Silencing of MYH7 ameliorates disease phenotypes in human iPSC-cardiomyocytes

Allele-specific RNA silencing has been shown to be an effective therapeutic treatment in a number of diseases, including neurodegenerative disorders. Studies of allele-specific silencing in hypertrophic cardiomyopathy (HCM) to date have focused on mouse models of disease. We here examine allele-spec...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physiological genomics 2020-07, Vol.52 (7), p.293-303
Hauptverfasser: Dainis, Alexandra, Zaleta-Rivera, Kathia, Ribeiro, Alexandre, Chang, Andrew Chia Hao, Shang, Ching, Lan, Feng, Burridge, Paul W., Liu, W. Robert, Wu, Joseph C., Chang, Alex Chia Yu, Pruitt, Beth L., Wheeler, Matthew, Ashley, Euan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 303
container_issue 7
container_start_page 293
container_title Physiological genomics
container_volume 52
creator Dainis, Alexandra
Zaleta-Rivera, Kathia
Ribeiro, Alexandre
Chang, Andrew Chia Hao
Shang, Ching
Lan, Feng
Burridge, Paul W.
Liu, W. Robert
Wu, Joseph C.
Chang, Alex Chia Yu
Pruitt, Beth L.
Wheeler, Matthew
Ashley, Euan
description Allele-specific RNA silencing has been shown to be an effective therapeutic treatment in a number of diseases, including neurodegenerative disorders. Studies of allele-specific silencing in hypertrophic cardiomyopathy (HCM) to date have focused on mouse models of disease. We here examine allele-specific silencing in a human-cell model of HCM. We investigate two methods of silencing, short hairpin RNA (shRNA) and antisense oligonucleotide (ASO) silencing, using a human induced pluripotent stem cell-derived cardiomyocyte (hiPSC-CM) model. We used cellular micropatterning devices with traction force microscopy and automated video analysis to examine each strategy’s effects on contractile defects underlying disease. We find that shRNA silencing ameliorates contractile phenotypes of disease, reducing disease-associated increases in cardiomyocyte velocity, force, and power. We find that ASO silencing, while better able to target and knockdown a specific disease-associated allele, showed more modest improvements in contractile phenotypes. These findings are the first exploration of allele-specific silencing in a human HCM model and provide a foundation for further exploration of silencing as a therapeutic treatment for MYH7-mutation-associated cardiomyopathy.
doi_str_mv 10.1152/physiolgenomics.00021.2020
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7468691</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2415830390</sourcerecordid><originalsourceid>FETCH-LOGICAL-c431t-55ac03b5babf995e944a4cd6011e2f18e3a054e0d1e5f7d3ee4abf2ff1b314233</originalsourceid><addsrcrecordid>eNpdkU1v1DAQhi0EoqXwHyK4cMky4498cEBCK6BIrUAqHDhZjjPZdZXYwU4q5d_jpRUSPXnkefTOjB7GXiPsEBV_Nx-35MJ4IB8mZ9MOADjuOHB4ws5RCSw5r-qnuYZWlo2QeMZepHQLgLJu1HN2JriqagX1Obu-cSN56_yhCENx_euyLsxEowvRLJSK3iUyiYr5mIct25y_nC-O62R84b7f7EtrYu_CtAW7Zf4lezaYMdGrh_eC_fz86cf-srz69uXr_uNVaaXApVTKWBCd6kw3tK2iVkojbV8BIvEBGxIGlCTokdRQ94JIZpIPA3YCJRfign24z53XbqLekl-iGfUc3WTipoNx-v-Od0d9CHe6llVTtZgD3j4ExPB7pbToySVL42g8hTVpLlE1AkQLGX3zCL0Na_T5vEzxSilUeKLe31M2hpQiDf-WQdAna_qRNf3Xmj5ZE38ACHCQQw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2426551510</pqid></control><display><type>article</type><title>Silencing of MYH7 ameliorates disease phenotypes in human iPSC-cardiomyocytes</title><source>American Physiological Society Paid</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Dainis, Alexandra ; Zaleta-Rivera, Kathia ; Ribeiro, Alexandre ; Chang, Andrew Chia Hao ; Shang, Ching ; Lan, Feng ; Burridge, Paul W. ; Liu, W. Robert ; Wu, Joseph C. ; Chang, Alex Chia Yu ; Pruitt, Beth L. ; Wheeler, Matthew ; Ashley, Euan</creator><creatorcontrib>Dainis, Alexandra ; Zaleta-Rivera, Kathia ; Ribeiro, Alexandre ; Chang, Andrew Chia Hao ; Shang, Ching ; Lan, Feng ; Burridge, Paul W. ; Liu, W. Robert ; Wu, Joseph C. ; Chang, Alex Chia Yu ; Pruitt, Beth L. ; Wheeler, Matthew ; Ashley, Euan</creatorcontrib><description>Allele-specific RNA silencing has been shown to be an effective therapeutic treatment in a number of diseases, including neurodegenerative disorders. Studies of allele-specific silencing in hypertrophic cardiomyopathy (HCM) to date have focused on mouse models of disease. We here examine allele-specific silencing in a human-cell model of HCM. We investigate two methods of silencing, short hairpin RNA (shRNA) and antisense oligonucleotide (ASO) silencing, using a human induced pluripotent stem cell-derived cardiomyocyte (hiPSC-CM) model. We used cellular micropatterning devices with traction force microscopy and automated video analysis to examine each strategy’s effects on contractile defects underlying disease. We find that shRNA silencing ameliorates contractile phenotypes of disease, reducing disease-associated increases in cardiomyocyte velocity, force, and power. We find that ASO silencing, while better able to target and knockdown a specific disease-associated allele, showed more modest improvements in contractile phenotypes. These findings are the first exploration of allele-specific silencing in a human HCM model and provide a foundation for further exploration of silencing as a therapeutic treatment for MYH7-mutation-associated cardiomyopathy.</description><identifier>ISSN: 1094-8341</identifier><identifier>EISSN: 1531-2267</identifier><identifier>DOI: 10.1152/physiolgenomics.00021.2020</identifier><identifier>PMID: 32567507</identifier><language>eng</language><publisher>Bethesda: American Physiological Society</publisher><subject>Alleles ; Animal models ; Antisense oligonucleotides ; Antisense RNA ; Cardiomyocytes ; Cardiomyopathy ; Contractility ; Disease ; Gene silencing ; Micropatterning ; Neurodegenerative diseases ; Phenotypes ; Pluripotency ; RNA-mediated interference ; Stem cells</subject><ispartof>Physiological genomics, 2020-07, Vol.52 (7), p.293-303</ispartof><rights>Copyright American Physiological Society Jul 2020</rights><rights>Copyright © 2020 the American Physiological Society 2020 American Physiological Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c431t-55ac03b5babf995e944a4cd6011e2f18e3a054e0d1e5f7d3ee4abf2ff1b314233</citedby><cites>FETCH-LOGICAL-c431t-55ac03b5babf995e944a4cd6011e2f18e3a054e0d1e5f7d3ee4abf2ff1b314233</cites><orcidid>0000-0001-8721-3022</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,3039,27924,27925</link.rule.ids></links><search><creatorcontrib>Dainis, Alexandra</creatorcontrib><creatorcontrib>Zaleta-Rivera, Kathia</creatorcontrib><creatorcontrib>Ribeiro, Alexandre</creatorcontrib><creatorcontrib>Chang, Andrew Chia Hao</creatorcontrib><creatorcontrib>Shang, Ching</creatorcontrib><creatorcontrib>Lan, Feng</creatorcontrib><creatorcontrib>Burridge, Paul W.</creatorcontrib><creatorcontrib>Liu, W. Robert</creatorcontrib><creatorcontrib>Wu, Joseph C.</creatorcontrib><creatorcontrib>Chang, Alex Chia Yu</creatorcontrib><creatorcontrib>Pruitt, Beth L.</creatorcontrib><creatorcontrib>Wheeler, Matthew</creatorcontrib><creatorcontrib>Ashley, Euan</creatorcontrib><title>Silencing of MYH7 ameliorates disease phenotypes in human iPSC-cardiomyocytes</title><title>Physiological genomics</title><description>Allele-specific RNA silencing has been shown to be an effective therapeutic treatment in a number of diseases, including neurodegenerative disorders. Studies of allele-specific silencing in hypertrophic cardiomyopathy (HCM) to date have focused on mouse models of disease. We here examine allele-specific silencing in a human-cell model of HCM. We investigate two methods of silencing, short hairpin RNA (shRNA) and antisense oligonucleotide (ASO) silencing, using a human induced pluripotent stem cell-derived cardiomyocyte (hiPSC-CM) model. We used cellular micropatterning devices with traction force microscopy and automated video analysis to examine each strategy’s effects on contractile defects underlying disease. We find that shRNA silencing ameliorates contractile phenotypes of disease, reducing disease-associated increases in cardiomyocyte velocity, force, and power. We find that ASO silencing, while better able to target and knockdown a specific disease-associated allele, showed more modest improvements in contractile phenotypes. These findings are the first exploration of allele-specific silencing in a human HCM model and provide a foundation for further exploration of silencing as a therapeutic treatment for MYH7-mutation-associated cardiomyopathy.</description><subject>Alleles</subject><subject>Animal models</subject><subject>Antisense oligonucleotides</subject><subject>Antisense RNA</subject><subject>Cardiomyocytes</subject><subject>Cardiomyopathy</subject><subject>Contractility</subject><subject>Disease</subject><subject>Gene silencing</subject><subject>Micropatterning</subject><subject>Neurodegenerative diseases</subject><subject>Phenotypes</subject><subject>Pluripotency</subject><subject>RNA-mediated interference</subject><subject>Stem cells</subject><issn>1094-8341</issn><issn>1531-2267</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNpdkU1v1DAQhi0EoqXwHyK4cMky4498cEBCK6BIrUAqHDhZjjPZdZXYwU4q5d_jpRUSPXnkefTOjB7GXiPsEBV_Nx-35MJ4IB8mZ9MOADjuOHB4ws5RCSw5r-qnuYZWlo2QeMZepHQLgLJu1HN2JriqagX1Obu-cSN56_yhCENx_euyLsxEowvRLJSK3iUyiYr5mIct25y_nC-O62R84b7f7EtrYu_CtAW7Zf4lezaYMdGrh_eC_fz86cf-srz69uXr_uNVaaXApVTKWBCd6kw3tK2iVkojbV8BIvEBGxIGlCTokdRQ94JIZpIPA3YCJRfign24z53XbqLekl-iGfUc3WTipoNx-v-Od0d9CHe6llVTtZgD3j4ExPB7pbToySVL42g8hTVpLlE1AkQLGX3zCL0Na_T5vEzxSilUeKLe31M2hpQiDf-WQdAna_qRNf3Xmj5ZE38ACHCQQw</recordid><startdate>20200701</startdate><enddate>20200701</enddate><creator>Dainis, Alexandra</creator><creator>Zaleta-Rivera, Kathia</creator><creator>Ribeiro, Alexandre</creator><creator>Chang, Andrew Chia Hao</creator><creator>Shang, Ching</creator><creator>Lan, Feng</creator><creator>Burridge, Paul W.</creator><creator>Liu, W. Robert</creator><creator>Wu, Joseph C.</creator><creator>Chang, Alex Chia Yu</creator><creator>Pruitt, Beth L.</creator><creator>Wheeler, Matthew</creator><creator>Ashley, Euan</creator><general>American Physiological Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TM</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-8721-3022</orcidid></search><sort><creationdate>20200701</creationdate><title>Silencing of MYH7 ameliorates disease phenotypes in human iPSC-cardiomyocytes</title><author>Dainis, Alexandra ; Zaleta-Rivera, Kathia ; Ribeiro, Alexandre ; Chang, Andrew Chia Hao ; Shang, Ching ; Lan, Feng ; Burridge, Paul W. ; Liu, W. Robert ; Wu, Joseph C. ; Chang, Alex Chia Yu ; Pruitt, Beth L. ; Wheeler, Matthew ; Ashley, Euan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c431t-55ac03b5babf995e944a4cd6011e2f18e3a054e0d1e5f7d3ee4abf2ff1b314233</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Alleles</topic><topic>Animal models</topic><topic>Antisense oligonucleotides</topic><topic>Antisense RNA</topic><topic>Cardiomyocytes</topic><topic>Cardiomyopathy</topic><topic>Contractility</topic><topic>Disease</topic><topic>Gene silencing</topic><topic>Micropatterning</topic><topic>Neurodegenerative diseases</topic><topic>Phenotypes</topic><topic>Pluripotency</topic><topic>RNA-mediated interference</topic><topic>Stem cells</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dainis, Alexandra</creatorcontrib><creatorcontrib>Zaleta-Rivera, Kathia</creatorcontrib><creatorcontrib>Ribeiro, Alexandre</creatorcontrib><creatorcontrib>Chang, Andrew Chia Hao</creatorcontrib><creatorcontrib>Shang, Ching</creatorcontrib><creatorcontrib>Lan, Feng</creatorcontrib><creatorcontrib>Burridge, Paul W.