Membrane budding is a major mechanism of in vivo platelet biogenesis
How platelets are produced by megakaryocytes in vivo remains controversial despite more than a century of investigation. Megakaryocytes readily produce proplatelet structures in vitro; however, visualization of platelet release from proplatelets in vivo has remained elusive. We show that within the...
Gespeichert in:
Veröffentlicht in: | The Journal of experimental medicine 2020-09, Vol.217 (9) |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 9 |
container_start_page | |
container_title | The Journal of experimental medicine |
container_volume | 217 |
creator | Potts, Kathryn S Farley, Alison Dawson, Caleb A Rimes, Joel Biben, Christine de Graaf, Carolyn Potts, Margaret A Stonehouse, Olivia J Carmagnac, Amandine Gangatirkar, Pradnya Josefsson, Emma C Anttila, Casey Amann-Zalcenstein, Daniela Naik, Shalin Alexander, Warren S Hilton, Douglas J Hawkins, Edwin D Taoudi, Samir |
description | How platelets are produced by megakaryocytes in vivo remains controversial despite more than a century of investigation. Megakaryocytes readily produce proplatelet structures in vitro; however, visualization of platelet release from proplatelets in vivo has remained elusive. We show that within the native prenatal and adult environments, the frequency and rate of proplatelet formation is incompatible with the physiological demands of platelet replacement. We resolve this inconsistency by performing in-depth analysis of plasma membrane budding, a cellular process that has previously been dismissed as a source of platelet production. Our studies demonstrate that membrane budding results in the sustained release of platelets directly into the peripheral circulation during both fetal and adult life without induction of cell death or proplatelet formation. In support of this model, we demonstrate that in mice deficient for NF-E2 (the thrombopoietic master regulator), the absence of membrane budding correlates with failure of in vivo platelet production. Accordingly, we propose that membrane budding, rather than proplatelet formation, supplies the majority of the platelet biomass. |
doi_str_mv | 10.1084/jem.20191206 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7478734</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2427298070</sourcerecordid><originalsourceid>FETCH-LOGICAL-c384t-e40a149c7c43912c9dfb0aae822f50fc0d6b786ac6adec24000ab3d6595a803d3</originalsourceid><addsrcrecordid>eNpVkEtLxDAUhYMoOj52riVLF1ZvXk26EWR8guJG1yFNb8cMbTM27YD_3oqj6Oou7sc5h4-QYwbnDIy8WGJ7zoEVjEO-RWZMScgKJcw2mQFwnjEAvUf2U1oCMClVvkv2BNeQG6Vm5PoJ27J3HdJyrKrQLWhI1NHWLWNPW_RvrguppbGmoaPrsI501bgBGxxoGeICO0whHZKd2jUJjzb3gLze3rzM77PH57uH-dVj5oWRQ4YSHJOF116Kaa4vqroE59BwXiuoPVR5qU3ufO4q9FwCgCtFlatCOQOiEgfk8jt3NZYtVh67oXeNXfWhdf2HjS7Y_58uvNlFXFsttdFCTgGnm4A-vo-YBtuG5LFpJgFxTJZLrnlhQMOEnn2jvo8p9Vj_1jCwX-LtJN7-iJ_wk7_TfuEf0-ITSrp_ng</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2427298070</pqid></control><display><type>article</type><title>Membrane budding is a major mechanism of in vivo platelet biogenesis</title><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Potts, Kathryn S ; Farley, Alison ; Dawson, Caleb A ; Rimes, Joel ; Biben, Christine ; de Graaf, Carolyn ; Potts, Margaret A ; Stonehouse, Olivia J ; Carmagnac, Amandine ; Gangatirkar, Pradnya ; Josefsson, Emma C ; Anttila, Casey ; Amann-Zalcenstein, Daniela ; Naik, Shalin ; Alexander, Warren S ; Hilton, Douglas J ; Hawkins, Edwin D ; Taoudi, Samir</creator><creatorcontrib>Potts, Kathryn S ; Farley, Alison ; Dawson, Caleb A ; Rimes, Joel ; Biben, Christine ; de Graaf, Carolyn ; Potts, Margaret A ; Stonehouse, Olivia J ; Carmagnac, Amandine ; Gangatirkar, Pradnya ; Josefsson, Emma C ; Anttila, Casey ; Amann-Zalcenstein, Daniela ; Naik, Shalin ; Alexander, Warren S ; Hilton, Douglas J ; Hawkins, Edwin D ; Taoudi, Samir</creatorcontrib><description>How platelets are produced by megakaryocytes in vivo remains controversial despite more than a century of investigation. Megakaryocytes readily produce proplatelet structures in vitro; however, visualization of platelet release from proplatelets in vivo has remained elusive. We show that within the native prenatal and adult environments, the frequency and rate of proplatelet formation is incompatible with the physiological demands of platelet replacement. We resolve this inconsistency by performing in-depth analysis of plasma membrane budding, a cellular process that has previously been dismissed as a source of platelet production. Our studies demonstrate that membrane budding results in the sustained release of platelets directly into the peripheral circulation during both fetal and adult life without induction of cell death or proplatelet formation. In support of this model, we demonstrate that in mice deficient for NF-E2 (the thrombopoietic master regulator), the absence of membrane budding correlates with failure of in vivo platelet production. Accordingly, we propose that membrane budding, rather than proplatelet formation, supplies the majority of the platelet biomass.</description><identifier>ISSN: 0022-1007</identifier><identifier>EISSN: 1540-9538</identifier><identifier>DOI: 10.1084/jem.20191206</identifier><identifier>PMID: 32706855</identifier><language>eng</language><publisher>United States: Rockefeller University Press</publisher><subject>Animals ; Blood Platelets - cytology ; Blood Platelets - metabolism ; Blood Platelets - ultrastructure ; Bone Marrow Cells - cytology ; Cell Lineage ; Cell Membrane - metabolism ; Cell Membrane - ultrastructure ; Databases as Topic ; Embryo, Mammalian - cytology ; Fetus - cytology ; Gene Expression Regulation ; Hematopoiesis ; Imaging, Three-Dimensional ; Integrases - metabolism ; Liver - embryology ; Megakaryocytes - cytology ; Megakaryocytes - metabolism ; Mice, Inbred C57BL ; Ploidies ; Reproducibility of Results ; Skull - cytology</subject><ispartof>The Journal of experimental medicine, 2020-09, Vol.217 (9)</ispartof><rights>2020 Potts et al.</rights><rights>2020 Potts et al. 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c384t-e40a149c7c43912c9dfb0aae822f50fc0d6b786ac6adec24000ab3d6595a803d3</citedby><cites>FETCH-LOGICAL-c384t-e40a149c7c43912c9dfb0aae822f50fc0d6b786ac6adec24000ab3d6595a803d3</cites><orcidid>0000-0003-1391-7160 ; 0000-0001-8380-5311 ; 0000-0001-9796-9683 ; 0000-0001-6478-5204 ; 0000-0001-6488-2784 ; 0000-0002-3686-8261 ; 0000-0002-6835-6930 ; 0000-0003-4928-1846 ; 0000-0002-3246-9597 ; 0000-0002-3694-8640 ; 0000-0002-9036-9244</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27923,27924</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32706855$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Potts, Kathryn S</creatorcontrib><creatorcontrib>Farley, Alison</creatorcontrib><creatorcontrib>Dawson, Caleb A</creatorcontrib><creatorcontrib>Rimes, Joel</creatorcontrib><creatorcontrib>Biben, Christine</creatorcontrib><creatorcontrib>de Graaf, Carolyn</creatorcontrib><creatorcontrib>Potts, Margaret A</creatorcontrib><creatorcontrib>Stonehouse, Olivia J</creatorcontrib><creatorcontrib>Carmagnac, Amandine</creatorcontrib><creatorcontrib>Gangatirkar, Pradnya</creatorcontrib><creatorcontrib>Josefsson, Emma C</creatorcontrib><creatorcontrib>Anttila, Casey</creatorcontrib><creatorcontrib>Amann-Zalcenstein, Daniela</creatorcontrib><creatorcontrib>Naik, Shalin</creatorcontrib><creatorcontrib>Alexander, Warren