miR-331-3p is involved in glucocorticoid resistance reversion by rapamycin through suppression of the MAPK signaling pathway
Glucocorticoids (GCs) are commonly used as therapeutic agents for immune-mediated diseases and leukemia. However, considerable inter-individual differences in efficacy have been reported. Several reports indicate that the inhibitor of mTOR rapamycin can reverse GC resistance, but the molecular mecha...
Gespeichert in:
Veröffentlicht in: | Cancer chemotherapy and pharmacology 2020-09, Vol.86 (3), p.361-374 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 374 |
---|---|
container_issue | 3 |
container_start_page | 361 |
container_title | Cancer chemotherapy and pharmacology |
container_volume | 86 |
creator | Lucafò, Marianna Sicari, Daria Chicco, Andrea Curci, Debora Bellazzo, Arianna Di Silvestre, Alessia Pegolo, Chiara Autry, Robert Cecchin, Erika De Iudicibus, Sara Collavin, Licio Evans, William Decorti, Giuliana Stocco, Gabriele |
description | Glucocorticoids (GCs) are commonly used as therapeutic agents for immune-mediated diseases and leukemia. However, considerable inter-individual differences in efficacy have been reported. Several reports indicate that the inhibitor of mTOR rapamycin can reverse GC resistance, but the molecular mechanism involved in this synergistic effect has not been fully defined. In this context, we explored the differential miRNA expression in a GC-resistant CCRF-CEM cell line after treatment with rapamycin alone or in co-treatment with methylprednisolone (MP). The expression analysis identified 70, 99 and 96 miRNAs that were differentially expressed after treatment with MP, rapamycin and their combination compared to non-treated controls, respectively. Two pathways were exclusively altered as a result of the co-treatment: the MAPK and ErbB pathways. We validated the only miRNA upregulated specifically by the co-treatment associated with the MAPK signaling, miR-331-3p. Looking for miR-331-3p targets, MAP2K7, an essential component of the JNK/MAPK pathway, was identified. Interestingly, MAP2K7 expression was downregulated during the co-treatment, causing a decrease in terms of JNK activity. miR-331-3p in mimic-transfected cells led to a significant decrease in MAP2K7 levels and promoted the reversion of GC resistance in vitro. Interestingly, miR-331-3p expression was also associated with GC-resistance in patient leukemia cells taken at diagnosis. The combination of rapamycin with MP restores GC effectiveness through the regulation of different miRNAs, suggesting the important role of these pharmacoepigenetic factors in GC response. |
doi_str_mv | 10.1007/s00280-020-04122-z |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7479018</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2432860446</sourcerecordid><originalsourceid>FETCH-LOGICAL-c508t-19ef25d4284499247072f8867860fb073ddc3052b13cafba975a8ef0f798176d3</originalsourceid><addsrcrecordid>eNp9kk1v1DAQhi0EotvCH-CAInGhh8D4I7FzQVpVQBGLQAjOluM4iaskDnYStBU_HoeUAj1wGHk088w7Y3sQeoLhBQbgLwMAEZACicYwIen1PbTDjJIUBKP30Q4oY2nGgZ2g0xCuACJG6UN0QgnnOSHFDv3o7eeUUpzSMbEhscPiusVU0UmabtZOOz9Z7WyVeBNsmNSgTXQX44N1Q1IeE69G1R91LJha7-amTcI8jpH-Bbg6hk3yYf_pfRJsM6jODk0yqqn9ro6P0INadcE8vjnP0Nc3r79cXKaHj2_fXewPqc5ATCkuTE2yihHBWFEQxoGTWoicixzqEjitKk0hIyWmWtWlKnimhKmh5oXAPK_oGXq16Y5z2ZtKm2HyqpOjt73yR-mUlf9mBtvKxi2SM14AFlHgfBNo75Rd7g9yjQEpSEEZWXBkn9808-7bbMIkexu06To1GDcHSeIHxcEZyyP67A565WYf32ilGPAcMFmbk43S3oXgTX07AQa5LoLcFiEOEW1dBHkdi57-feXbkt8_HwG6ASGmhsb4P73_I_sTNli_Kw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2440760128</pqid></control><display><type>article</type><title>miR-331-3p