Silencing of MYH7 ameliorates disease phenotypes in human iPSC-cardiomyocytes
Allele-specific RNA silencing has been shown to be an effective therapeutic treatment in a number of diseases, including neurodegenerative disorders. Studies of allele-specific silencing in hypertrophic cardiomyopathy (HCM) to date have focused on mouse models of disease. We here examine allele-spec...
Gespeichert in:
Veröffentlicht in: | Physiological genomics 2020-07, Vol.52 (7), p.293-303 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 303 |
---|---|
container_issue | 7 |
container_start_page | 293 |
container_title | Physiological genomics |
container_volume | 52 |
creator | Dainis, Alexandra Zaleta-Rivera, Kathia Ribeiro, Alexandre Chang, Andrew Chia Hao Shang, Ching Lan, Feng Burridge, Paul W. Liu, W. Robert Wu, Joseph C. Chang, Alex Chia Yu Pruitt, Beth L. Wheeler, Matthew Ashley, Euan |
description | Allele-specific RNA silencing has been shown to be an effective therapeutic treatment in a number of diseases, including neurodegenerative disorders. Studies of allele-specific silencing in hypertrophic cardiomyopathy (HCM) to date have focused on mouse models of disease. We here examine allele-specific silencing in a human-cell model of HCM. We investigate two methods of silencing, short hairpin RNA (shRNA) and antisense oligonucleotide (ASO) silencing, using a human induced pluripotent stem cell-derived cardiomyocyte (hiPSC-CM) model. We used cellular micropatterning devices with traction force microscopy and automated video analysis to examine each strategy’s effects on contractile defects underlying disease. We find that shRNA silencing ameliorates contractile phenotypes of disease, reducing disease-associated increases in cardiomyocyte velocity, force, and power. We find that ASO silencing, while better able to target and knockdown a specific disease-associated allele, showed more modest improvements in contractile phenotypes. These findings are the first exploration of allele-specific silencing in a human HCM model and provide a foundation for further exploration of silencing as a therapeutic treatment for MYH7-mutation-associated cardiomyopathy. |
doi_str_mv | 10.1152/physiolgenomics.00021.2020 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7468691</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2415830390</sourcerecordid><originalsourceid>FETCH-LOGICAL-c431t-55ac03b5babf995e944a4cd6011e2f18e3a054e0d1e5f7d3ee4abf2ff1b314233</originalsourceid><addsrcrecordid>eNpdkU1v1DAQhi0EoqXwHyK4cMky4498cEBCK6BIrUAqHDhZjjPZdZXYwU4q5d_jpRUSPXnkefTOjB7GXiPsEBV_Nx-35MJ4IB8mZ9MOADjuOHB4ws5RCSw5r-qnuYZWlo2QeMZepHQLgLJu1HN2JriqagX1Obu-cSN56_yhCENx_euyLsxEowvRLJSK3iUyiYr5mIct25y_nC-O62R84b7f7EtrYu_CtAW7Zf4lezaYMdGrh_eC_fz86cf-srz69uXr_uNVaaXApVTKWBCd6kw3tK2iVkojbV8BIvEBGxIGlCTokdRQ94JIZpIPA3YCJRfign24z53XbqLekl-iGfUc3WTipoNx-v-Od0d9CHe6llVTtZgD3j4ExPB7pbToySVL42g8hTVpLlE1AkQLGX3zCL0Na_T5vEzxSilUeKLe31M2hpQiDf-WQdAna_qRNf3Xmj5ZE38ACHCQQw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2426551510</pqid></control><display><type>article</type><title>Silencing of MYH7 ameliorates disease phenotypes in human iPSC-cardiomyocytes</title><source>American Physiological Society Paid</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Dainis, Alexandra ; Zaleta-Rivera, Kathia ; Ribeiro, Alexandre ; Chang, Andrew Chia Hao ; Shang, Ching ; Lan, Feng ; Burridge, Paul W. ; Liu, W. Robert ; Wu, Joseph C. ; Chang, Alex Chia Yu ; Pruitt, Beth L. ; Wheeler, Matthew ; Ashley, Euan</creator><creatorcontrib>Dainis, Alexandra ; Zaleta-Rivera, Kathia ; Ribeiro, Alexandre ; Chang, Andrew Chia Hao ; Shang, Ching ; Lan, Feng ; Burridge, Paul W. ; Liu, W. Robert ; Wu, Joseph C. ; Chang, Alex Chia Yu ; Pruitt, Beth L. ; Wheeler, Matthew ; Ashley, Euan</creatorcontrib><description>Allele-specific RNA