Interpretable Clinical Genomics with a Likelihood Ratio Paradigm
Human Phenotype Ontology (HPO)-based analysis has become standard for genomic diagnostics of rare diseases. Current algorithms use a variety of semantic and statistical approaches to prioritize the typically long lists of genes with candidate pathogenic variants. These algorithms do not provide robu...
Gespeichert in:
Veröffentlicht in: | American journal of human genetics 2020-09, Vol.107 (3), p.403-417 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 417 |
---|---|
container_issue | 3 |
container_start_page | 403 |
container_title | American journal of human genetics |
container_volume | 107 |
creator | Robinson, Peter N. Ravanmehr, Vida Jacobsen, Julius O.B. Danis, Daniel Zhang, Xingmin Aaron Carmody, Leigh C. Gargano, Michael A. Thaxton, Courtney L. Karlebach, Guy Reese, Justin Holtgrewe, Manuel Köhler, Sebastian McMurry, Julie A. Haendel, Melissa A. Smedley, Damian |
description | Human Phenotype Ontology (HPO)-based analysis has become standard for genomic diagnostics of rare diseases. Current algorithms use a variety of semantic and statistical approaches to prioritize the typically long lists of genes with candidate pathogenic variants. These algorithms do not provide robust estimates of the strength of the predictions beyond the placement in a ranked list, nor do they provide measures of how much any individual phenotypic observation has contributed to the prioritization result. However, given that the overall success rate of genomic diagnostics is only around 25%–50% or less in many cohorts, a good ranking cannot be taken to imply that the gene or disease at rank one is necessarily a good candidate. Here, we present an approach to genomic diagnostics that exploits the likelihood ratio (LR) framework to provide an estimate of (1) the posttest probability of candidate diagnoses, (2) the LR for each observed HPO phenotype, and (3) the predicted pathogenicity of observed genotypes. LIkelihood Ratio Interpretation of Clinical AbnormaLities (LIRICAL) placed the correct diagnosis within the first three ranks in 92.9% of 384 case reports comprising 262 Mendelian diseases, and the correct diagnosis had a mean posttest probability of 67.3%. Simulations show that LIRICAL is robust to many typically encountered forms of genomic and phenomic noise. In summary, LIRICAL provides accurate, clinically interpretable results for phenotype-driven genomic diagnostics. |
doi_str_mv | 10.1016/j.ajhg.2020.06.021 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7477017</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0002929720302305</els_id><sourcerecordid>2430979751</sourcerecordid><originalsourceid>FETCH-LOGICAL-c455t-28dbd1d00727661ebcf5379f4d1529c22aea7a70619c8c1738c80be1e7b70b6b3</originalsourceid><addsrcrecordid>eNp9kEFr2zAUx8VYWdJsX6CH4eMudp9kS7KhlI2wpYFAS9nOQpZeEmW2lUlOSr_9HJKG9tLTO7z___ceP0KuKGQUqLjeZHqzXmUMGGQgMmD0AxlTnstUCOAfyRgAWFqxSo7IZYwbAEpLyD-RUc4k57wQY_J93vUYtgF7XTeYTBvXOaObZIadb52JyZPr14lOFu4vNm7tvU0ede988qCDtm7VfiYXS91E_HKaE_Ln18_f07t0cT-bT38sUlNw3qestLWlFkAyKQTF2iyHR6tlYSlnlWFMo5ZagqCVKQ2VeWlKqJGirCXUos4n5PbI3e7qFq3Brg-6UdvgWh2elddOvd10bq1Wfq9kISUMwAn5dgIE_2-HsVetiwabRnfod1GxIodKVpLTIcqOURN8jAGX5zMU1EG92qiDenVQr0CoQf1Q-vr6wXPlxfUQuDkGcNC0dxhUNA47g9YFNL2y3r3H_w-u1pV6</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2430979751</pqid></control><display><type>article</type><title>Interpretable Clinical Genomics with a Likelihood Ratio Paradigm</title><source>MEDLINE</source><source>Cell Press Free Archives</source><source>Elsevier ScienceDirect Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><creator>Robinson, Peter N. ; Ravanmehr, Vida ; Jacobsen, Julius O.B. ; Danis, Daniel ; Zhang, Xingmin Aaron ; Carmody, Leigh C. ; Gargano, Michael A. ; Thaxton, Courtney L. ; Karlebach, Guy ; Reese, Justin ; Holtgrewe, Manuel ; Köhler, Sebastian ; McMurry, Julie A. ; Haendel, Melissa A. ; Smedley, Damian</creator><creatorcontrib>Robinson, Peter N. ; Ravanmehr, Vida ; Jacobsen, Julius O.B. ; Danis, Daniel ; Zhang, Xingmin Aaron ; Carmody, Leigh C. ; Gargano, Michael A. ; Thaxton, Courtney L. ; Karlebach, Guy ; Reese, Justin ; Holtgrewe, Manuel ; Köhler, Sebastian ; McMurry, Julie A. ; Haendel, Melissa A. ; Smedley, Damian ; UNC Biocuration Core</creatorcontrib><description>Human Phenotype Ontology (HPO)-based analysis has become standard for genomic diagnostics of rare diseases. Current algorithms use a variety of semantic and statistical approaches to prioritize the typically long lists of genes with candidate pathogenic variants. These algorithms do not provide robust estimates of the strength of the predictions beyond the placement in a ranked list, nor do they provide measures of how much any individual phenotypic observation has contributed to the prioritization result. However, given that the overall success rate of genomic diagnostics is only around 25%–50% or less in many cohorts, a good ranking cannot be taken to imply that the gene or disease at rank one is necessarily a good candidate. Here, we present an approach to genomic diagnostics that exploits the likelihood ratio (LR) framework to provide an estimate of (1) the posttest probability of candidate diagnoses, (2) the LR for each observed HPO phenotype, and (3) the predicted pathogenicity of observed genotypes. LIkelihood Ratio Interpretation of Clinical AbnormaLities (LIRICAL) placed the correct diagnosis within the first three ranks in 92.9% of 384 case reports comprising 262 Mendelian diseases, and the correct diagnosis had a mean posttest probability of 67.3%. Simulations show that LIRICAL is robust to many typically encountered forms of genomic and phenomic noise. In summary, LIRICAL provides accurate, clinically interpretable results for phenotype-driven genomic diagnostics.</description><identifier>ISSN: 0002-9297</identifier><identifier>EISSN: 1537-6605</identifier><identifier>DOI: 10.1016/j.ajhg.2020.06.021</identifier><identifier>PMID: 32755546</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Algorithms ; Computational Biology ; Databases, Genetic ; Exome - genetics ; exome sequencing ; genome sequencing ; Genomics ; Human Phenotype Ontology ; Humans ; liklihood ratio ; Phenotype ; phenotype-driven genomic diagnostics ; Rare Diseases - diagnosis ; Rare Diseases - genetics ; Software</subject><ispartof>American journal of human genetics, 2020-09, Vol.107 (3), p.403-417</ispartof><rights>2020 American Society of Human Genetics</rights><rights>Copyright © 2020 American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.</rights><rights>2020 American Society of Human Genetics. 2020 American Society of Human Genetics</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c455t-28dbd1d00727661ebcf5379f4d1529c22aea7a70619c8c1738c80be1e7b70b6b3</citedby><cites>FETCH-LOGICAL-c455t-28dbd1d00727661ebcf5379f4d1529c22aea7a70619c8c1738c80be1e7b70b6b3</cites><orcidid>0000-0002-0736-9199</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7477017/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0002929720302305$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,3537,27901,27902,53766,53768,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32755546$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Robinson, Peter N.</creatorcontrib><creatorcontrib>Ravanmehr, Vida</creatorcontrib><creatorcontrib>Jacobsen, Julius O.B.</creatorcontrib><creatorcontrib>Danis, Daniel</creatorcontrib><creatorcontrib>Zhang, Xingmin Aaron</creatorcontrib><creatorcontrib>Carmody, Leigh C.</creatorcontrib><creatorcontrib>Gargano, Michael A.</creatorcontrib><creatorcontrib>Thaxton, Courtney L.</creatorcontrib><creatorcontrib>Karlebach, Guy</creatorcontrib><creatorcontrib>Reese, Justin</creatorcontrib><creatorcontrib>Holtgrewe, Manuel</creatorcontrib><creatorcontrib>Köhler, Sebastian</creatorcontrib><creatorcontrib>McMurry, Julie A.</creatorcontrib><creatorcontrib>Haendel, Melissa A.</creatorcontrib><creatorcontrib>Smedley, Damian</creatorcontrib><creatorcontrib>UNC Biocuration Core</creatorcontrib><title>Interpretable Clinical Genomics with a Likelihood Ratio Paradigm</title><title>American journal of human genetics</title><addtitle>Am J Hum Genet</addtitle><description>Human Phenotype Ontology (HPO)-based analysis has become standard for genomic diagnostics of rare diseases. Current algorithms use a variety of semantic and statistical approaches to prioritize the typically long lists of genes with candidate pathogenic variants. These algorithms do not provide robust estimates of the strength of the predictions beyond the placement in a ranked list, nor do they provide measures of how much any individual phenotypic observation