Cell swelling, softening and invasion in a three-dimensional breast cancer model

Control of the structure and function of three-dimensional multicellular tissues depends critically on the spatial and temporal coordination of cellular physical properties, yet the organizational principles that govern these events and their disruption in disease remain poorly understood. Using a m...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature physics 2020-01, Vol.16 (1), p.101-108
Hauptverfasser: Han, Yu Long, Pegoraro, Adrian F., Li, Hui, Li, Kaifu, Yuan, Yuan, Xu, Guoqiang, Gu, Zichen, Sun, Jiawei, Hao, Yukun, Gupta, Satish Kumar, Li, Yiwei, Tang, Wenhui, Kang, Hua, Teng, Lianghong, Fredberg, Jeffrey J., Guo, Ming
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 108
container_issue 1
container_start_page 101
container_title Nature physics
container_volume 16
creator Han, Yu Long
Pegoraro, Adrian F.
Li, Hui
Li, Kaifu
Yuan, Yuan
Xu, Guoqiang
Gu, Zichen
Sun, Jiawei
Hao, Yukun
Gupta, Satish Kumar
Li, Yiwei
Tang, Wenhui
Kang, Hua
Teng, Lianghong
Fredberg, Jeffrey J.
Guo, Ming
description Control of the structure and function of three-dimensional multicellular tissues depends critically on the spatial and temporal coordination of cellular physical properties, yet the organizational principles that govern these events and their disruption in disease remain poorly understood. Using a multicellular mammary cancer organoid model, we map here the spatial and temporal evolution of positions, motions and physical characteristics of individual cells in three dimensions. Compared with cells in the organoid core, cells at the organoid periphery and the invasive front are found to be systematically softer, larger and more dynamic. These mechanical changes are shown to arise from supracellular fluid flow through gap junctions, the suppression of which delays the transition to an invasive phenotype. These findings highlight the role of spatiotemporal coordination of cellular physical properties in tissue organization and disease progression. A platform for probing the mechanics and migratory dynamics of a growing model breast cancer reveals that cells at the invasive edge are faster, softer and larger than those in the core. Eliminating the softer cells delays the transition to invasion.
doi_str_mv 10.1038/s41567-019-0680-8
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7469976</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2441611767</sourcerecordid><originalsourceid>FETCH-LOGICAL-c470t-ad3cd66f7c4af4f1b6e780a76251fc509f05d24055ea3bc7b01afa52f3c00a043</originalsourceid><addsrcrecordid>eNp1kU1r3DAQhkVpaT7aH5BLEfSSQ9yMvu1LICz9gkB7SM9iLEsbB1tKJG9K_n21bLpNC71Ig-aZd0bzEnLC4AMD0Z4XyZQ2DbCuAd1C074gh8xI1XDZspf72IgDclTKLYDkmonX5EDwDpQEdUi-r_w00fKznmNcn9GSwuJjDSnGgY7xAcuYYg0o0uUme98M4-zj9hEn2mePZaEOo_OZzmnw0xvyKuBU_Nun-5j8-PTxevWlufr2-evq8qpx0sDS4CDcoHUwTmKQgfXamxbQaK5YcAq6AGrgdUTlUfTO9MAwoOJBOAAEKY7JxU73btPPfnA-Lhkne5fHGfOjTTjavzNxvLHr9GCN1F1ndBU4fRLI6X7jy2Lnsbi6B4w-bYrlUjLNmNGmou__QW_TJtcFVEpI3mmhJK8U21Eup1KyD_thGNitX3bnl61-2a1ftq01757_Yl_x26AK8B1Qaiquff7T-v-qvwD_mqFG</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2342963542</pqid></control><display><type>article</type><title>Cell swelling, softening and invasion in a three-dimensional breast cancer model</title><source>Springer Nature - Complete Springer Journals</source><source>Nature Journals Online</source><creator>Han, Yu Long ; Pegoraro, Adrian F. ; Li, Hui ; Li, Kaifu ; Yuan, Yuan ; Xu, Guoqiang ; Gu, Zichen ; Sun, Jiawei ; Hao, Yukun ; Gupta, Satish Kumar ; Li, Yiwei ; Tang, Wenhui ; Kang, Hua ; Teng, Lianghong ; Fredberg, Jeffrey J. ; Guo, Ming</creator><creatorcontrib>Han, Yu Long ; Pegoraro, Adrian F. ; Li, Hui ; Li, Kaifu ; Yuan, Yuan ; Xu, Guoqiang ; Gu, Zichen ; Sun, Jiawei ; Hao, Yukun ; Gupta, Satish Kumar ; Li, Yiwei ; Tang, Wenhui ; Kang, Hua ; Teng, Lianghong ; Fredberg, Jeffrey J. ; Guo, Ming</creatorcontrib><description>Control of the structure and function of three-dimensional multicellular tissues depends critically on the spatial and temporal coordination of cellular physical properties, yet the