Poly(ε-caprolactone) Titanium Dioxide and Cefuroxime Antimicrobial Scaffolds for Cultivation of Human Limbal Stem Cells
Limbal Stem Cell Deficiency (LSCD) is a very serious and painful disease that often results in impaired vision. Cultivation of limbal stem cells for clinical application is usually performed on carriers such as amniotic membrane or surgical fibrin gel. Transplantation of these grafts is associated w...
Gespeichert in:
Veröffentlicht in: | Polymers 2020-08, Vol.12 (8), p.1758 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 8 |
container_start_page | 1758 |
container_title | Polymers |
container_volume | 12 |
creator | Tominac Trcin, Mirna Zdraveva, Emilija Dolenec, Tamara Vrgoč Zimić, Ivana Bujić Mihica, Marina Batarilo, Ivanka Dekaris, Iva Blažević, Valentina Slivac, Igor Holjevac Grgurić, Tamara Bajsić, Emi Govorčin Markov, Ksenija Čanak, Iva Kuzmić, Sunčica Tarbuk, Anita Tomljenović, Antoneta Mrkonjić, Nikolina Mijović, Budimir |
description | Limbal Stem Cell Deficiency (LSCD) is a very serious and painful disease that often results in impaired vision. Cultivation of limbal stem cells for clinical application is usually performed on carriers such as amniotic membrane or surgical fibrin gel. Transplantation of these grafts is associated with the risk of local postoperative infection that can destroy the graft and devoid therapeutic benefit. For this reason, electrospun scaffolds are good alternatives, as proven to mimic the natural cells surroundings, while their fabrication technique is versatile with regard to polymer functionalization and scaffolds architecture. This study considers the development of poly(ε-caprolactone) (PCL) immune-compatible and biodegradable electrospun scaffolds, comprising cefuroxime (CF) or titanium dioxide (TiO2) active components, that provide both bactericidal activity against eye infections and support of limbal stem cells growth in vitro. The PCL/CF scaffolds were prepared by blend electrospinning, while functionalization with the TiO2 particles was performed by ultrasonic post-processing treatment. The fabricated scaffolds were evaluated in regard to their physical structure, wetting ability, static and dynamic mechanical behaviour, antimicrobial efficiency and drug release, through scanning electron microscopy, water contact angle measurement, tensile testing and dynamic mechanical analysis, antimicrobial tests and UV-Vis spectroscopy, respectively. Human limbal stem cells, isolated from surgical remains of human cadaveric cornea, were cultured on the PCL/CF and PCL/TiO2 scaffolds and further identified through immunocytochemistry in terms of cell type thus were stained against p63 marker for limbal stem cells, a nuclear transcription factor and cytokeratin 3 (CK3), a corneal epithelial differentiation marker. The electrospun PCL/CF and PCL/TiO2 successfully supported the adhesion, proliferation and differentiation of the cultivated limbal cells and provided the antimicrobial effect against Pseudomonas aeruginosa, Staphylococcus aureus and Candida albicans. |
doi_str_mv | 10.3390/polym12081758 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7465675</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2433241029</sourcerecordid><originalsourceid>FETCH-LOGICAL-c392t-fa2dbb51f0b7df99fcc3695b58129d29854ae8b8515f0e972f68383c0834cc8f3</originalsourceid><addsrcrecordid>eNpdkUtLHTEUgIO0qNy6dB_oxi6m5jGZSTYFubZauNBCdR0ymaSN5HGbZER_mH_D32QuStFmc3I4Hx_nAcAxRp8pFeh0m_x9wARxPDK-Bw4JGmnX0wG9e_U_AEel3KD2ejYMeNwHB5SMHLNhPAR3P5vi5PGh02qbk1e6pmg-wStXVXRLgOcu3bnZQBVnuDZ2yS0NBp7F6oLTOU1OefhLK2uTnwu0KcP14qu7VdWlCJOFl0tQEW5cmHZkNaF5vC8fwHurfDFHL3EFrr99vVpfdpsfF9_XZ5tOU0FqZxWZp4lhi6ZxtkJYrekg2MQ4JmImgrNeGT5xhplFRozEDpxyqhGnvdbc0hX48uzdLlMwszaxZuXlNrug8r1Mysm3lej-yN_pVo790DbEmuDkRZDT38WUKoMruo2goklLkaSnlPQYEdHQj_-hN2nJsY23owgRiLW-VqB7ptr6SsnG_msGI7k7q3xzVvoEVwKXFQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2432290508</pqid></control><display><type>article</type><title>Poly(ε-caprolactone) Titanium Dioxide and Cefuroxime Antimicrobial