is involved in glucocorticoid resistance reversion by rapamycin through suppression of the MAPK signaling pathway</title><source>MEDLINE</source><source>SpringerLink Journals - AutoHoldings</source><creator>Lucafò, Marianna ; Sicari, Daria ; Chicco, Andrea ; Curci, Debora ; Bellazzo, Arianna ; Di Silvestre, Alessia ; Pegolo, Chiara ; Autry, Robert ; Cecchin, Erika ; De Iudicibus, Sara ; Collavin, Licio ; Evans, William ; Decorti, Giuliana ; Stocco, Gabriele</creator><creatorcontrib>Lucafò, Marianna ; Sicari, Daria ; Chicco, Andrea ; Curci, Debora ; Bellazzo, Arianna ; Di Silvestre, Alessia ; Pegolo, Chiara ; Autry, Robert ; Cecchin, Erika ; De Iudicibus, Sara ; Collavin, Licio ; Evans, William ; Decorti, Giuliana ; Stocco, Gabriele</creatorcontrib><description>Glucocorticoids (GCs) are commonly used as therapeutic agents for immune-mediated diseases and leukemia. However, considerable inter-individual differences in efficacy have been reported. Several reports indicate that the inhibitor of mTOR rapamycin can reverse GC resistance, but the molecular mechanism involved in this synergistic effect has not been fully defined. In this context, we explored the differential miRNA expression in a GC-resistant CCRF-CEM cell line after treatment with rapamycin alone or in co-treatment with methylprednisolone (MP). The expression analysis identified 70, 99 and 96 miRNAs that were differentially expressed after treatment with MP, rapamycin and their combination compared to non-treated controls, respectively. Two pathways were exclusively altered as a result of the co-treatment: the MAPK and ErbB pathways. We validated the only miRNA upregulated specifically by the co-treatment associated with the MAPK signaling, miR-331-3p. Looking for miR-331-3p targets, MAP2K7, an essential component of the JNK/MAPK pathway, was identified. Interestingly, MAP2K7 expression was downregulated during the co-treatment, causing a decrease in terms of JNK activity. miR-331-3p in mimic-transfected cells led to a significant decrease in MAP2K7 levels and promoted the reversion of GC resistance in vitro. Interestingly, miR-331-3p expression was also associated with GC-resistance in patient leukemia cells taken at diagnosis. The combination of rapamycin with MP restores GC effectiveness through the regulation of different miRNAs, suggesting the important role of these pharmacoepigenetic factors in GC response.</description><identifier>ISSN: 0344-5704</identifier><identifier>EISSN: 1432-0843</identifier><identifier>DOI: 10.1007/s00280-020-04122-z</identifier><identifier>PMID: 32776229</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Antibiotics, Antineoplastic - pharmacology ; Apoptosis ; Biomarkers, Tumor - genetics ; Biomarkers, Tumor - metabolism ; Cancer Research ; Cell Proliferation ; Chemical compounds ; Drug Resistance, Neoplasm ; ErbB protein ; Gene Expression Regulation, Neoplastic ; Glucocorticoids ; Glucocorticoids - pharmacology ; Humans ; Leukemia ; Life Sciences ; MAP kinase ; Medicine ; Medicine & Public Health ; Methylprednisolone ; MicroRNAs - genetics ; miRNA ; Mitogen-Activated Protein Kinases - genetics ; Mitogen-Activated Protein Kinases - metabolism ; Oncology ; Original ; Original Article ; Pharmaceutical sciences ; Pharmacology ; Pharmacology/Toxicology ; Precursor Cell Lymphoblastic Leukemia-Lymphoma - drug therapy ; Precursor Cell Lymphoblastic Leukemia-Lymphoma - genetics ; Precursor Cell Lymphoblastic Leukemia-Lymphoma - metabolism ; Precursor Cell Lymphoblastic Leukemia-Lymphoma - pathology ; Prognosis ; Rapamycin ; Signal transduction ; Sirolimus - pharmacology ; Synergistic effect ; TOR protein ; Tumor Cells, Cultured</subject><ispartof>Cancer chemotherapy and pharmacology, 2020-09, Vol.86 (3), p.361-374</ispartof><rights>The Author(s) 2020</rights><rights>The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Attribution</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c508t-19ef25d4284499247072f8867860fb073ddc3052b13cafba975a8ef0f798176d3</citedby><cites>FETCH-LOGICAL-c508t-19ef25d4284499247072f8867860fb073ddc3052b13cafba975a8ef0f798176d3</cites><orcidid>0000-0002-9714-6246</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00280-020-04122-z$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00280-020-04122-z$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32776229$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-02929342$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Lucafò, Marianna</creatorcontrib><creatorcontrib>Sicari, Daria</creatorcontrib><creatorcontrib>Chicco, Andrea</creatorcontrib><creatorcontrib>Curci, Debora</creatorcontrib><creatorcontrib>Bellazzo, Arianna</creatorcontrib><creatorcontrib>Di Silvestre, Alessia</creatorcontrib><creatorcontrib>Pegolo, Chiara</creatorcontrib><creatorcontrib>Autry, Robert</creatorcontrib><creatorcontrib>Cecchin, Erika</creatorcontrib><creatorcontrib>De Iudicibus, Sara</creatorcontrib><creatorcontrib>Collavin, Licio</creatorcontrib><creatorcontrib>Evans, William</creatorcontrib><creatorcontrib>Decorti, Giuliana</creatorcontrib><creatorcontrib>Stocco, Gabriele</creatorcontrib><title>miR-331-3p is involved in glucocorticoid resistance reversion by rapamycin through suppression of the MAPK signaling pathway</title><title>Cancer chemotherapy and pharmacology</title><addtitle>Cancer Chemother Pharmacol</addtitle><addtitle>Cancer Chemother Pharmacol</addtitle><description>Glucocorticoids (GCs) are commonly used as therapeutic agents for immune-mediated diseases and leukemia. However, considerable inter-individual differences in efficacy have been reported. Several reports indicate that the inhibitor of mTOR rapamycin can reverse GC resistance, but the molecular mechanism involved in this synergistic effect has not been fully defined. In this context, we explored the differential miRNA expression in a GC-resistant CCRF-CEM cell line after treatment with rapamycin alone or in co-treatment with methylprednisolone (MP). The expression analysis identified 70, 99 and 96 miRNAs that were differentially expressed after treatment with MP, rapamycin and their combination compared to non-treated controls, respectively. Two pathways were exclusively altered as a result of the co-treatment: the MAPK and ErbB pathways. We validated the only miRNA upregulated specifically by the co-treatment associated with the MAPK signaling, miR-331-3p. Looking for miR-331-3p targets, MAP2K7, an essential component of the JNK/MAPK pathway, was identified. Interestingly, MAP2K7 expression was downregulated during the co-treatment, causing a decrease in terms of JNK activity. miR-331-3p in mimic-transfected cells led to a significant decrease in MAP2K7 levels and promoted the reversion of GC resistance in vitro. Interestingly, miR-331-3p expression was also associated with GC-resistance in patient leukemia cells taken at diagnosis. The combination of rapamycin with MP restores GC effectiveness through the regulation of different miRNAs, suggesting the important role of these pharmacoepigenetic factors in GC response.