Cell swelling, softening and invasion in a three-dimensional breast cancer model
Control of the structure and function of three-dimensional multicellular tissues depends critically on the spatial and temporal coordination of cellular physical properties, yet the organizational principles that govern these events and their disruption in disease remain poorly understood. Using a m...
Gespeichert in:
Veröffentlicht in: | Nature physics 2020-01, Vol.16 (1), p.101-108 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 108 |
---|---|
container_issue | 1 |
container_start_page | 101 |
container_title | Nature physics |
container_volume | 16 |
creator | Han, Yu Long Pegoraro, Adrian F. Li, Hui Li, Kaifu Yuan, Yuan Xu, Guoqiang Gu, Zichen Sun, Jiawei Hao, Yukun Gupta, Satish Kumar Li, Yiwei Tang, Wenhui Kang, Hua Teng, Lianghong Fredberg, Jeffrey J. Guo, Ming |
description | Control of the structure and function of three-dimensional multicellular tissues depends critically on the spatial and temporal coordination of cellular physical properties, yet the organizational principles that govern these events and their disruption in disease remain poorly understood. Using a multicellular mammary cancer organoid model, we map here the spatial and temporal evolution of positions, motions and physical characteristics of individual cells in three dimensions. Compared with cells in the organoid core, cells at the organoid periphery and the invasive front are found to be systematically softer, larger and more dynamic. These mechanical changes are shown to arise from supracellular fluid flow through gap junctions, the suppression of which delays the transition to an invasive phenotype. These findings highlight the role of spatiotemporal coordination of cellular physical properties in tissue organization and disease progression.
A platform for probing the mechanics and migratory dynamics of a growing model breast cancer reveals that cells at the invasive edge are faster, softer and larger than those in the core. Eliminating the softer cells delays the transition to invasion. |
doi_str_mv | 10.1038/s41567-019-0680-8 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7469976</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2441611767</sourcerecordid><originalsourceid>FETCH-LOGICAL-c470t-ad3cd66f7c4af4f1b6e780a76251fc509f05d24055ea3bc7b01afa52f3c00a043</originalsourceid><addsrcrecordid>eNp1kU1r3DAQhkVpaT7aH5BLEfSSQ9yMvu1LICz9gkB7SM9iLEsbB1tKJG9K_n21bLpNC71Ig-aZd0bzEnLC4AMD0Z4XyZQ2DbCuAd1C074gh8xI1XDZspf72IgDclTKLYDkmonX5EDwDpQEdUi-r_w00fKznmNcn9GSwuJjDSnGgY7xAcuYYg0o0uUme98M4-zj9hEn2mePZaEOo_OZzmnw0xvyKuBU_Nun-5j8-PTxevWlufr2-evq8qpx0sDS4CDcoHUwTmKQgfXamxbQaK5YcAq6AGrgdUTlUfTO9MAwoOJBOAAEKY7JxU73btPPfnA-Lhkne5fHGfOjTTjavzNxvLHr9GCN1F1ndBU4fRLI6X7jy2Lnsbi6B4w-bYrlUjLNmNGmou__QW_TJtcFVEpI3mmhJK8U21Eup1KyD_thGNitX3bnl61-2a1ftq01757_Yl_x26AK8B1Qaiquff7T-v-qvwD_mqFG</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2342963542</pqid></control><display><type>article</type><title>Cell swelling, softening and invasion in a three-dimensional breast cancer model</title><source>Springer Nature - Complete Springer Journals</source><source>Nature Journals Online</source><creator>Han, Yu Long ; Pegoraro, Adrian F. ; Li, Hui ; Li, Kaifu ; Yuan, Yuan ; Xu, Guoqiang ; Gu, Zichen ; Sun, Jiawei ; Hao, Yukun ; Gupta, Satish Kumar ; Li, Yiwei ; Tang, Wenhui ; Kang, Hua ; Teng, Lianghong ; Fredberg, Jeffrey J. ; Guo, Ming</creator><creatorcontrib>Han, Yu Long ; Pegoraro, Adrian F. ; Li, Hui ; Li, Kaifu ; Yuan, Yuan ; Xu, Guoqiang ; Gu, Zichen ; Sun, Jiawei ; Hao, Yukun ; Gupta, Satish Kumar ; Li, Yiwei ; Tang, Wenhui ; Kang, Hua ; Teng, Lianghong ; Fredberg, Jeffrey J. ; Guo, Ming</creatorcontrib><description>Control of the structure and function of three-dimensional multicellular tissues depends critically on the spatial and temporal coordination of cellular physical properties, yet the organizational principles that govern these events and their disruption in disease remain poorly understood. Using a multicellular mammary cancer organoid model, we map here the spatial and temporal evolution of positions, motions and physical characteristics of individual cells in three dimensions. Compared with cells in the organoid core, cells at the organoid periphery and the invasive front are found to be systematically softer, larger and more dynamic. These mechanical changes are shown to arise from supracellular fluid flow through gap junctions, the suppression of which delays the transition to an invasive phenotype. These findings highlight the role of spatiotemporal coordination of cellular physical properties in tissue organization and disease progression.
