Interpretable Clinical Genomics with a Likelihood Ratio Paradigm

Human Phenotype Ontology (HPO)-based analysis has become standard for genomic diagnostics of rare diseases. Current algorithms use a variety of semantic and statistical approaches to prioritize the typically long lists of genes with candidate pathogenic variants. These algorithms do not provide robu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:American journal of human genetics 2020-09, Vol.107 (3), p.403-417
Hauptverfasser: Robinson, Peter N., Ravanmehr, Vida, Jacobsen, Julius O.B., Danis, Daniel, Zhang, Xingmin Aaron, Carmody, Leigh C., Gargano, Michael A., Thaxton, Courtney L., Karlebach, Guy, Reese, Justin, Holtgrewe, Manuel, Köhler, Sebastian, McMurry, Julie A., Haendel, Melissa A., Smedley, Damian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 417
container_issue 3
container_start_page 403
container_title American journal of human genetics
container_volume 107
creator Robinson, Peter N.
Ravanmehr, Vida
Jacobsen, Julius O.B.
Danis, Daniel
Zhang, Xingmin Aaron
Carmody, Leigh C.
Gargano, Michael A.
Thaxton, Courtney L.
Karlebach, Guy
Reese, Justin
Holtgrewe, Manuel
Köhler, Sebastian
McMurry, Julie A.
Haendel, Melissa A.
Smedley, Damian
description Human Phenotype Ontology (HPO)-based analysis has become standard for genomic diagnostics of rare diseases. Current algorithms use a variety of semantic and statistical approaches to prioritize the typically long lists of genes with candidate pathogenic variants. These algorithms do not provide robust estimates of the strength of the predictions beyond the placement in a ranked list, nor do they provide measures of how much any individual phenotypic observation has contributed to the prioritization result. However, given that the overall success rate of genomic diagnostics is only around 25%–50% or less in many cohorts, a good ranking cannot be taken to imply that the gene or disease at rank one is necessarily a good candidate. Here, we present an approach to genomic diagnostics that exploits the likelihood ratio (LR) framework to provide an estimate of (1) the posttest probability of candidate diagnoses, (2) the LR for each observed HPO phenotype, and (3) the predicted pathogenicity of observed genotypes. LIkelihood Ratio Interpretation of Clinical AbnormaLities (LIRICAL) placed the correct diagnosis within the first three ranks in 92.9% of 384 case reports comprising 262 Mendelian diseases, and the correct diagnosis had a mean posttest probability of 67.3%. Simulations show that LIRICAL is robust to many typically encountered forms of genomic and phenomic noise. In summary, LIRICAL provides accurate, clinically interpretable results for phenotype-driven genomic diagnostics.
doi_str_mv 10.1016/j.ajhg.2020.06.021
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7477017</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0002929720302305</els_id><sourcerecordid>2430979751</sourcerecordid><originalsourceid>FETCH-LOGICAL-c455t-28dbd1d00727661ebcf5379f4d1529c22aea7a70619c8c1738c80be1e7b70b6b3</originalsourceid><addsrcrecordid>eNp9kEFr2zAUx8VYWdJsX6CH4eMudp9kS7KhlI2wpYFAS9nOQpZeEmW2lUlOSr_9HJKG9tLTO7z___ceP0KuKGQUqLjeZHqzXmUMGGQgMmD0AxlTnstUCOAfyRgAWFqxSo7IZYwbAEpLyD-RUc4k57wQY_J93vUYtgF7XTeYTBvXOaObZIadb52JyZPr14lOFu4vNm7tvU0ede988qCDtm7VfiYXS91E_HKaE_Ln18_f07t0cT-bT38sUlNw3qestLWlFkAyKQTF2iyHR6tlYSlnlWFMo5ZagqCVKQ2VeWlKqJGirCXUos4n5PbI3e7qFq3Brg-6UdvgWh2elddOvd10bq1Wfq9kISUMwAn5dgIE_2-HsVetiwabRnfod1GxIodKVpLTIcqOURN8jAGX5zMU1EG92qiDenVQr0CoQf1Q-vr6wXPlxfUQuDkGcNC0dxhUNA47g9YFNL2y3r3H_w-u1pV6</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2430979751</pqid></control><display><type>article</type><title>Interpretable Clinical Genomics with a Likelihood Ratio Paradigm</title><source>MEDLINE</source><source>Cell Press Free Archives</source><source>Elsevier ScienceDirect Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><creator>Robinson, Peter N. ; Ravanmehr, Vida ; Jacobsen, Julius O.B. ; Danis, Daniel ; Zhang, Xingmin Aaron ; Carmody, Leigh C. ; Gargano, Michael A. ; Thaxton, Courtney L. ; Karlebach, Guy ; Reese, Justin ; Holtgrewe, Manuel ; Köhler, Sebastian ; McMurry, Julie A. ; Haendel, Melissa A. ; Smedley, Damian</creator><creatorcontrib>Robinson, Peter N. ; Ravanmehr, Vida ; Jacobsen, Julius O.B. ; Danis, Daniel ; Zhang, Xingmin Aaron ; Carmody, Leigh C. ; Gargano, Michael A. ; Thaxton, Courtney