Scaffolds for Cultivation of Human Limbal Stem Cells</title><source>PubMed Central Open Access</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Tominac Trcin, Mirna ; Zdraveva, Emilija ; Dolenec, Tamara ; Vrgoč Zimić, Ivana ; Bujić Mihica, Marina ; Batarilo, Ivanka ; Dekaris, Iva ; Blažević, Valentina ; Slivac, Igor ; Holjevac Grgurić, Tamara ; Bajsić, Emi Govorčin ; Markov, Ksenija ; Čanak, Iva ; Kuzmić, Sunčica ; Tarbuk, Anita ; Tomljenović, Antoneta ; Mrkonjić, Nikolina ; Mijović, Budimir</creator><creatorcontrib>Tominac Trcin, Mirna ; Zdraveva, Emilija ; Dolenec, Tamara ; Vrgoč Zimić, Ivana ; Bujić Mihica, Marina ; Batarilo, Ivanka ; Dekaris, Iva ; Blažević, Valentina ; Slivac, Igor ; Holjevac Grgurić, Tamara ; Bajsić, Emi Govorčin ; Markov, Ksenija ; Čanak, Iva ; Kuzmić, Sunčica ; Tarbuk, Anita ; Tomljenović, Antoneta ; Mrkonjić, Nikolina ; Mijović, Budimir</creatorcontrib><description>Limbal Stem Cell Deficiency (LSCD) is a very serious and painful disease that often results in impaired vision. Cultivation of limbal stem cells for clinical application is usually performed on carriers such as amniotic membrane or surgical fibrin gel. Transplantation of these grafts is associated with the risk of local postoperative infection that can destroy the graft and devoid therapeutic benefit. For this reason, electrospun scaffolds are good alternatives, as proven to mimic the natural cells surroundings, while their fabrication technique is versatile with regard to polymer functionalization and scaffolds architecture. This study considers the development of poly(ε-caprolactone) (PCL) immune-compatible and biodegradable electrospun scaffolds, comprising cefuroxime (CF) or titanium dioxide (TiO2) active components, that provide both bactericidal activity against eye infections and support of limbal stem cells growth in vitro. The PCL/CF scaffolds were prepared by blend electrospinning, while functionalization with the TiO2 particles was performed by ultrasonic post-processing treatment. The fabricated scaffolds were evaluated in regard to their physical structure, wetting ability, static and dynamic mechanical behaviour, antimicrobial efficiency and drug release, through scanning electron microscopy, water contact angle measurement, tensile testing and dynamic mechanical analysis, antimicrobial tests and UV-Vis spectroscopy, respectively. Human limbal stem cells, isolated from surgical remains of human cadaveric cornea, were cultured on the PCL/CF and PCL/TiO2 scaffolds and further identified through immunocytochemistry in terms of cell type thus were stained against p63 marker for limbal stem cells, a nuclear transcription factor and cytokeratin 3 (CK3), a corneal epithelial differentiation marker. The electrospun PCL/CF and PCL/TiO2 successfully supported the adhesion, proliferation and differentiation of the cultivated limbal cells and provided the antimicrobial effect against Pseudomonas aeruginosa, Staphylococcus aureus and Candida albicans.</description><identifier>ISSN: 2073-4360</identifier><identifier>EISSN: 2073-4360</identifier><identifier>DOI: 10.3390/polym12081758</identifier><identifier>PMID: 32781567</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Antiinfectives and antibacterials ; Antimicrobial agents ; Biodegradability ; Biomarkers ; Biomedical materials ; Cartilage ; Contact angle ; Cornea ; Cultivation ; Differentiation ; Drug delivery systems ; Drugs ; Dynamic mechanical analysis ; Electrospinning ; Fibrin ; Mechanical properties ; Medical equipment ; Molecular weight ; Polycaprolactone ; Polymers ; Post-production processing ; Pseudomonas aeruginosa ; Researchers ; Scaffolds ; Skin ; Stem cells ; Surgical implants ; Tissue engineering ; Titanium ; Titanium dioxide ; Transplantation ; Transplants & implants ; Viscoelasticity ; Wetting</subject><ispartof>Polymers, 2020-08, Vol.12 (8), p.1758</ispartof><rights>2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2020 by the authors. 