has contributed to the prioritization result. However, given that the overall success rate of genomic diagnostics is only around 25%–50% or less in many cohorts, a good ranking cannot be taken to imply that the gene or disease at rank one is necessarily a good candidate. Here, we present an approach to genomic diagnostics that exploits the likelihood ratio (LR) framework to provide an estimate of (1) the posttest probability of candidate diagnoses, (2) the LR for each observed HPO phenotype, and (3) the predicted pathogenicity of observed genotypes. LIkelihood Ratio Interpretation of Clinical AbnormaLities (LIRICAL) placed the correct diagnosis within the first three ranks in 92.9% of 384 case reports comprising 262 Mendelian diseases, and the correct diagnosis had a mean posttest probability of 67.3%. Simulations show that LIRICAL is robust to many typically encountered forms of genomic and phenomic noise. In summary, LIRICAL provides accurate, clinically interpretable results for phenotype-driven genomic diagnostics.</description><subject>Algorithms</subject><subject>Computational Biology</subject><subject>Databases, Genetic</subject><subject>Exome - genetics</subject><subject>exome sequencing</subject><subject>genome sequencing</subject><subject>Genomics</subject><subject>Human Phenotype Ontology</subject><subject>Humans</subject><subject>liklihood ratio</subject><subject>Phenotype</subject><subject>phenotype-driven genomic diagnostics</subject><subject>Rare Diseases - diagnosis</subject><subject>Rare Diseases - genetics</subject><subject>Software</subject><issn>0002-9297</issn><issn>1537-6605</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kEFr2zAUx8VYWdJsX6CH4eMudp9kS7KhlI2wpYFAS9nOQpZeEmW2lUlOSr_9HJKG9tLTO7z___ceP0KuKGQUqLjeZHqzXmUMGGQgMmD0AxlTnstUCOAfyRgAWFqxSo7IZYwbAEpLyD-RUc4k57wQY_J93vUYtgF7XTeYTBvXOaObZIadb52JyZPr14lOFu4vNm7tvU0ede988qCDtm7VfiYXS91E_HKaE_Ln18_f07t0cT-bT38sUlNw3qestLWlFkAyKQTF2iyHR6tlYSlnlWFMo5ZagqCVKQ2VeWlKqJGirCXUos4n5PbI3e7qFq3Brg-6UdvgWh2elddOvd10bq1Wfq9kISUMwAn5dgIE_2-HsVetiwabRnfod1GxIodKVpLTIcqOURN8jAGX5zMU1EG92qiDenVQr0CoQf1Q-vr6wXPlxfUQuDkGcNC0dxhUNA47g9YFNL2y3r3H_w-u1pV6</recordid><startdate>20200903</startdate><enddate>20200903</enddate><creator>Robinson, Peter N.</creator><creator>Ravanmehr, Vida</creator><creator>Jacobsen, Julius O.B.</creator><creator>Danis, Daniel</creator><creator>Zhang, Xingmin Aaron</creator><creator>Carmody, Leigh C.</creator><creator>Gargano, Michael A.</creator><creator>Thaxton, Courtney L.</creator><creator>Karlebach, Guy</creator><creator>Reese, Justin</creator><creator>Holtgrewe, Manuel</creator><creator>Köhler, Sebastian</creator><creator>McMurry, Julie A.</creator><creator>Haendel, Melissa A.</creator><creator>Smedley, Damian</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-0736-9199</orcidid></search><sort><creationdate>20200903</creationdate><title>Interpretable Clinical Genomics with a Likelihood Ratio Paradigm</title><author>Robinson, Peter N. ; Ravanmehr, Vida ; Jacobsen, Julius O.B. ; Danis, Daniel ; Zhang, Xingmin Aaron ; Carmody, Leigh C. ; Gargano, Michael A. ; Thaxton, Courtney L. ; Karlebach, Guy ; Reese, Justin ; Holtgrewe, Manuel ; Köhler, Sebastian ; McMurry, Julie A. ; Haendel, Melissa A. ; Smedley, Damian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c455t-28dbd1d00727661ebcf5379f4d1529c22aea7a70619c8c1738c80be1e7b70b6b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Computational Biology</topic><topic>Databases, Genetic</topic><topic>Exome - genetics</topic><topic>exome sequencing</topic><topic>genome sequencing</topic><topic>Genomics</topic><topic>Human Phenotype Ontology</topic><topic>Humans</topic><topic>liklihood ratio</topic><topic>Phenotype</topic><topic>phenotype-driven genomic diagnostics</topic><topic>Rare Diseases - diagnosis</topic><topic>Rare Diseases - genetics</topic><topic>Software</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Robinson, Peter N.</creatorcontrib><creatorcontrib>Ravanmehr, Vida</creatorcontrib><creatorcontrib>Jacobsen, Julius O.B.</creatorcontrib><creatorcontrib>Danis, Daniel</creatorcontrib><creatorcontrib>Zhang, Xingmin Aaron</creatorcontrib><creatorcontrib>Carmody, Leigh C.</creatorcontrib><creatorcontrib>Gargano, Michael A.</creatorcontrib><creatorcontrib>Thaxton, Courtney L.