L. ; Karlebach, Guy ; Reese, Justin ; Holtgrewe, Manuel ; Köhler, Sebastian ; McMurry, Julie A. ; Haendel, Melissa A. ; Smedley, Damian ; UNC Biocuration Core</creatorcontrib><description>Human Phenotype Ontology (HPO)-based analysis has become standard for genomic diagnostics of rare diseases. Current algorithms use a variety of semantic and statistical approaches to prioritize the typically long lists of genes with candidate pathogenic variants. These algorithms do not provide robust estimates of the strength of the predictions beyond the placement in a ranked list, nor do they provide measures of how much any individual phenotypic observation has contributed to the prioritization result. However, given that the overall success rate of genomic diagnostics is only around 25%–50% or less in many cohorts, a good ranking cannot be taken to imply that the gene or disease at rank one is necessarily a good candidate. Here, we present an approach to genomic diagnostics that exploits the likelihood ratio (LR) framework to provide an estimate of (1) the posttest probability of candidate diagnoses, (2) the LR for each observed HPO phenotype, and (3) the predicted pathogenicity of observed genotypes. LIkelihood Ratio Interpretation of Clinical AbnormaLities (LIRICAL) placed the correct diagnosis within the first three ranks in 92.9% of 384 case reports comprising 262 Mendelian diseases, and the correct diagnosis had a mean posttest probability of 67.3%. Simulations show that LIRICAL is robust to many typically encountered forms of genomic and phenomic noise. In summary, LIRICAL provides accurate, clinically interpretable results for phenotype-driven genomic diagnostics.</description><identifier>ISSN: 0002-9297</identifier><identifier>EISSN: 1537-6605</identifier><identifier>DOI: 10.1016/j.ajhg.2020.06.021</identifier><identifier>PMID: 32755546</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Algorithms ; Computational Biology ; Databases, Genetic ; Exome - genetics ; exome sequencing ; genome sequencing ; Genomics ; Human Phenotype Ontology ; Humans ; liklihood ratio ; Phenotype ; phenotype-driven genomic diagnostics ; Rare Diseases - diagnosis ; Rare Diseases - genetics ; Software</subject><ispartof>American journal of human genetics, 2020-09, Vol.107 (3), p.403-417</ispartof><rights>2020 American Society of Human Genetics</rights><rights>Copyright © 2020 American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.</rights><rights>2020 American Society of Human Genetics. 2020 American Society of Human Genetics</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c455t-28dbd1d00727661ebcf5379f4d1529c22aea7a70619c8c1738c80be1e7b70b6b3</citedby><cites>FETCH-LOGICAL-c455t-28dbd1d00727661ebcf5379f4d1529c22aea7a70619c8c1738c80be1e7b70b6b3</cites><orcidid>0000-0002-0736-9199</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7477017/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0002929720302305$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,3537,27901,27902,53766,53768,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32755546$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Robinson, Peter N.</creatorcontrib><creatorcontrib>Ravanmehr, Vida</creatorcontrib><creatorcontrib>Jacobsen, Julius O.B.</creatorcontrib><creatorcontrib>Danis, Daniel</creatorcontrib><creatorcontrib>Zhang, Xingmin Aaron</creatorcontrib><creatorcontrib>Carmody, Leigh C.</creatorcontrib><creatorcontrib>Gargano, Michael A.</creatorcontrib><creatorcontrib>Thaxton, Courtney L.</creatorcontrib><creatorcontrib>Karlebach, Guy</creatorcontrib><creatorcontrib>Reese, Justin</creatorcontrib><creatorcontrib>Holtgrewe, Manuel</creatorcontrib><creatorcontrib>Köhler, Sebastian</creatorcontrib><creatorcontrib>McMurry, Julie A.</creatorcontrib><creatorcontrib>Haendel, Melissa A.