organizational principles that govern these events and their disruption in disease remain poorly understood. Using a multicellular mammary cancer organoid model, we map here the spatial and temporal evolution of positions, motions and physical characteristics of individual cells in three dimensions. Compared with cells in the organoid core, cells at the organoid periphery and the invasive front are found to be systematically softer, larger and more dynamic. These mechanical changes are shown to arise from supracellular fluid flow through gap junctions, the suppression of which delays the transition to an invasive phenotype. These findings highlight the role of spatiotemporal coordination of cellular physical properties in tissue organization and disease progression. A platform for probing the mechanics and migratory dynamics of a growing model breast cancer reveals that cells at the invasive edge are faster, softer and larger than those in the core. Eliminating the softer cells delays the transition to invasion.</description><identifier>ISSN: 1745-2473</identifier><identifier>EISSN: 1745-2481</identifier><identifier>DOI: 10.1038/s41567-019-0680-8</identifier><identifier>PMID: 32905405</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/57/343/1361 ; 631/57/343/2281 ; 639/301/923 ; 639/766/747 ; 639/766/930 ; Atomic ; Breast cancer ; Classical and Continuum Physics ; Complex Systems ; Computational fluid dynamics ; Condensed Matter Physics ; Coordination ; Disruption ; Fluid flow ; Mathematical and Computational Physics ; Molecular ; Optical and Plasma Physics ; Physical properties ; Physics ; Physics and Astronomy ; Theoretical ; Three dimensional models</subject><ispartof>Nature physics, 2020-01, Vol.16 (1), p.101-108</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2019</rights><rights>2019© The Author(s), under exclusive licence to Springer Nature Limited 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c470t-ad3cd66f7c4af4f1b6e780a76251fc509f05d24055ea3bc7b01afa52f3c00a043</citedby><cites>FETCH-LOGICAL-c470t-ad3cd66f7c4af4f1b6e780a76251fc509f05d24055ea3bc7b01afa52f3c00a043</cites><orcidid>0000-0002-0016-4158 ; 0000-0002-5203-0290 ; 0000-0003-0551-9912</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41567-019-0680-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41567-019-0680-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32905405$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Han, Yu Long</creatorcontrib><creatorcontrib>Pegoraro, Adrian F.</creatorcontrib><creatorcontrib>Li, Hui</creatorcontrib><creatorcontrib>Li, Kaifu</creatorcontrib><creatorcontrib>Yuan, Yuan</creatorcontrib><creatorcontrib>Xu, Guoqiang</creatorcontrib><creatorcontrib>Gu, Zichen</creatorcontrib><creatorcontrib>Sun, Jiawei</creatorcontrib><creatorcontrib>Hao, Yukun</creatorcontrib><creatorcontrib>Gupta, Satish Kumar</creatorcontrib><creatorcontrib>Li, Yiwei</creatorcontrib><creatorcontrib>Tang, Wenhui</creatorcontrib><creatorcontrib>Kang, Hua</creatorcontrib><creatorcontrib>Teng, Lianghong</creatorcontrib><creatorcontrib>Fredberg, Jeffrey J.</creatorcontrib><creatorcontrib>Guo, Ming</creatorcontrib><title>Cell swelling, softening and invasion in a three-dimensional breast cancer model</title><title>Nature physics</title><addtitle>Nat. Phys</addtitle><addtitle>Nat Phys</addtitle><description>Control of the structure and function of three-dimensional multicellular tissues depends critically on the spatial and temporal coordination of cellular physical properties, yet the organizational principles that govern these events and their disruption in disease remain poorly understood. Using a multicellular mammary cancer organoid model, we map here the spatial and temporal evolution of positions, motions and physical characteristics of individual cells in three dimensions. Compared with cells in the organoid core, cells at the organoid periphery and the invasive front are found to be systematically softer, larger and more dynamic. These mechanical changes are shown to arise from supracellular fluid flow through gap junctions, the suppression of which delays the transition to an invasive phenotype. These findings highlight the role of spatiotemporal coordination of cellular physical properties in tissue organization and disease progression. A platform for probing the mechanics and migratory dynamics of a growing model breast cancer reveals that cells at the invasive edge are faster, softer and larger than those in the core. Eliminating the softer cells delays the transition to invasion.