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c392t-fa2dbb51f0b7df99fcc3695b58129d29854ae8b8515f0e972f68383c0834cc8f3</citedby><cites>FETCH-LOGICAL-c392t-fa2dbb51f0b7df99fcc3695b58129d29854ae8b8515f0e972f68383c0834cc8f3</cites><orcidid>0000-0003-0973-138X ; 0000-0002-4539-2103 ; 0000-0001-8510-7576 ; 0000-0002-2973-2200</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7465675/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7465675/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27923,27924,53790,53792</link.rule.ids></links><search><creatorcontrib>Tominac Trcin, Mirna</creatorcontrib><creatorcontrib>Zdraveva, Emilija</creatorcontrib><creatorcontrib>Dolenec, Tamara</creatorcontrib><creatorcontrib>Vrgoč Zimić, Ivana</creatorcontrib><creatorcontrib>Bujić Mihica, Marina</creatorcontrib><creatorcontrib>Batarilo, Ivanka</creatorcontrib><creatorcontrib>Dekaris, Iva</creatorcontrib><creatorcontrib>Blažević, Valentina</creatorcontrib><creatorcontrib>Slivac, Igor</creatorcontrib><creatorcontrib>Holjevac Grgurić, Tamara</creatorcontrib><creatorcontrib>Bajsić, Emi Govorčin</creatorcontrib><creatorcontrib>Markov, Ksenija</creatorcontrib><creatorcontrib>Čanak, Iva</creatorcontrib><creatorcontrib>Kuzmić, Sunčica</creatorcontrib><creatorcontrib>Tarbuk, Anita</creatorcontrib><creatorcontrib>Tomljenović, Antoneta</creatorcontrib><creatorcontrib>Mrkonjić, Nikolina</creatorcontrib><creatorcontrib>Mijović, Budimir</creatorcontrib><title>Poly(ε-caprolactone) Titanium Dioxide and Cefuroxime Antimicrobial Scaffolds for Cultivation of Human Limbal Stem Cells</title><title>Polymers</title><description>Limbal Stem Cell Deficiency (LSCD) is a very serious and painful disease that often results in impaired vision. Cultivation of limbal stem cells for clinical application is usually performed on carriers such as amniotic membrane or surgical fibrin gel. Transplantation of these grafts is associated with the risk of local postoperative infection that can destroy the graft and devoid therapeutic benefit. For this reason, electrospun scaffolds are good alternatives, as proven to mimic the natural cells surroundings, while their fabrication technique is versatile with regard to polymer functionalization and scaffolds architecture. This study considers the development of poly(ε-caprolactone) (PCL) immune-compatible and biodegradable electrospun scaffolds, comprising cefuroxime (CF) or titanium dioxide (TiO2) active components, that provide both bactericidal activity against eye infections and support of limbal stem cells growth in vitro. The PCL/CF scaffolds were prepared by blend electrospinning, while functionalization with the TiO2 particles was performed by ultrasonic post-processing treatment. The fabricated scaffolds were evaluated in regard to their physical structure, wetting ability, static and dynamic mechanical behaviour, antimicrobial efficiency and drug release, through scanning electron microscopy, water contact angle measurement, tensile testing and dynamic mechanical analysis, antimicrobial tests and UV-Vis spectroscopy, respectively. Human limbal stem cells, isolated from surgical remains of human cadaveric cornea, were cultured on the PCL/CF and PCL/TiO2 scaffolds and further identified through immunocytochemistry in terms of cell type thus were stained against p63 marker for limbal stem cells, a nuclear transcription factor and cytokeratin 3 (CK3), a corneal epithelial differentiation marker. The electrospun PCL/CF and PCL/TiO2 successfully supported the adhesion, proliferation and differentiation of the cultivated limbal cells and provided the antimicrobial effect against Pseudomonas aeruginosa, Staphylococcus aureus and Candida albicans.