A platform for probing the mechanics and migratory dynamics of a growing model breast cancer reveals that cells at the invasive edge are faster, softer and larger than those in the core. Eliminating the softer cells delays the transition to invasion.</description><identifier>ISSN: 1745-2473</identifier><identifier>EISSN: 1745-2481</identifier><identifier>DOI: 10.1038/s41567-019-0680-8</identifier><identifier>PMID: 32905405</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/57/343/1361 ; 631/57/343/2281 ; 639/301/923 ; 639/766/747 ; 639/766/930 ; Atomic ; Breast cancer ; Classical and Continuum Physics ; Complex Systems ; Computational fluid dynamics ; Condensed Matter Physics ; Coordination ; Disruption ; Fluid flow ; Mathematical and Computational Physics ; Molecular ; Optical and Plasma Physics ; Physical properties ; Physics ; Physics and Astronomy ; Theoretical ; Three dimensional models</subject><ispartof>Nature physics, 2020-01, Vol.16 (1), p.101-108</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2019</rights><rights>2019© The Author(s), under exclusive licence to Springer Nature Limited 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c470t-ad3cd66f7c4af4f1b6e780a76251fc509f05d24055ea3bc7b01afa52f3c00a043</citedby><cites>FETCH-LOGICAL-c470t-ad3cd66f7c4af4f1b6e780a76251fc509f05d24055ea3bc7b01afa52f3c00a043</cites><orcidid>0000-0002-0016-4158 ; 0000-0002-5203-0290 ; 0000-0003-0551-9912</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41567-019-0680-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41567-019-0680-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32905405$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Han, Yu Long</creatorcontrib><creatorcontrib>Pegoraro, Adrian F.</creatorcontrib><creatorcontrib>Li, Hui</creatorcontrib><creatorcontrib>Li, Kaifu</creatorcontrib><creatorcontrib>Yuan, Yuan</creatorcontrib><creatorcontrib>Xu, Guoqiang</creatorcontrib><creatorcontrib>Gu, Zichen</creatorcontrib><creatorcontrib>Sun, Jiawei</creatorcontrib><creatorcontrib>Hao, Yukun</creatorcontrib><creatorcontrib>Gupta, Satish Kumar</creatorcontrib><creatorcontrib>Li, Yiwei</creatorcontrib><creatorcontrib>Tang, Wenhui</creatorcontrib><creatorcontrib>Kang, Hua</creatorcontrib><creatorcontrib>Teng, Lianghong</creatorcontrib><creatorcontrib>Fredberg, Jeffrey J.</creatorcontrib><creatorcontrib>Guo, Ming</creatorcontrib><title>Cell swelling, softening and invasion in a three-dimensional breast cancer model</title><title>Nature physics</title><addtitle>Nat. Phys</addtitle><addtitle>Nat Phys</addtitle><description>Control of the structure and function of three-dimensional multicellular tissues depends critically on the spatial and temporal coordination of cellular physical properties, yet the organizational principles that govern these events and their disruption in disease remain poorly understood. Using a multicellular mammary cancer organoid model, we map here the spatial and temporal evolution of positions, motions and physical characteristics of individual cells in three dimensions. Compared with cells in the organoid core, cells at the organoid periphery and the invasive front are found to be systematically softer, larger and more dynamic. These mechanical changes are shown to arise from supracellular fluid flow through gap junctions, the suppression of which delays the transition to an invasive phenotype. These findings highlight the role of spatiotemporal coordination of cellular physical properties in tissue organization and disease progression.
