MAP2K7, an essential component of the JNK/MAPK pathway, was identified. Interestingly, MAP2K7 expression was downregulated during the co-treatment, causing a decrease in terms of JNK activity. miR-331-3p in mimic-transfected cells led to a significant decrease in MAP2K7 levels and promoted the reversion of GC resistance in vitro. Interestingly, miR-331-3p expression was also associated with GC-resistance in patient leukemia cells taken at diagnosis. The combination of rapamycin with MP restores GC effectiveness through the regulation of different miRNAs, suggesting the important role of these pharmacoepigenetic factors in GC response.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>32776229</pmid><doi>10.1007/s00280-020-04122-z</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-9714-6246</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0344-5704
ispartof Cancer chemotherapy and pharmacology, 2020-09, Vol.86 (3), p.361-374
issn 0344-5704
1432-0843
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7479018
source MEDLINE; SpringerLink Journals - AutoHoldings
subjects Antibiotics, Antineoplastic - pharmacology
Apoptosis
Biomarkers, Tumor - genetics
Biomarkers, Tumor - metabolism
Cancer Research
Cell Proliferation
Chemical compounds
Drug Resistance, Neoplasm
ErbB protein
Gene Expression Regulation, Neoplastic
Glucocorticoids
Glucocorticoids - pharmacology
Humans
Leukemia
Life Sciences
MAP kinase
Medicine
Medicine & Public Health
Methylprednisolone
MicroRNAs - genetics
miRNA
Mitogen-Activated Protein Kinases - genetics
Mitogen-Activated Protein Kinases - metabolism
Oncology
Original
Original Article
Pharmaceutical sciences
Pharmacology
Pharmacology/Toxicology
Precursor Cell Lymphoblastic Leukemia-Lymphoma - drug therapy
Precursor Cell Lymphoblastic Leukemia-Lymphoma - genetics
Precursor Cell Lymphoblastic Leukemia-Lymphoma - metabolism
Precursor Cell Lymphoblastic Leukemia-Lymphoma - pathology
Prognosis
Rapamycin
Signal transduction
Sirolimus - pharmacology
Synergistic effect
TOR protein
Tumor Cells, Cultured
title miR-331-3p is involved in glucocorticoid resistance reversion by rapamycin through suppression of the MAPK signaling pathway
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T01%3A24%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=miR-331-3p%20is%20involved%20in%20glucocorticoid%20resistance%20reversion%20by%20rapamycin%20through%20suppression%20of%20the%20MAPK%20signaling%20pathway&rft.jtitle=Cancer%20chemotherapy%20and%20pharmacology&rft.au=Lucaf%C3%B2,%20Marianna&rft.date=2020-09-01&rft.volume=86&rft.issue=3&rft.spage=361&rft.epage=374&rft.pages=361-374&rft.issn=0344-5704&rft.eissn=1432-0843&rft_id=info:doi/10.1007/s00280-020-04122-z&rft_dat=%3Cproquest_pubme%3E2432860446%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2440760128&rft_id=info:pmid/32776229&rfr_iscdi=true