</description><subject>Antiinfectives and antibacterials</subject><subject>Antimicrobial agents</subject><subject>Biodegradability</subject><subject>Biomarkers</subject><subject>Biomedical materials</subject><subject>Cartilage</subject><subject>Contact angle</subject><subject>Cornea</subject><subject>Cultivation</subject><subject>Differentiation</subject><subject>Drug delivery systems</subject><subject>Drugs</subject><subject>Dynamic mechanical analysis</subject><subject>Electrospinning</subject><subject>Fibrin</subject><subject>Mechanical properties</subject><subject>Medical equipment</subject><subject>Molecular weight</subject><subject>Polycaprolactone</subject><subject>Polymers</subject><subject>Post-production processing</subject><subject>Pseudomonas aeruginosa</subject><subject>Researchers</subject><subject>Scaffolds</subject><subject>Skin</subject><subject>Stem cells</subject><subject>Surgical implants</subject><subject>Tissue engineering</subject><subject>Titanium</subject><subject>Titanium dioxide</subject><subject>Transplantation</subject><subject>Transplants & implants</subject><subject>Viscoelasticity</subject><subject>Wetting</subject><issn>2073-4360</issn><issn>2073-4360</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpdkUtLHTEUgIO0qNy6dB_oxi6m5jGZSTYFubZauNBCdR0ymaSN5HGbZER_mH_D32QuStFmc3I4Hx_nAcAxRp8pFeh0m_x9wARxPDK-Bw4JGmnX0wG9e_U_AEel3KD2ejYMeNwHB5SMHLNhPAR3P5vi5PGh02qbk1e6pmg-wStXVXRLgOcu3bnZQBVnuDZ2yS0NBp7F6oLTOU1OefhLK2uTnwu0KcP14qu7VdWlCJOFl0tQEW5cmHZkNaF5vC8fwHurfDFHL3EFrr99vVpfdpsfF9_XZ5tOU0FqZxWZp4lhi6ZxtkJYrekg2MQ4JmImgrNeGT5xhplFRozEDpxyqhGnvdbc0hX48uzdLlMwszaxZuXlNrug8r1Mysm3lej-yN_pVo790DbEmuDkRZDT38WUKoMruo2goklLkaSnlPQYEdHQj_-hN2nJsY23owgRiLW-VqB7ptr6SsnG_msGI7k7q3xzVvoEVwKXFQ</recordid><startdate>20200806</startdate><enddate>20200806</enddate><creator>Tominac Trcin, Mirna</creator><creator>Zdraveva, Emilija</creator><creator>Dolenec, Tamara</creator><creator>Vrgoč Zimić, Ivana</creator><creator>Bujić Mihica, Marina</creator><creator>Batarilo, Ivanka</creator><creator>Dekaris, Iva</creator><creator>Blažević, Valentina</creator><creator>Slivac, Igor</creator><creator>Holjevac Grgurić, Tamara</creator><creator>Bajsić, Emi Govorčin</creator><creator>Markov, Ksenija</creator><creator>Čanak, Iva</creator><creator>Kuzmić, Sunčica</creator><creator>Tarbuk, Anita</creator><creator>Tomljenović, Antoneta</creator><creator>Mrkonjić, Nikolina</creator><creator>Mijović, Budimir</creator><general>MDPI AG</general><general>MDPI</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-0973-138X</orcidid><orcidid>https://orcid.org/0000-0002-4539-2103</orcidid><orcidid>https://orcid.org/0000-0001-8510-7576</orcidid><orcidid>https://orcid.org/0000-0002-2973-2200</orcidid></search><sort><creationdate>20200806</creationdate><title>Poly(ε-caprolactone) Titanium Dioxide and Cefuroxime Antimicrobial Scaffolds for Cultivation of Human Limbal Stem Cells</title><author>Tominac Trcin, Mirna ; Zdraveva, Emilija ; Dolenec, Tamara ; Vrgoč Zimić, Ivana ; Bujić Mihica, Marina ; Batarilo, Ivanka ; Dekaris, Iva ; Blažević, Valentina ; Slivac, Igor ; Holjevac Grgurić, Tamara ; Bajsić, Emi Govorčin ; Markov, Ksenija ; Čanak, Iva ; Kuzmić, Sunčica ; Tarbuk, Anita ; Tomljenović, Antoneta ; Mrkonjić, Nikolina ; Mijović, Budimir</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c392t-fa2dbb51f0b7df99fcc3695b58129d29854ae8b8515f0e972f68383c0834cc8f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Antiinfectives and antibacterials</topic><topic>Antimicrobial agents</topic><topic>Biodegradability</topic><topic>Biomarkers</topic><topic>Biomedical materials</topic><topic>Cartilage</topic><topic>Contact angle</topic><topic>Cornea</topic><topic>Cultivation</topic><topic>Differentiation</topic><topic>Drug delivery systems</topic><topic>Drugs</topic><topic>Dynamic mechanical analysis</topic><topic>Electrospinning</topic><topic>Fibrin</topic><topic>Mechanical properties</topic><topic>Medical equipment</topic><topic>Molecular weight</topic><topic>Polycaprolactone</topic><topic>Polymers</topic><topic>Post-production processing</topic><topic>Pseudomonas aeruginosa</topic><topic>Researchers</topic><topic>Scaffolds</topic><topic>Skin</topic><topic>Stem cells</topic><topic>Surgical implants</topic><topic>Tissue engineering</topic><topic>Titanium</topic><topic>Titanium dioxide</topic><topic>Transplantation</topic><topic>Transplants & implants</topic><topic>Viscoelasticity</topic><topic>Wetting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tominac