S</creatorcontrib><creatorcontrib>Hilton, Douglas J</creatorcontrib><creatorcontrib>Hawkins, Edwin D</creatorcontrib><creatorcontrib>Taoudi, Samir</creatorcontrib><title>Membrane budding is a major mechanism of in vivo platelet biogenesis</title><title>The Journal of experimental medicine</title><addtitle>J Exp Med</addtitle><description>How platelets are produced by megakaryocytes in vivo remains controversial despite more than a century of investigation. Megakaryocytes readily produce proplatelet structures in vitro; however, visualization of platelet release from proplatelets in vivo has remained elusive. We show that within the native prenatal and adult environments, the frequency and rate of proplatelet formation is incompatible with the physiological demands of platelet replacement. We resolve this inconsistency by performing in-depth analysis of plasma membrane budding, a cellular process that has previously been dismissed as a source of platelet production. Our studies demonstrate that membrane budding results in the sustained release of platelets directly into the peripheral circulation during both fetal and adult life without induction of cell death or proplatelet formation. In support of this model, we demonstrate that in mice deficient for NF-E2 (the thrombopoietic master regulator), the absence of membrane budding correlates with failure of in vivo platelet production. Accordingly, we propose that membrane budding, rather than proplatelet formation, supplies the majority of the platelet biomass.</description><subject>Animals</subject><subject>Blood Platelets - cytology</subject><subject>Blood Platelets - metabolism</subject><subject>Blood Platelets - ultrastructure</subject><subject>Bone Marrow Cells - cytology</subject><subject>Cell Lineage</subject><subject>Cell Membrane - metabolism</subject><subject>Cell Membrane - ultrastructure</subject><subject>Databases as Topic</subject><subject>Embryo, Mammalian - cytology</subject><subject>Fetus - cytology</subject><subject>Gene Expression Regulation</subject><subject>Hematopoiesis</subject><subject>Imaging, Three-Dimensional</subject><subject>Integrases - metabolism</subject><subject>Liver - embryology</subject><subject>Megakaryocytes - cytology</subject><subject>Megakaryocytes - metabolism</subject><subject>Mice, Inbred C57BL</subject><subject>Ploidies</subject><subject>Reproducibility of Results</subject><subject>Skull - cytology</subject><issn>0022-1007</issn><issn>1540-9538</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVkEtLxDAUhYMoOj52riVLF1ZvXk26EWR8guJG1yFNb8cMbTM27YD_3oqj6Oou7sc5h4-QYwbnDIy8WGJ7zoEVjEO-RWZMScgKJcw2mQFwnjEAvUf2U1oCMClVvkv2BNeQG6Vm5PoJ27J3HdJyrKrQLWhI1NHWLWNPW_RvrguppbGmoaPrsI501bgBGxxoGeICO0whHZKd2jUJjzb3gLze3rzM77PH57uH-dVj5oWRQ4YSHJOF116Kaa4vqroE59BwXiuoPVR5qU3ufO4q9FwCgCtFlatCOQOiEgfk8jt3NZYtVh67oXeNXfWhdf2HjS7Y_58uvNlFXFsttdFCTgGnm4A-vo-YBtuG5LFpJgFxTJZLrnlhQMOEnn2jvo8p9Vj_1jCwX-LtJN7-iJ_wk7_TfuEf0-ITSrp_ng</recordid><startdate>20200907</startdate><enddate>20200907</enddate><creator>Potts, Kathryn S</creator><creator>Farley, Alison</creator><creator>Dawson, Caleb A</creator><creator>Rimes, Joel</creator><creator>Biben, Christine</creator><creator>de Graaf, Carolyn</creator><creator>Potts, Margaret A</creator><creator>Stonehouse, Olivia J</creator><creator>Carmagnac, Amandine</creator><creator>Gangatirkar, Pradnya</creator><creator>Josefsson, Emma C</creator><creator>Anttila, Casey</creator><creator>Amann-Zalcenstein, Daniela</creator><creator>Naik, Shalin</creator><creator>Alexander, Warren S</creator><creator>Hilton, Douglas J</creator><creator>Hawkins, Edwin