</description><subject>Antibiotics, Antineoplastic - pharmacology</subject><subject>Apoptosis</subject><subject>Biomarkers, Tumor - genetics</subject><subject>Biomarkers, Tumor - metabolism</subject><subject>Cancer Research</subject><subject>Cell Proliferation</subject><subject>Chemical compounds</subject><subject>Drug Resistance, Neoplasm</subject><subject>ErbB protein</subject><subject>Gene Expression Regulation, Neoplastic</subject><subject>Glucocorticoids</subject><subject>Glucocorticoids - pharmacology</subject><subject>Humans</subject><subject>Leukemia</subject><subject>Life Sciences</subject><subject>MAP kinase</subject><subject>Medicine</subject><subject>Medicine & Public Health</subject><subject>Methylprednisolone</subject><subject>MicroRNAs - genetics</subject><subject>miRNA</subject><subject>Mitogen-Activated Protein Kinases - genetics</subject><subject>Mitogen-Activated Protein Kinases - metabolism</subject><subject>Oncology</subject><subject>Original</subject><subject>Original Article</subject><subject>Pharmaceutical sciences</subject><subject>Pharmacology</subject><subject>Pharmacology/Toxicology</subject><subject>Precursor Cell Lymphoblastic Leukemia-Lymphoma - drug therapy</subject><subject>Precursor Cell Lymphoblastic Leukemia-Lymphoma - genetics</subject><subject>Precursor Cell Lymphoblastic Leukemia-Lymphoma - metabolism</subject><subject>Precursor Cell Lymphoblastic Leukemia-Lymphoma - pathology</subject><subject>Prognosis</subject><subject>Rapamycin</subject><subject>Signal transduction</subject><subject>Sirolimus - pharmacology</subject><subject>Synergistic effect</subject><subject>TOR protein</subject><subject>Tumor Cells, Cultured</subject><issn>0344-5704</issn><issn>1432-0843</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNp9kk1v1DAQhi0EotvCH-CAInGhh8D4I7FzQVpVQBGLQAjOluM4iaskDnYStBU_HoeUAj1wGHk088w7Y3sQeoLhBQbgLwMAEZACicYwIen1PbTDjJIUBKP30Q4oY2nGgZ2g0xCuACJG6UN0QgnnOSHFDv3o7eeUUpzSMbEhscPiusVU0UmabtZOOz9Z7WyVeBNsmNSgTXQX44N1Q1IeE69G1R91LJha7-amTcI8jpH-Bbg6hk3yYf_pfRJsM6jODk0yqqn9ro6P0INadcE8vjnP0Nc3r79cXKaHj2_fXewPqc5ATCkuTE2yihHBWFEQxoGTWoicixzqEjitKk0hIyWmWtWlKnimhKmh5oXAPK_oGXq16Y5z2ZtKm2HyqpOjt73yR-mUlf9mBtvKxi2SM14AFlHgfBNo75Rd7g9yjQEpSEEZWXBkn9808-7bbMIkexu06To1GDcHSeIHxcEZyyP67A565WYf32ilGPAcMFmbk43S3oXgTX07AQa5LoLcFiEOEW1dBHkdi57-feXbkt8_HwG6ASGmhsb4P73_I_sTNli_Kw</recordid><startdate>20200901</startdate><enddate>20200901</enddate><creator>Lucafò, Marianna</creator><creator>Sicari, Daria</creator><creator>Chicco, Andrea</creator><creator>Curci, Debora</creator><creator>Bellazzo, Arianna</creator><creator>Di Silvestre, Alessia</creator><creator>Pegolo, Chiara</creator><creator>Autry, Robert</creator><creator>Cecchin, Erika</creator><creator>De Iudicibus, Sara</creator><creator>Collavin, Licio</creator><creator>Evans, William</creator><creator>Decorti, Giuliana</creator><creator>Stocco, Gabriele</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><general>Springer Verlag</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>H94</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-9714-6246</orcidid></search><sort><creationdate>20200901</creationdate><title>miR-331-3p is involved in glucocorticoid resistance reversion by rapamycin through suppression of the MAPK signaling pathway</title><author>Lucafò, Marianna ; Sicari, Daria ; Chicco, Andrea ; Curci, Debora ; Bellazzo, Arianna ; Di Silvestre, Alessia ; Pegolo, Chiara ; Autry, Robert ; Cecchin, Erika ; De Iudicibus, Sara ; Collavin, Licio ; Evans, William ; Decorti, Giuliana ; Stocco, Gabriele</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c508t-19ef25d4284499247072f8867860fb073ddc3052b13cafba975a8ef0f798176d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Antibiotics, Antineoplastic - pharmacology</topic><topic>Apoptosis</topic><topic>Biomarkers, Tumor - genetics</topic><topic>Biomarkers, Tumor - metabolism</topic><topic>Cancer Research</topic><topic>Cell Proliferation</topic><topic>Chemical compounds</topic><topic>Drug Resistance, Neoplasm</topic><topic>ErbB protein</topic><topic>Gene Expression Regulation, Neoplastic</topic><topic>Glucocorticoids</topic><topic>Glucocorticoids - pharmacology</topic><topic>Humans</topic><topic>Leukemia</topic><topic>Life Sciences</topic><topic>MAP kinase</topic><topic>Medicine</topic><topic>Medicine & Public Health</topic><topic>Methylprednisolone</topic><topic>MicroRNAs - genetics</topic><topic>miRNA</topic><topic>Mitogen-Activated Protein Kinases - genetics</topic><topic>Mitogen-Activated Protein Kinases - metabolism</topic><topic>Oncology</topic><topic>Original</topic><topic>Original Article</topic><topic>Pharmaceutical sciences</topic><topic>Pharmacology</topic><topic>Pharmacology/Toxicology</topic><topic>Precursor Cell Lymphoblastic Leukemia-Lymphoma - drug therapy</topic><topic>Precursor Cell Lymphoblastic Leukemia-Lymphoma - genetics</topic><topic>Precursor Cell Lymphoblastic Leukemia-Lymphoma - metabolism</topic><topic>Precursor Cell Lymphoblastic Leukemia-Lymphoma - pathology</topic><topic>Prognosis</topic><topic>Rapamycin</topic><topic>Signal transduction</topic><topic>Sirolimus - pharmacology</topic><topic>Synergistic effect</topic><topic>TOR protein</topic><topic>Tumor Cells, Cultured</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lucafò, Marianna</creatorcontrib><creatorcontrib>Sicari, Daria</creatorcontrib><creatorcontrib>Chicco, Andrea</creatorcontrib><creatorcontrib>Curci, Debora</creatorcontrib><creatorcontrib>Bellazzo, Arianna</creatorcontrib><creatorcontrib>Di Silvestre, Alessia</creatorcontrib><creatorcontrib>Pegolo, Chiara</creatorcontrib><creatorcontrib>Autry, Robert</creatorcontrib><creatorcontrib>Cecchin, Erika</creatorcontrib><creatorcontrib>De Iudicibus, Sara</creatorcontrib><creatorcontrib>Collavin, Licio</creatorcontrib><creatorcontrib>Evans, William</creatorcontrib><creatorcontrib>Decorti, Giuliana</creatorcontrib><creatorcontrib>Stocco, Gabriele</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Cancer chemotherapy and pharmacology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lucafò, Marianna</au><au>Sicari, Daria</au><au>Chicco, Andrea</au><au>Curci, Debora</au><au>Bellazzo, Arianna</au><au>Di Silvestre, Alessia</au><au>Pegolo, Chiara</au><au>Autry, Robert</au><au>Cecchin, Erika</au><au>De Iudicibus, Sara</au><au>Collavin, Licio</au><au>Evans, William</au><au>Decorti, Giuliana</au><au>Stocco, Gabriele</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>miR-331-3p is involved in glucocorticoid resistance reversion by rapamycin through suppression of the MAPK signaling pathway</atitle><jtitle>Cancer chemotherapy and pharmacology</jtitle><stitle>Cancer Chemother Pharmacol</stitle><addtitle>Cancer Chemother Pharmacol</addtitle><date>2020-09-01</date><risdate>2020</risdate><volume>86</volume><issue>3</issue><spage>361</spage><epage>374</epage><pages>361-374</pages><issn>0344-5704</issn><eissn>1432-0843</eissn><abstract>Glucocorticoids (GCs) are commonly used as therapeutic agents for immune-mediated diseases and leukemia. However, considerable inter-individual differences in efficacy have been reported. Several reports indicate that the inhibitor of mTOR rapamycin can reverse GC resistance, but the molecular