</description><subject>631/57/343/1361</subject><subject>631/57/343/2281</subject><subject>639/301/923</subject><subject>639/766/747</subject><subject>639/766/930</subject><subject>Atomic</subject><subject>Breast cancer</subject><subject>Classical and Continuum Physics</subject><subject>Complex Systems</subject><subject>Computational fluid dynamics</subject><subject>Condensed Matter Physics</subject><subject>Coordination</subject><subject>Disruption</subject><subject>Fluid flow</subject><subject>Mathematical and Computational Physics</subject><subject>Molecular</subject><subject>Optical and Plasma Physics</subject><subject>Physical properties</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Theoretical</subject><subject>Three dimensional models</subject><issn>1745-2473</issn><issn>1745-2481</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp1kU1r3DAQhkVpaT7aH5BLEfSSQ9yMvu1LICz9gkB7SM9iLEsbB1tKJG9K_n21bLpNC71Ig-aZd0bzEnLC4AMD0Z4XyZQ2DbCuAd1C074gh8xI1XDZspf72IgDclTKLYDkmonX5EDwDpQEdUi-r_w00fKznmNcn9GSwuJjDSnGgY7xAcuYYg0o0uUme98M4-zj9hEn2mePZaEOo_OZzmnw0xvyKuBU_Nun-5j8-PTxevWlufr2-evq8qpx0sDS4CDcoHUwTmKQgfXamxbQaK5YcAq6AGrgdUTlUfTO9MAwoOJBOAAEKY7JxU73btPPfnA-Lhkne5fHGfOjTTjavzNxvLHr9GCN1F1ndBU4fRLI6X7jy2Lnsbi6B4w-bYrlUjLNmNGmou__QW_TJtcFVEpI3mmhJK8U21Eup1KyD_thGNitX3bnl61-2a1ftq01757_Yl_x26AK8B1Qaiquff7T-v-qvwD_mqFG</recordid><startdate>20200101</startdate><enddate>20200101</enddate><creator>Han, Yu Long</creator><creator>Pegoraro, Adrian F.</creator><creator>Li, Hui</creator><creator>Li, Kaifu</creator><creator>Yuan, Yuan</creator><creator>Xu, Guoqiang</creator><creator>Gu, Zichen</creator><creator>Sun, Jiawei</creator><creator>Hao, Yukun</creator><creator>Gupta, Satish Kumar</creator><creator>Li, Yiwei</creator><creator>Tang, Wenhui</creator><creator>Kang, Hua</creator><creator>Teng, Lianghong</creator><creator>Fredberg, Jeffrey J.</creator><creator>Guo, Ming</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7U5</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>M2P</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-0016-4158</orcidid><orcidid>https://orcid.org/0000-0002-5203-0290</orcidid><orcidid>https://orcid.org/0000-0003-0551-9912</orcidid></search><sort><creationdate>20200101</creationdate><title>Cell swelling, softening and invasion in a three-dimensional breast cancer model</title><author>Han, Yu Long ; Pegoraro, Adrian F. ; Li, Hui ; Li, Kaifu ; Yuan, Yuan ; Xu, Guoqiang ; Gu, Zichen ; Sun, Jiawei ; Hao, Yukun ; Gupta, Satish Kumar ; Li, Yiwei ; Tang, Wenhui ; Kang, Hua ; Teng, Lianghong ; Fredberg, Jeffrey J. ; Guo, Ming</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c470t-ad3cd66f7c4af4f1b6e780a76251fc509f05d24055ea3bc7b01afa52f3c00a043</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>631/57/343/1361</topic><topic>631/57/343/2281</topic><topic>639/301/923</topic><topic>639/766/747</topic><topic>639/766/930</topic><topic>Atomic</topic><topic>Breast cancer</topic><topic>Classical and Continuum Physics</topic><topic>Complex Systems</topic><topic>Computational fluid dynamics</topic><topic>Condensed Matter Physics</topic><topic>Coordination</topic><topic>Disruption</topic><topic>Fluid flow</topic><topic>Mathematical and Computational Physics</topic><topic>Molecular</topic><topic>Optical and Plasma Physics</topic><topic>Physical properties</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Theoretical</topic><topic>Three dimensional models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Han, Yu Long</creatorcontrib><creatorcontrib>Pegoraro, Adrian F.