A platform for probing the mechanics and migratory dynamics of a growing model breast cancer reveals that cells at the invasive edge are faster, softer and larger than those in the core. Eliminating the softer cells delays the transition to invasion.</description><subject>631/57/343/1361</subject><subject>631/57/343/2281</subject><subject>639/301/923</subject><subject>639/766/747</subject><subject>639/766/930</subject><subject>Atomic</subject><subject>Breast cancer</subject><subject>Classical and Continuum Physics</subject><subject>Complex Systems</subject><subject>Computational fluid dynamics</subject><subject>Condensed Matter Physics</subject><subject>Coordination</subject><subject>Disruption</subject><subject>Fluid flow</subject><subject>Mathematical and Computational Physics</subject><subject>Molecular</subject><subject>Optical and Plasma Physics</subject><subject>Physical properties</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Theoretical</subject><subject>Three dimensional models</subject><issn>1745-2473</issn><issn>1745-2481</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp1kU1r3DAQhkVpaT7aH5BLEfSSQ9yMvu1LICz9gkB7SM9iLEsbB1tKJG9K_n21bLpNC71Ig-aZd0bzEnLC4AMD0Z4XyZQ2DbCuAd1C074gh8xI1XDZspf72IgDclTKLYDkmonX5EDwDpQEdUi-r_w00fKznmNcn9GSwuJjDSnGgY7xAcuYYg0o0uUme98M4-zj9hEn2mePZaEOo_OZzmnw0xvyKuBU_Nun-5j8-PTxevWlufr2-evq8qpx0sDS4CDcoHUwTmKQgfXamxbQaK5YcAq6AGrgdUTlUfTO9MAwoOJBOAAEKY7JxU73btPPfnA-Lhkne5fHGfOjTTjavzNxvLHr9GCN1F1ndBU4fRLI6X7jy2Lnsbi6B4w-bYrlUjLNmNGmou__QW_TJtcFVEpI3mmhJK8U21Eup1KyD_thGNitX3bnl61-2a1ftq01757_Yl_x26AK8B1Qaiquff7T-v-qvwD_mqFG</recordid><startdate>20200101</startdate><enddate>20200101</enddate><creator>Han, Yu Long</creator><creator>Pegoraro, Adrian F.</creator><creator>Li, Hui</creator><creator>Li, Kaifu</creator><creator>Yuan, Yuan</creator><creator>Xu, Guoqiang</creator><creator>Gu, Zichen</creator><creator>Sun, Jiawei</creator><creator>Hao, Yukun</creator><creator>Gupta, Satish Kumar</creator><creator>Li, Yiwei</creator><creator>Tang, Wenhui</creator><creator>Kang, Hua</creator><creator>Teng, Lianghong</creator><creator>Fredberg, Jeffrey J.</creator><creator>Guo, Ming</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7U5</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>M2P</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-0016-4158</orcidid><orcidid>https://orcid.org/0000-0002-5203-0290</orcidid><orcidid>https://orcid.org/0000-0003-0551-9912</orcidid></search><sort><creationdate>20200101</creationdate><title>Cell swelling, softening and invasion in a three-dimensional breast cancer model</title><author>Han, Yu Long ; Pegoraro, Adrian F. ; Li, Hui ; Li, Kaifu ; Yuan, Yuan ; Xu, Guoqiang ; Gu, Zichen ; Sun, Jiawei ; Hao, Yukun ; Gupta, Satish Kumar ; Li, Yiwei ; Tang, Wenhui ; Kang, Hua ; Teng, Lianghong ; Fredberg, Jeffrey J. ; Guo, Ming</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c470t-ad3cd66f7c4af4f1b6e780a76251fc509f05d24055ea3bc7b01afa52f3c00a043</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>631/57/343/1361</topic><topic>631/57/343/2281</topic><topic>639/301/923</topic><topic>639/766/747</topic><topic>639/766/930</topic><topic>Atomic</topic><topic>Breast cancer</topic><topic>Classical and Continuum Physics</topic><topic>Complex Systems</topic><topic>Computational fluid dynamics</topic><topic>Condensed Matter Physics</topic><topic>Coordination</topic><topic>Disruption</topic><topic>Fluid flow</topic><topic>Mathematical and Computational Physics</topic><topic>Molecular</topic><topic>Optical and Plasma Physics</topic><topic>Physical properties</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Theoretical</topic><topic>Three dimensional models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Han, Yu Long</creatorcontrib><creatorcontrib>Pegoraro, Adrian F.