silencing has been shown to be an effective therapeutic treatment in a number of diseases, including neurodegenerative disorders. Studies of allele-specific silencing in hypertrophic cardiomyopathy (HCM) to date have focused on mouse models of disease. We here examine allele-specific silencing in a human-cell model of HCM. We investigate two methods of silencing, short hairpin RNA (shRNA) and antisense oligonucleotide (ASO) silencing, using a human induced pluripotent stem cell-derived cardiomyocyte (hiPSC-CM) model. We used cellular micropatterning devices with traction force microscopy and automated video analysis to examine each strategy’s effects on contractile defects underlying disease. We find that shRNA silencing ameliorates contractile phenotypes of disease, reducing disease-associated increases in cardiomyocyte velocity, force, and power. We find that ASO silencing, while better able to target and knockdown a specific disease-associated allele, showed more modest improvements in contractile phenotypes. These findings are the first exploration of allele-specific silencing in a human HCM model and provide a foundation for further exploration of silencing as a therapeutic treatment for MYH7-mutation-associated cardiomyopathy.</description><identifier>ISSN: 1094-8341</identifier><identifier>EISSN: 1531-2267</identifier><identifier>DOI: 10.1152/physiolgenomics.00021.2020</identifier><identifier>PMID: 32567507</identifier><language>eng</language><publisher>Bethesda: American Physiological Society</publisher><subject>Alleles ; Animal models ; Antisense oligonucleotides ; Antisense RNA ; Cardiomyocytes ; Cardiomyopathy ; Contractility ; Disease ; Gene silencing ; Micropatterning ; Neurodegenerative diseases ; Phenotypes ; Pluripotency ; RNA-mediated interference ; Stem cells</subject><ispartof>Physiological genomics, 2020-07, Vol.52 (7), p.293-303</ispartof><rights>Copyright American Physiological Society Jul 2020</rights><rights>Copyright © 2020 the American Physiological Society 2020 American Physiological Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c431t-55ac03b5babf995e944a4cd6011e2f18e3a054e0d1e5f7d3ee4abf2ff1b314233</citedby><cites>FETCH-LOGICAL-c431t-55ac03b5babf995e944a4cd6011e2f18e3a054e0d1e5f7d3ee4abf2ff1b314233</cites><orcidid>0000-0001-8721-3022</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,3039,27924,27925</link.rule.ids></links><search><creatorcontrib>Dainis, Alexandra</creatorcontrib><creatorcontrib>Zaleta-Rivera, Kathia</creatorcontrib><creatorcontrib>Ribeiro, Alexandre</creatorcontrib><creatorcontrib>Chang, Andrew Chia Hao</creatorcontrib><creatorcontrib>Shang, Ching</creatorcontrib><creatorcontrib>Lan, Feng</creatorcontrib><creatorcontrib>Burridge, Paul W.</creatorcontrib><creatorcontrib>Liu, W. Robert</creatorcontrib><creatorcontrib>Wu, Joseph C.</creatorcontrib><creatorcontrib>Chang, Alex Chia Yu</creatorcontrib><creatorcontrib>Pruitt, Beth L.</creatorcontrib><creatorcontrib>Wheeler, Matthew</creatorcontrib><creatorcontrib>Ashley, Euan</creatorcontrib><title>Silencing of MYH7 ameliorates disease phenotypes in human iPSC-cardiomyocytes</title><title>Physiological genomics</title><description>Allele-specific RNA silencing has been shown to be an effective therapeutic treatment in a number of diseases, including neurodegenerative disorders. Studies of allele-specific silencing in hypertrophic cardiomyopathy (HCM) to date have focused on mouse models of disease. We here examine allele-specific silencing in a human-cell model of HCM. We investigate two methods of silencing, short hairpin RNA (shRNA) and antisense oligonucleotide (ASO) silencing, using a human induced pluripotent stem cell-derived cardiomyocyte (hiPSC-CM) model. We used cellular micropatterning devices with traction force microscopy and automated video analysis