</creatorcontrib><creatorcontrib>Smedley, Damian</creatorcontrib><creatorcontrib>UNC Biocuration Core</creatorcontrib><title>Interpretable Clinical Genomics with a Likelihood Ratio Paradigm</title><title>American journal of human genetics</title><addtitle>Am J Hum Genet</addtitle><description>Human Phenotype Ontology (HPO)-based analysis has become standard for genomic diagnostics of rare diseases. Current algorithms use a variety of semantic and statistical approaches to prioritize the typically long lists of genes with candidate pathogenic variants. These algorithms do not provide robust estimates of the strength of the predictions beyond the placement in a ranked list, nor do they provide measures of how much any individual phenotypic observation has contributed to the prioritization result. However, given that the overall success rate of genomic diagnostics is only around 25%–50% or less in many cohorts, a good ranking cannot be taken to imply that the gene or disease at rank one is necessarily a good candidate. Here, we present an approach to genomic diagnostics that exploits the likelihood ratio (LR) framework to provide an estimate of (1) the posttest probability of candidate diagnoses, (2) the LR for each observed HPO phenotype, and (3) the predicted pathogenicity of observed genotypes. LIkelihood Ratio Interpretation of Clinical AbnormaLities (LIRICAL) placed the correct diagnosis within the first three ranks in 92.9% of 384 case reports comprising 262 Mendelian diseases, and the correct diagnosis had a mean posttest probability of 67.3%. Simulations show that LIRICAL is robust to many typically encountered forms of genomic and phenomic noise. In summary, LIRICAL provides accurate, clinically interpretable results for phenotype-driven genomic diagnostics.</description><subject>Algorithms</subject><subject>Computational Biology</subject><subject>Databases, Genetic</subject><subject>Exome - genetics</subject><subject>exome sequencing</subject><subject>genome sequencing</subject><subject>Genomics</subject><subject>Human Phenotype Ontology</subject><subject>Humans</subject><subject>liklihood ratio</subject><subject>Phenotype</subject><subject>phenotype-driven genomic diagnostics</subject><subject>Rare Diseases - diagnosis</subject><subject>Rare Diseases - genetics</subject><subject>Software</subject><issn>0002-9297</issn><issn>1537-6605</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kEFr2zAUx8VYWdJsX6CH4eMudp9kS7KhlI2wpYFAS9nOQpZeEmW2lUlOSr_9HJKG9tLTO7z___ceP0KuKGQUqLjeZHqzXmUMGGQgMmD0AxlTnstUCOAfyRgAWFqxSo7IZYwbAEpLyD-RUc4k57wQY_J93vUYtgF7XTeYTBvXOaObZIadb52JyZPr14lOFu4vNm7tvU0ede988qCDtm7VfiYXS91E_HKaE_Ln18_f07t0cT-bT38sUlNw3qestLWlFkAyKQTF2iyHR6tlYSlnlWFMo5ZagqCVKQ2VeWlKqJGirCXUos4n5PbI3e7qFq3Brg-6UdvgWh2elddOvd10bq1Wfq9kISUMwAn5dgIE_2-HsVetiwabRnfod1GxIodKVpLTIcqOURN8jAGX5zMU1EG92qiDenVQr0CoQf1Q-vr6wXPlxfUQuDkGcNC0dxhUNA47g9YFNL2y3r3H_w-u1pV6</recordid><startdate>20200903</startdate><enddate>20200903</enddate><creator>Robinson, Peter N.</creator><creator>Ravanmehr, Vida</creator><creator>Jacobsen, Julius O.B.</creator><creator>Danis, Daniel</creator><creator>Zhang, Xingmin Aaron</creator><creator>Carmody, Leigh C.</creator><creator>Gargano, Michael A.</creator><creator>Thaxton, Courtney L.</creator><creator>Karlebach, Guy</creator><creator>Reese, Justin</creator><creator>Holtgrewe, Manuel</creator><creator>Köhler, Sebastian</creator><creator>McMurry, Julie A.</creator><creator>Haendel, Melissa A.</creator><creator>Smedley, Damian</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-0736-9199</orcidid></search><sort><creationdate>20200903</creationdate><title>Interpretable Clinical Genomics with a Likelihood Ratio Paradigm</title><author>Robinson, Peter N. ; Ravanmehr, Vida ; Jacobsen, Julius O.B. ; Danis, Daniel ; Zhang, Xingmin Aaron ; Carmody, Leigh C. ; Gargano, Michael A. ; Thaxton, Courtney L. ; Karlebach, Guy ; Reese, Justin ; Holtgrewe, Manuel ; Köhler, Sebastian ; McMurry, Julie A. ; Haendel, Melissa A. ; Smedley, Damian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c455t-28dbd1d00727661ebcf5379f4d1529c22aea7a70619c8c1738c80be1e7b70b6b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Computational Biology</topic><topic>Databases, Genetic</topic><topic>Exome - genetics</topic><topic>exome sequencing</topic><topic>genome sequencing</topic><topic>Genomics</topic><topic>Human Phenotype Ontology</topic><topic>Humans</topic><topic>liklihood ratio</topic><topic>Phenotype</topic><topic>phenotype-driven genomic diagnostics</topic><topic>Rare Diseases - diagnosis</topic><topic>Rare Diseases - genetics</topic><topic>Software</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Robinson, Peter N.</creatorcontrib><creatorcontrib>Ravanmehr, Vida</creatorcontrib><creatorcontrib>Jacobsen, Julius O.B.</creatorcontrib><creatorcontrib>Danis, Daniel</creatorcontrib><creatorcontrib>Zhang, Xingmin Aaron</creatorcontrib><creatorcontrib>Carmody, Leigh C.</creatorcontrib><creatorcontrib>Gargano, Michael A.