</creatorcontrib><creatorcontrib>Liu, W. Robert</creatorcontrib><creatorcontrib>Wu, Joseph C.</creatorcontrib><creatorcontrib>Chang, Alex Chia Yu</creatorcontrib><creatorcontrib>Pruitt, Beth L.</creatorcontrib><creatorcontrib>Wheeler, Matthew</creatorcontrib><creatorcontrib>Ashley, Euan</creatorcontrib><collection>CrossRef</collection><collection>Nucleic Acids Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Physiological genomics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dainis, Alexandra</au><au>Zaleta-Rivera, Kathia</au><au>Ribeiro, Alexandre</au><au>Chang, Andrew Chia Hao</au><au>Shang, Ching</au><au>Lan, Feng</au><au>Burridge, Paul W.</au><au>Liu, W. Robert</au><au>Wu, Joseph C.</au><au>Chang, Alex Chia Yu</au><au>Pruitt, Beth L.</au><au>Wheeler, Matthew</au><au>Ashley, Euan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Silencing of MYH7 ameliorates disease phenotypes in human iPSC-cardiomyocytes</atitle><jtitle>Physiological genomics</jtitle><date>2020-07-01</date><risdate>2020</risdate><volume>52</volume><issue>7</issue><spage>293</spage><epage>303</epage><pages>293-303</pages><issn>1094-8341</issn><eissn>1531-2267</eissn><abstract>Allele-specific RNA silencing has been shown to be an effective therapeutic treatment in a number of diseases, including neurodegenerative disorders. Studies of allele-specific silencing in hypertrophic cardiomyopathy (HCM) to date have focused on mouse models of disease. We here examine allele-specific silencing in a human-cell model of HCM. We investigate two methods of silencing, short hairpin RNA (shRNA) and antisense oligonucleotide (ASO) silencing, using a human induced pluripotent stem cell-derived cardiomyocyte (hiPSC-CM) model. We used cellular micropatterning devices with traction force microscopy and automated video analysis to examine each strategy’s effects on contractile defects underlying disease. We find that shRNA silencing ameliorates contractile phenotypes of disease, reducing disease-associated increases in cardiomyocyte velocity, force, and power. We find that ASO silencing, while better able to target and knockdown a specific disease-associated allele, showed more modest improvements in contractile phenotypes. These findings are the first exploration of allele-specific silencing in a human HCM model and provide a foundation for further exploration of silencing as a therapeutic treatment for MYH7-mutation-associated cardiomyopathy.</abstract><cop>Bethesda</cop><pub>American Physiological Society</pub><pmid>32567507</pmid><doi>10.1152/physiolgenomics.00021.2020</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-8721-3022</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1094-8341
ispartof Physiological genomics, 2020-07, Vol.52 (7), p.293-303
issn 1094-8341
1531-2267
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7468691
source American Physiological Society Paid; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection
subjects Alleles
Animal models
Antisense oligonucleotides
Antisense RNA
Cardiomyocytes
Cardiomyopathy
Contractility
Disease
Gene silencing
Micropatterning
Neurodegenerative diseases
Phenotypes
Pluripotency
RNA-mediated interference
Stem cells
title Silencing of MYH7 ameliorates disease phenotypes in human iPSC-cardiomyocytes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T02%3A12%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Silencing%20of%20MYH7%20ameliorates%20disease%20phenotypes%20in%20human%20iPSC-cardiomyocytes&rft.jtitle=Physiological%20genomics&rft.au=Dainis,%20Alexandra&rft.date=2020-07-01&rft.volume=52&rft.issue=7&rft.spage=293&rft.epage=303&rft.pages=293-303&rft.issn=1094-8341&rft.eissn=1531-2267&rft_id=info:doi/10.1152/physiolgenomics.00021.2020&rft_dat=%3Cproquest_pubme%3E2415830390%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2426551510&rft_id=info:pmid/32567507&rfr_iscdi=true