D</creator><creator>Taoudi, Samir</creator><general>Rockefeller University Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-1391-7160</orcidid><orcidid>https://orcid.org/0000-0001-8380-5311</orcidid><orcidid>https://orcid.org/0000-0001-9796-9683</orcidid><orcidid>https://orcid.org/0000-0001-6478-5204</orcidid><orcidid>https://orcid.org/0000-0001-6488-2784</orcidid><orcidid>https://orcid.org/0000-0002-3686-8261</orcidid><orcidid>https://orcid.org/0000-0002-6835-6930</orcidid><orcidid>https://orcid.org/0000-0003-4928-1846</orcidid><orcidid>https://orcid.org/0000-0002-3246-9597</orcidid><orcidid>https://orcid.org/0000-0002-3694-8640</orcidid><orcidid>https://orcid.org/0000-0002-9036-9244</orcidid></search><sort><creationdate>20200907</creationdate><title>Membrane budding is a major mechanism of in vivo platelet biogenesis</title><author>Potts, Kathryn S ; Farley, Alison ; Dawson, Caleb A ; Rimes, Joel ; Biben, Christine ; de Graaf, Carolyn ; Potts, Margaret A ; Stonehouse, Olivia J ; Carmagnac, Amandine ; Gangatirkar, Pradnya ; Josefsson, Emma C ; Anttila, Casey ; Amann-Zalcenstein, Daniela ; Naik, Shalin ; Alexander, Warren S ; Hilton, Douglas J ; Hawkins, Edwin D ; Taoudi, Samir</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c384t-e40a149c7c43912c9dfb0aae822f50fc0d6b786ac6adec24000ab3d6595a803d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Animals</topic><topic>Blood Platelets - cytology</topic><topic>Blood Platelets - metabolism</topic><topic>Blood Platelets - ultrastructure</topic><topic>Bone Marrow Cells - cytology</topic><topic>Cell Lineage</topic><topic>Cell Membrane - metabolism</topic><topic>Cell Membrane - ultrastructure</topic><topic>Databases as Topic</topic><topic>Embryo, Mammalian - cytology</topic><topic>Fetus - cytology</topic><topic>Gene Expression Regulation</topic><topic>Hematopoiesis</topic><topic>Imaging, Three-Dimensional</topic><topic>Integrases - metabolism</topic><topic>Liver - embryology</topic><topic>Megakaryocytes - cytology</topic><topic>Megakaryocytes - metabolism</topic><topic>Mice, Inbred C57BL</topic><topic>Ploidies</topic><topic>Reproducibility of Results</topic><topic>Skull - cytology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Potts, Kathryn S</creatorcontrib><creatorcontrib>Farley, Alison</creatorcontrib><creatorcontrib>Dawson, Caleb A</creatorcontrib><creatorcontrib>Rimes, Joel</creatorcontrib><creatorcontrib>Biben, Christine</creatorcontrib><creatorcontrib>de Graaf, Carolyn</creatorcontrib><creatorcontrib>Potts, Margaret A</creatorcontrib><creatorcontrib>Stonehouse, Olivia J</creatorcontrib><creatorcontrib>Carmagnac, Amandine</creatorcontrib><creatorcontrib>Gangatirkar, Pradnya</creatorcontrib><creatorcontrib>Josefsson, Emma C</creatorcontrib><creatorcontrib>Anttila, Casey</creatorcontrib><creatorcontrib>Amann-Zalcenstein, Daniela</creatorcontrib><creatorcontrib>Naik, Shalin</creatorcontrib><creatorcontrib>Alexander, Warren S</creatorcontrib><creatorcontrib>Hilton, Douglas J</creatorcontrib><creatorcontrib>Hawkins, Edwin D</creatorcontrib><creatorcontrib>Taoudi, Samir</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of experimental medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Potts, Kathryn S</au><au>Farley, Alison</au><au>Dawson, Caleb A</au><au>Rimes, Joel</au><au>Biben, Christine</au><au>de Graaf, Carolyn</au><au>Potts, Margaret A</au><au>Stonehouse, Olivia J</au><au>Carmagnac, Amandine</au><au>Gangatirkar, Pradnya</au><au>Josefsson, Emma C</au><au>Anttila, Casey</au><au>Amann-Zalcenstein, Daniela</au><au>Naik, Shalin</au><au>Alexander, Warren S</au><au>Hilton, Douglas J</au><au>Hawkins, Edwin D</au><au>Taoudi, Samir</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Membrane