to examine each strategy’s effects on contractile defects underlying disease. We find that shRNA silencing ameliorates contractile phenotypes of disease, reducing disease-associated increases in cardiomyocyte velocity, force, and power. We find that ASO silencing, while better able to target and knockdown a specific disease-associated allele, showed more modest improvements in contractile phenotypes. These findings are the first exploration of allele-specific silencing in a human HCM model and provide a foundation for further exploration of silencing as a therapeutic treatment for MYH7-mutation-associated cardiomyopathy.</description><subject>Alleles</subject><subject>Animal models</subject><subject>Antisense oligonucleotides</subject><subject>Antisense RNA</subject><subject>Cardiomyocytes</subject><subject>Cardiomyopathy</subject><subject>Contractility</subject><subject>Disease</subject><subject>Gene silencing</subject><subject>Micropatterning</subject><subject>Neurodegenerative diseases</subject><subject>Phenotypes</subject><subject>Pluripotency</subject><subject>RNA-mediated interference</subject><subject>Stem cells</subject><issn>1094-8341</issn><issn>1531-2267</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNpdkU1v1DAQhi0EoqXwHyK4cMky4498cEBCK6BIrUAqHDhZjjPZdZXYwU4q5d_jpRUSPXnkefTOjB7GXiPsEBV_Nx-35MJ4IB8mZ9MOADjuOHB4ws5RCSw5r-qnuYZWlo2QeMZepHQLgLJu1HN2JriqagX1Obu-cSN56_yhCENx_euyLsxEowvRLJSK3iUyiYr5mIct25y_nC-O62R84b7f7EtrYu_CtAW7Zf4lezaYMdGrh_eC_fz86cf-srz69uXr_uNVaaXApVTKWBCd6kw3tK2iVkojbV8BIvEBGxIGlCTokdRQ94JIZpIPA3YCJRfign24z53XbqLekl-iGfUc3WTipoNx-v-Od0d9CHe6llVTtZgD3j4ExPB7pbToySVL42g8hTVpLlE1AkQLGX3zCL0Na_T5vEzxSilUeKLe31M2hpQiDf-WQdAna_qRNf3Xmj5ZE38ACHCQQw</recordid><startdate>20200701</startdate><enddate>20200701</enddate><creator>Dainis, Alexandra</creator><creator>Zaleta-Rivera, Kathia</creator><creator>Ribeiro, Alexandre</creator><creator>Chang, Andrew Chia Hao</creator><creator>Shang, Ching</creator><creator>Lan, Feng</creator><creator>Burridge, Paul W.</creator><creator>Liu, W. Robert</creator><creator>Wu, Joseph C.</creator><creator>Chang, Alex Chia Yu</creator><creator>Pruitt, Beth L.</creator><creator>Wheeler, Matthew</creator><creator>Ashley, Euan</creator><general>American Physiological Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TM</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-8721-3022</orcidid></search><sort><creationdate>20200701</creationdate><title>Silencing of MYH7 ameliorates disease phenotypes in human iPSC-cardiomyocytes</title><author>Dainis, Alexandra ; Zaleta-Rivera, Kathia ; Ribeiro, Alexandre ; Chang, Andrew Chia Hao ; Shang, Ching ; Lan, Feng ; Burridge, Paul W. ; Liu, W. Robert ; Wu, Joseph C. ; Chang, Alex Chia Yu ; Pruitt, Beth L. ; Wheeler, Matthew ; Ashley, Euan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c431t-55ac03b5babf995e944a4cd6011e2f18e3a054e0d1e5f7d3ee4abf2ff1b314233</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Alleles</topic><topic>Animal models</topic><topic>Antisense oligonucleotides</topic><topic>Antisense RNA</topic><topic>Cardiomyocytes</topic><topic>Cardiomyopathy</topic><topic>Contractility</topic><topic>Disease</topic><topic>Gene silencing</topic><topic>Micropatterning</topic><topic>Neurodegenerative diseases</topic><topic>Phenotypes</topic><topic>Pluripotency</topic><topic>RNA-mediated interference</topic><topic>Stem cells</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dainis, Alexandra</creatorcontrib><creatorcontrib>Zaleta-Rivera, Kathia</creatorcontrib><creatorcontrib>Ribeiro, Alexandre</creatorcontrib><creatorcontrib>Chang, Andrew Chia Hao</creatorcontrib><creatorcontrib>Shang, Ching</creatorcontrib><creatorcontrib>Lan, Feng</creatorcontrib><creatorcontrib>Burridge, Paul W.</creatorcontrib><creatorcontrib>Liu, W. Robert</creatorcontrib><creatorcontrib>Wu, Joseph C.