</creatorcontrib><creatorcontrib>Li, Hui</creatorcontrib><creatorcontrib>Li, Kaifu</creatorcontrib><creatorcontrib>Yuan, Yuan</creatorcontrib><creatorcontrib>Xu, Guoqiang</creatorcontrib><creatorcontrib>Gu, Zichen</creatorcontrib><creatorcontrib>Sun, Jiawei</creatorcontrib><creatorcontrib>Hao, Yukun</creatorcontrib><creatorcontrib>Gupta, Satish Kumar</creatorcontrib><creatorcontrib>Li, Yiwei</creatorcontrib><creatorcontrib>Tang, Wenhui</creatorcontrib><creatorcontrib>Kang, Hua</creatorcontrib><creatorcontrib>Teng, Lianghong</creatorcontrib><creatorcontrib>Fredberg, Jeffrey J.</creatorcontrib><creatorcontrib>Guo, Ming</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nature physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Han, Yu Long</au><au>Pegoraro, Adrian F.</au><au>Li, Hui</au><au>Li, Kaifu</au><au>Yuan, Yuan</au><au>Xu, Guoqiang</au><au>Gu, Zichen</au><au>Sun, Jiawei</au><au>Hao, Yukun</au><au>Gupta, Satish Kumar</au><au>Li, Yiwei</au><au>Tang, Wenhui</au><au>Kang, Hua</au><au>Teng, Lianghong</au><au>Fredberg, Jeffrey J.</au><au>Guo, Ming</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cell swelling, softening and invasion in a three-dimensional breast cancer model</atitle><jtitle>Nature physics</jtitle><stitle>Nat. Phys</stitle><addtitle>Nat Phys</addtitle><date>2020-01-01</date><risdate>2020</risdate><volume>16</volume><issue>1</issue><spage>101</spage><epage>108</epage><pages>101-108</pages><issn>1745-2473</issn><eissn>1745-2481</eissn><abstract>Control of the structure and function of three-dimensional multicellular tissues depends critically on the spatial and temporal coordination of cellular physical properties, yet the organizational principles that govern these events and their disruption in disease remain poorly understood. Using a multicellular mammary cancer organoid model, we map here the spatial and temporal evolution of positions, motions and physical characteristics of individual cells in three dimensions. Compared with cells in the organoid core, cells at the organoid periphery and the invasive front are found to be systematically softer, larger and more dynamic. These mechanical changes are shown to arise from supracellular fluid flow through gap junctions, the suppression of which delays the transition to an invasive phenotype. These findings highlight the role of spatiotemporal coordination of cellular physical properties in tissue organization and disease progression.
A platform for probing the mechanics and migratory dynamics of a growing model breast cancer reveals that cells at the invasive edge are faster, softer and larger than those in the core. Eliminating the softer cells delays the transition to invasion.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>32905405</pmid><doi>10.1038/s41567-019-0680-8</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-0016-4158</orcidid><orcidid>https://orcid.org/0000-0002-5203-0290</orcidid><orcidid>https://orcid.org/0000-0003-0551-9912</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1745-2473 |
ispartof | Nature physics, 2020-01, Vol.16 (1), p.101-108 |
issn | 1745-2473 1745-2481 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7469976 |
source | Springer Nature - Complete Springer Journals; Nature Journals Online |
subjects | 631/57/343/1361 631/57/343/2281 639/301/923 639/766/747 639/766/930 Atomic Breast cancer Classical and Continuum Physics Complex Systems Computational fluid dynamics Condensed Matter Physics Coordination Disruption Fluid flow Mathematical and Computational Physics Molecular Optical and Plasma Physics Physical properties Physics Physics and Astronomy Theoretical Three dimensional models |
title | Cell swelling, softening and invasion in a three-dimensional breast cancer model |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T20%3A28%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cell%20swelling,%20softening%20and%20invasion%20in%20a%20three-dimensional%20breast%20cancer%20model&rft.jtitle=Nature%20physics&rft.au=Han,%20Yu%20Long&rft.date=2020-01-01&rft.volume=16&rft.issue=1&rft.spage=101&rft.epage=108&rft.pages=101-108&rft.issn=1745-2473&rft.eissn=1745-2481&rft_id=info:doi/10.1038/s41567-019-0680-8&rft_dat=%3Cproquest_pubme%3E2441611767%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2342963542&rft_id=info:pmid/32905405&rfr_iscdi=true |