</creatorcontrib><creatorcontrib>Karlebach, Guy</creatorcontrib><creatorcontrib>Reese, Justin</creatorcontrib><creatorcontrib>Holtgrewe, Manuel</creatorcontrib><creatorcontrib>Köhler, Sebastian</creatorcontrib><creatorcontrib>McMurry, Julie A.</creatorcontrib><creatorcontrib>Haendel, Melissa A.</creatorcontrib><creatorcontrib>Smedley, Damian</creatorcontrib><creatorcontrib>UNC Biocuration Core</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>American journal of human genetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Robinson, Peter N.</au><au>Ravanmehr, Vida</au><au>Jacobsen, Julius O.B.</au><au>Danis, Daniel</au><au>Zhang, Xingmin Aaron</au><au>Carmody, Leigh C.</au><au>Gargano, Michael A.</au><au>Thaxton, Courtney L.</au><au>Karlebach, Guy</au><au>Reese, Justin</au><au>Holtgrewe, Manuel</au><au>Köhler, Sebastian</au><au>McMurry, Julie A.</au><au>Haendel, Melissa A.</au><au>Smedley, Damian</au><aucorp>UNC Biocuration Core</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Interpretable Clinical Genomics with a Likelihood Ratio Paradigm</atitle><jtitle>American journal of human genetics</jtitle><addtitle>Am J Hum Genet</addtitle><date>2020-09-03</date><risdate>2020</risdate><volume>107</volume><issue>3</issue><spage>403</spage><epage>417</epage><pages>403-417</pages><issn>0002-9297</issn><eissn>1537-6605</eissn><abstract>Human Phenotype Ontology (HPO)-based analysis has become standard for genomic diagnostics of rare diseases. Current algorithms use a variety of semantic and statistical approaches to prioritize the typically long lists of genes with candidate pathogenic variants. These algorithms do not provide robust estimates of the strength of the predictions beyond the placement in a ranked list, nor do they provide measures of how much any individual phenotypic observation has contributed to the prioritization result. However, given that the overall success rate of genomic diagnostics is only around 25%–50% or less in many cohorts, a good ranking cannot be taken to imply that the gene or disease at rank one is necessarily a good candidate. Here, we present an approach to genomic diagnostics that exploits the likelihood ratio (LR) framework to provide an estimate of (1) the posttest probability of candidate diagnoses, (2) the LR for each observed HPO phenotype, and (3) the predicted pathogenicity of observed genotypes. LIkelihood Ratio Interpretation of Clinical AbnormaLities (LIRICAL) placed the correct diagnosis within the first three ranks in 92.9% of 384 case reports comprising 262 Mendelian diseases, and the correct diagnosis had a mean posttest probability of 67.3%. Simulations show that LIRICAL is robust to many typically encountered forms of genomic and phenomic noise. In summary, LIRICAL provides accurate, clinically interpretable results for phenotype-driven genomic diagnostics.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>32755546</pmid><doi>10.1016/j.ajhg.2020.06.021</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-0736-9199</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0002-9297 |
ispartof | American journal of human genetics, 2020-09, Vol.107 (3), p.403-417 |
issn | 0002-9297 1537-6605 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7477017 |
source | MEDLINE; Cell Press Free Archives; Elsevier ScienceDirect Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central |
subjects | Algorithms Computational Biology Databases, Genetic Exome - genetics exome sequencing genome sequencing Genomics Human Phenotype Ontology Humans liklihood ratio Phenotype phenotype-driven genomic diagnostics Rare Diseases - diagnosis Rare Diseases - genetics Software |
title | Interpretable Clinical Genomics with a Likelihood Ratio Paradigm |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T00%3A46%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Interpretable%20Clinical%20Genomics%20with%20a%20Likelihood%20Ratio%20Paradigm&rft.jtitle=American%20journal%20of%20human%20genetics&rft.au=Robinson,%20Peter%20N.&rft.aucorp=UNC%20Biocuration%20Core&rft.date=2020-09-03&rft.volume=107&rft.issue=3&rft.spage=403&rft.epage=417&rft.pages=403-417&rft.issn=0002-9297&rft.eissn=1537-6605&rft_id=info:doi/10.1016/j.ajhg.2020.06.021&rft_dat=%3Cproquest_pubme%3E2430979751%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2430979751&rft_id=info:pmid/32755546&rft_els_id=S0002929720302305&rfr_iscdi=true |