budding is a major mechanism of in vivo platelet biogenesis</atitle><jtitle>The Journal of experimental medicine</jtitle><addtitle>J Exp Med</addtitle><date>2020-09-07</date><risdate>2020</risdate><volume>217</volume><issue>9</issue><issn>0022-1007</issn><eissn>1540-9538</eissn><abstract>How platelets are produced by megakaryocytes in vivo remains controversial despite more than a century of investigation. Megakaryocytes readily produce proplatelet structures in vitro; however, visualization of platelet release from proplatelets in vivo has remained elusive. We show that within the native prenatal and adult environments, the frequency and rate of proplatelet formation is incompatible with the physiological demands of platelet replacement. We resolve this inconsistency by performing in-depth analysis of plasma membrane budding, a cellular process that has previously been dismissed as a source of platelet production. Our studies demonstrate that membrane budding results in the sustained release of platelets directly into the peripheral circulation during both fetal and adult life without induction of cell death or proplatelet formation. In support of this model, we demonstrate that in mice deficient for NF-E2 (the thrombopoietic master regulator), the absence of membrane budding correlates with failure of in vivo platelet production. Accordingly, we propose that membrane budding, rather than proplatelet formation, supplies the majority of the platelet biomass.</abstract><cop>United States</cop><pub>Rockefeller University Press</pub><pmid>32706855</pmid><doi>10.1084/jem.20191206</doi><orcidid>https://orcid.org/0000-0003-1391-7160</orcidid><orcidid>https://orcid.org/0000-0001-8380-5311</orcidid><orcidid>https://orcid.org/0000-0001-9796-9683</orcidid><orcidid>https://orcid.org/0000-0001-6478-5204</orcidid><orcidid>https://orcid.org/0000-0001-6488-2784</orcidid><orcidid>https://orcid.org/0000-0002-3686-8261</orcidid><orcidid>https://orcid.org/0000-0002-6835-6930</orcidid><orcidid>https://orcid.org/0000-0003-4928-1846</orcidid><orcidid>https://orcid.org/0000-0002-3246-9597</orcidid><orcidid>https://orcid.org/0000-0002-3694-8640</orcidid><orcidid>https://orcid.org/0000-0002-9036-9244</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-1007 |
ispartof | The Journal of experimental medicine, 2020-09, Vol.217 (9) |
issn | 0022-1007 1540-9538 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7478734 |
source | MEDLINE; EZB-FREE-00999 freely available EZB journals |
subjects | Animals Blood Platelets - cytology Blood Platelets - metabolism Blood Platelets - ultrastructure Bone Marrow Cells - cytology Cell Lineage Cell Membrane - metabolism Cell Membrane - ultrastructure Databases as Topic Embryo, Mammalian - cytology Fetus - cytology Gene Expression Regulation Hematopoiesis Imaging, Three-Dimensional Integrases - metabolism Liver - embryology Megakaryocytes - cytology Megakaryocytes - metabolism Mice, Inbred C57BL Ploidies Reproducibility of Results Skull - cytology |
title | Membrane budding is a major mechanism of in vivo platelet biogenesis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T08%3A31%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Membrane%20budding%20is%20a%20major%20mechanism%20of%20in%20vivo%20platelet%20biogenesis&rft.jtitle=The%20Journal%20of%20experimental%20medicine&rft.au=Potts,%20Kathryn%20S&rft.date=2020-09-07&rft.volume=217&rft.issue=9&rft.issn=0022-1007&rft.eissn=1540-9538&rft_id=info:doi/10.1084/jem.20191206&rft_dat=%3Cproquest_pubme%3E2427298070%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2427298070&rft_id=info:pmid/32706855&rfr_iscdi=true |