</creatorcontrib><creatorcontrib>Li, Hui</creatorcontrib><creatorcontrib>Li, Kaifu</creatorcontrib><creatorcontrib>Yuan, Yuan</creatorcontrib><creatorcontrib>Xu, Guoqiang</creatorcontrib><creatorcontrib>Gu, Zichen</creatorcontrib><creatorcontrib>Sun, Jiawei</creatorcontrib><creatorcontrib>Hao, Yukun</creatorcontrib><creatorcontrib>Gupta, Satish Kumar</creatorcontrib><creatorcontrib>Li, Yiwei</creatorcontrib><creatorcontrib>Tang, Wenhui</creatorcontrib><creatorcontrib>Kang, Hua</creatorcontrib><creatorcontrib>Teng, Lianghong</creatorcontrib><creatorcontrib>Fredberg, Jeffrey J.</creatorcontrib><creatorcontrib>Guo, Ming</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nature physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Han, Yu Long</au><au>Pegoraro, Adrian F.</au><au>Li, Hui</au><au>Li, Kaifu</au><au>Yuan, Yuan</au><au>Xu, Guoqiang</au><au>Gu, Zichen</au><au>Sun, Jiawei</au><au>Hao, Yukun</au><au>Gupta, Satish Kumar</au><au>Li, Yiwei</au><au>Tang, Wenhui</au><au>Kang, Hua</au><au>Teng, Lianghong</au><au>Fredberg, Jeffrey J.</au><au>Guo, Ming</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cell swelling, softening and invasion in a three-dimensional breast cancer model</atitle><jtitle>Nature physics</jtitle><stitle>Nat. Phys</stitle><addtitle>Nat Phys</addtitle><date>2020-01-01</date><risdate>2020</risdate><volume>16</volume><issue>1</issue><spage>101</spage><epage>108</epage><pages>101-108</pages><issn>1745-2473</issn><eissn>1745-2481</eissn><abstract>Control of the structure and function of three-dimensional multicellular tissues depends critically on the spatial and temporal coordination of cellular physical properties, yet the organizational principles that govern these events and their disruption in disease remain poorly understood. Using a multicellular mammary cancer organoid model, we map here the spatial and temporal evolution of positions, motions and physical characteristics of individual cells in three dimensions. Compared with cells in the organoid core, cells at the organoid periphery and the invasive front are found to be systematically softer, larger and more dynamic. These mechanical changes are shown to arise from supracellular fluid flow through gap junctions, the suppression of which delays the transition to an invasive phenotype. These findings highlight the role of spatiotemporal coordination of cellular physical properties in tissue organization and disease progression. A platform for probing the mechanics and migratory dynamics of a growing model breast cancer reveals that cells at the invasive edge are faster, softer and larger than those in the core. Eliminating the softer cells delays the transition to invasion.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>32905405</pmid><doi>10.1038/s41567-019-0680-8</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-0016-4158</orcidid><orcidid>https://orcid.org/0000-0002-5203-0290</orcidid><orcidid>https://orcid.org/0000-0003-0551-9912</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1745-2473
ispartof Nature physics, 2020-01, Vol.16 (1), p.101-108
issn 1745-2473
1745-2481
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7469976
source Springer Nature - Complete Springer Journals; Nature Journals Online
subjects 631/57/343/1361
631/57/343/2281
639/301/923
639/766/747
639/766/930
Atomic
Breast cancer
Classical and Continuum Physics
Complex Systems
Computational fluid dynamics
Condensed Matter Physics
Coordination
Disruption
Fluid flow
Mathematical and Computational Physics
Molecular
Optical and Plasma Physics
Physical properties
Physics
Physics and Astronomy
Theoretical
Three dimensional models
title Cell swelling, softening and invasion in a three-dimensional breast cancer model
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T20%3A28%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cell%20swelling,%20softening%20and%20invasion%20in%20a%20three-dimensional%20breast%20cancer%20model&rft.jtitle=Nature%20physics&rft.au=Han,%20Yu%20Long&rft.date=2020-01-01&rft.volume=16&rft.issue=1&rft.spage=101&rft.epage=108&rft.pages=101-108&rft.issn=1745-2473&rft.eissn=1745-2481&rft_id=info:doi/10.1038/s41567-019-0680-8&rft_dat=%3Cproquest_pubme%3E2441611767%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2342963542&rft_id=info:pmid/32905405&rfr_iscdi=true