</creatorcontrib><creatorcontrib>Chang, Alex Chia Yu</creatorcontrib><creatorcontrib>Pruitt, Beth L.</creatorcontrib><creatorcontrib>Wheeler, Matthew</creatorcontrib><creatorcontrib>Ashley, Euan</creatorcontrib><collection>CrossRef</collection><collection>Nucleic Acids Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Physiological genomics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dainis, Alexandra</au><au>Zaleta-Rivera, Kathia</au><au>Ribeiro, Alexandre</au><au>Chang, Andrew Chia Hao</au><au>Shang, Ching</au><au>Lan, Feng</au><au>Burridge, Paul W.</au><au>Liu, W. Robert</au><au>Wu, Joseph C.</au><au>Chang, Alex Chia Yu</au><au>Pruitt, Beth L.</au><au>Wheeler, Matthew</au><au>Ashley, Euan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Silencing of MYH7 ameliorates disease phenotypes in human iPSC-cardiomyocytes</atitle><jtitle>Physiological genomics</jtitle><date>2020-07-01</date><risdate>2020</risdate><volume>52</volume><issue>7</issue><spage>293</spage><epage>303</epage><pages>293-303</pages><issn>1094-8341</issn><eissn>1531-2267</eissn><abstract>Allele-specific RNA silencing has been shown to be an effective therapeutic treatment in a number of diseases, including neurodegenerative disorders. Studies of allele-specific silencing in hypertrophic cardiomyopathy (HCM) to date have focused on mouse models of disease. We here examine allele-specific silencing in a human-cell model of HCM. We investigate two methods of silencing, short hairpin RNA (shRNA) and antisense oligonucleotide (ASO) silencing, using a human induced pluripotent stem cell-derived cardiomyocyte (hiPSC-CM) model. We used cellular micropatterning devices with traction force microscopy and automated video analysis to examine each strategy’s effects on contractile defects underlying disease. We find that shRNA silencing ameliorates contractile phenotypes of disease, reducing disease-associated increases in cardiomyocyte velocity, force, and power. We find that ASO silencing, while better able to target and knockdown a specific disease-associated allele, showed more modest improvements in contractile phenotypes. These findings are the first exploration of allele-specific silencing in a human HCM model and provide a foundation for further exploration of silencing as a therapeutic treatment for MYH7-mutation-associated cardiomyopathy.</abstract><cop>Bethesda</cop><pub>American Physiological Society</pub><pmid>32567507</pmid><doi>10.1152/physiolgenomics.00021.2020</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-8721-3022</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1094-8341 |
ispartof | Physiological genomics, 2020-07, Vol.52 (7), p.293-303 |
issn | 1094-8341 1531-2267 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7468691 |
source | American Physiological Society Paid; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection |
subjects | Alleles Animal models Antisense oligonucleotides Antisense RNA Cardiomyocytes Cardiomyopathy Contractility Disease Gene silencing Micropatterning Neurodegenerative diseases Phenotypes Pluripotency RNA-mediated interference Stem cells |
title | Silencing of MYH7 ameliorates disease phenotypes in human iPSC-cardiomyocytes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T02%3A12%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Silencing%20of%20MYH7%20ameliorates%20disease%20phenotypes%20in%20human%20iPSC-cardiomyocytes&rft.jtitle=Physiological%20genomics&rft.au=Dainis,%20Alexandra&rft.date=2020-07-01&rft.volume=52&rft.issue=7&rft.spage=293&rft.epage=303&rft.pages=293-303&rft.issn=1094-8341&rft.eissn=1531-2267&rft_id=info:doi/10.1152/physiolgenomics.00021.2020&rft_dat=%3Cproquest_pubme%3E2415830390%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2426551510&rft_id=info:pmid/32567507&rfr_iscdi=true |