mechanism involved in this synergistic effect has not been fully defined. In this context, we explored the differential miRNA expression in a GC-resistant CCRF-CEM cell line after treatment with rapamycin alone or in co-treatment with methylprednisolone (MP). The expression analysis identified 70, 99 and 96 miRNAs that were differentially expressed after treatment with MP, rapamycin and their combination compared to non-treated controls, respectively. Two pathways were exclusively altered as a result of the co-treatment: the MAPK and ErbB pathways. We validated the only miRNA upregulated specifically by the co-treatment associated with the MAPK signaling, miR-331-3p. Looking for miR-331-3p targets, MAP2K7, an essential component of the JNK/MAPK pathway, was identified. Interestingly, MAP2K7 expression was downregulated during the co-treatment, causing a decrease in terms of JNK activity. miR-331-3p in mimic-transfected cells led to a significant decrease in MAP2K7 levels and promoted the reversion of GC resistance in vitro. Interestingly, miR-331-3p expression was also associated with GC-resistance in patient leukemia cells taken at diagnosis. The combination of rapamycin with MP restores GC effectiveness through the regulation of different miRNAs, suggesting the important role of these pharmacoepigenetic factors in GC response.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>32776229</pmid><doi>10.1007/s00280-020-04122-z</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-9714-6246</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0344-5704 |
ispartof | Cancer chemotherapy and pharmacology, 2020-09, Vol.86 (3), p.361-374 |
issn | 0344-5704 1432-0843 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7479018 |
source | MEDLINE; SpringerLink Journals - AutoHoldings |
subjects | Antibiotics, Antineoplastic - pharmacology Apoptosis Biomarkers, Tumor - genetics Biomarkers, Tumor - metabolism Cancer Research Cell Proliferation Chemical compounds Drug Resistance, Neoplasm ErbB protein Gene Expression Regulation, Neoplastic Glucocorticoids Glucocorticoids - pharmacology Humans Leukemia Life Sciences MAP kinase Medicine Medicine & Public Health Methylprednisolone MicroRNAs - genetics miRNA Mitogen-Activated Protein Kinases - genetics Mitogen-Activated Protein Kinases - metabolism Oncology Original Original Article Pharmaceutical sciences Pharmacology Pharmacology/Toxicology Precursor Cell Lymphoblastic Leukemia-Lymphoma - drug therapy Precursor Cell Lymphoblastic Leukemia-Lymphoma - genetics Precursor Cell Lymphoblastic Leukemia-Lymphoma - metabolism Precursor Cell Lymphoblastic Leukemia-Lymphoma - pathology Prognosis Rapamycin Signal transduction Sirolimus - pharmacology Synergistic effect TOR protein Tumor Cells, Cultured |
title | miR-331-3p is involved in glucocorticoid resistance reversion by rapamycin through suppression of the MAPK signaling pathway |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T01%3A24%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=miR-331-3p%20is%20involved%20in%20glucocorticoid%20resistance%20reversion%20by%20rapamycin%20through%20suppression%20of%20the%20MAPK%20signaling%20pathway&rft.jtitle=Cancer%20chemotherapy%20and%20pharmacology&rft.au=Lucaf%C3%B2,%20Marianna&rft.date=2020-09-01&rft.volume=86&rft.issue=3&rft.spage=361&rft.epage=374&rft.pages=361-374&rft.issn=0344-5704&rft.eissn=1432-0843&rft_id=info:doi/10.1007/s00280-020-04122-z&rft_dat=%3Cproquest_pubme%3E2432860446%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2440760128&rft_id=info:pmid/32776229&rfr_iscdi=true |