</creatorcontrib><creatorcontrib>Thaxton, Courtney L.</creatorcontrib><creatorcontrib>Karlebach, Guy</creatorcontrib><creatorcontrib>Reese, Justin</creatorcontrib><creatorcontrib>Holtgrewe, Manuel</creatorcontrib><creatorcontrib>Köhler, Sebastian</creatorcontrib><creatorcontrib>McMurry, Julie A.</creatorcontrib><creatorcontrib>Haendel, Melissa A.</creatorcontrib><creatorcontrib>Smedley, Damian</creatorcontrib><creatorcontrib>UNC Biocuration Core</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>American journal of human genetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Robinson, Peter N.</au><au>Ravanmehr, Vida</au><au>Jacobsen, Julius O.B.</au><au>Danis, Daniel</au><au>Zhang, Xingmin Aaron</au><au>Carmody, Leigh C.</au><au>Gargano, Michael A.</au><au>Thaxton, Courtney L.</au><au>Karlebach, Guy</au><au>Reese, Justin</au><au>Holtgrewe, Manuel</au><au>Köhler, Sebastian</au><au>McMurry, Julie A.</au><au>Haendel, Melissa A.</au><au>Smedley, Damian</au><aucorp>UNC Biocuration Core</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Interpretable Clinical Genomics with a Likelihood Ratio Paradigm</atitle><jtitle>American journal of human genetics</jtitle><addtitle>Am J Hum Genet</addtitle><date>2020-09-03</date><risdate>2020</risdate><volume>107</volume><issue>3</issue><spage>403</spage><epage>417</epage><pages>403-417</pages><issn>0002-9297</issn><eissn>1537-6605</eissn><abstract>Human Phenotype Ontology (HPO)-based analysis has become standard for genomic diagnostics of rare diseases. Current algorithms use a variety of semantic and statistical approaches to prioritize the typically long lists of genes with candidate pathogenic variants. These algorithms do not provide robust estimates of the strength of the predictions beyond the placement in a ranked list, nor do they provide measures of how much any individual phenotypic observation has contributed to the prioritization result. However, given that the overall success rate of genomic diagnostics is only around 25%–50% or less in many cohorts, a good ranking cannot be taken to imply that the gene or disease at rank one is necessarily a good candidate. Here, we present an approach to genomic diagnostics that exploits the likelihood ratio (LR) framework to provide an estimate of (1) the posttest probability of candidate diagnoses, (2) the LR for each observed HPO phenotype, and (3) the predicted pathogenicity of observed genotypes. LIkelihood Ratio Interpretation of Clinical AbnormaLities (LIRICAL) placed the correct diagnosis within the first three ranks in 92.9% of 384 case reports comprising 262 Mendelian diseases, and the correct diagnosis had a mean posttest probability of 67.3%. Simulations show that LIRICAL is robust to many typically encountered forms of genomic and phenomic noise. In summary, LIRICAL provides accurate, clinically interpretable results for phenotype-driven genomic diagnostics.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>32755546</pmid><doi>10.1016/j.ajhg.2020.06.021</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-0736-9199</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0002-9297
ispartof American journal of human genetics, 2020-09, Vol.107 (3), p.403-417
issn 0002-9297
1537-6605
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7477017
source MEDLINE; Cell Press Free Archives; Elsevier ScienceDirect Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central
subjects Algorithms
Computational Biology
Databases, Genetic
Exome - genetics
exome sequencing
genome sequencing
Genomics
Human Phenotype Ontology
Humans
liklihood ratio
Phenotype
phenotype-driven genomic diagnostics
Rare Diseases - diagnosis
Rare Diseases - genetics
Software
title Interpretable Clinical Genomics with a Likelihood Ratio Paradigm
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T00%3A46%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Interpretable%20Clinical%20Genomics%20with%20a%20Likelihood%20Ratio%20Paradigm&rft.jtitle=American%20journal%20of%20human%20genetics&rft.au=Robinson,%20Peter%20N.&rft.aucorp=UNC%20Biocuration%20Core&rft.date=2020-09-03&rft.volume=107&rft.issue=3&rft.spage=403&rft.epage=417&rft.pages=403-417&rft.issn=0002-9297&rft.eissn=1537-6605&rft_id=info:doi/10.1016/j.ajhg.2020.06.021&rft_dat=%3Cproquest_pubme%3E2430979751%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2430979751&rft_id=info:pmid/32755546&rft_els_id=S0002929720302305&rfr_iscdi=true