Trcin, Mirna</creatorcontrib><creatorcontrib>Zdraveva, Emilija</creatorcontrib><creatorcontrib>Dolenec, Tamara</creatorcontrib><creatorcontrib>Vrgoč Zimić, Ivana</creatorcontrib><creatorcontrib>Bujić Mihica, Marina</creatorcontrib><creatorcontrib>Batarilo, Ivanka</creatorcontrib><creatorcontrib>Dekaris, Iva</creatorcontrib><creatorcontrib>Blažević, Valentina</creatorcontrib><creatorcontrib>Slivac, Igor</creatorcontrib><creatorcontrib>Holjevac Grgurić, Tamara</creatorcontrib><creatorcontrib>Bajsić, Emi Govorčin</creatorcontrib><creatorcontrib>Markov, Ksenija</creatorcontrib><creatorcontrib>Čanak, Iva</creatorcontrib><creatorcontrib>Kuzmić, Sunčica</creatorcontrib><creatorcontrib>Tarbuk, Anita</creatorcontrib><creatorcontrib>Tomljenović, Antoneta</creatorcontrib><creatorcontrib>Mrkonjić, Nikolina</creatorcontrib><creatorcontrib>Mijović, Budimir</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Polymers</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tominac Trcin, Mirna</au><au>Zdraveva, Emilija</au><au>Dolenec, Tamara</au><au>Vrgoč Zimić, Ivana</au><au>Bujić Mihica, Marina</au><au>Batarilo, Ivanka</au><au>Dekaris, Iva</au><au>Blažević, Valentina</au><au>Slivac, Igor</au><au>Holjevac Grgurić, Tamara</au><au>Bajsić, Emi Govorčin</au><au>Markov, Ksenija</au><au>Čanak, Iva</au><au>Kuzmić, Sunčica</au><au>Tarbuk, Anita</au><au>Tomljenović, Antoneta</au><au>Mrkonjić, Nikolina</au><au>Mijović, Budimir</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Poly(ε-caprolactone) Titanium Dioxide and Cefuroxime Antimicrobial Scaffolds for Cultivation of Human Limbal Stem Cells</atitle><jtitle>Polymers</jtitle><date>2020-08-06</date><risdate>2020</risdate><volume>12</volume><issue>8</issue><spage>1758</spage><pages>1758-</pages><issn>2073-4360</issn><eissn>2073-4360</eissn><abstract>Limbal Stem Cell Deficiency (LSCD) is a very serious and painful disease that often results in impaired vision. Cultivation of limbal stem cells for clinical application is usually performed on carriers such as amniotic membrane or surgical fibrin gel. Transplantation of these grafts is associated with the risk of local postoperative infection that can destroy the graft and devoid therapeutic benefit. For this reason, electrospun scaffolds are good alternatives, as proven to mimic the natural cells surroundings, while their fabrication technique is versatile with regard to polymer functionalization and scaffolds architecture. This study considers the development of poly(ε-caprolactone) (PCL) immune-compatible and biodegradable electrospun scaffolds, comprising cefuroxime (CF) or titanium dioxide (TiO2) active components, that provide both bactericidal activity against eye infections and support of limbal stem cells growth in vitro. The PCL/CF scaffolds were prepared by blend electrospinning, while functionalization with the TiO2 particles was performed by ultrasonic post-processing treatment. The fabricated scaffolds were evaluated in regard to their physical structure, wetting ability, static and dynamic mechanical behaviour, antimicrobial efficiency and drug release, through scanning electron microscopy, water contact angle measurement, tensile testing and dynamic mechanical analysis, antimicrobial tests and UV-Vis spectroscopy, respectively. Human limbal stem cells, isolated from surgical remains of human cadaveric cornea, were cultured on the PCL/CF and PCL/TiO2 scaffolds and further identified through immunocytochemistry in terms of cell type thus were stained against p63 marker for limbal stem cells, a nuclear transcription factor and cytokeratin 3 (CK3), a corneal epithelial differentiation marker. The electrospun PCL/CF and PCL/TiO2 successfully supported the adhesion, proliferation and differentiation of the cultivated limbal cells and provided the antimicrobial effect against Pseudomonas aeruginosa, Staphylococcus aureus and Candida albicans.</abstract><cop>Basel</cop><pub>MDPI AG</pub><pmid>32781567</pmid><doi>10.3390/polym12081758</doi><orcidid>https://orcid.org/0000-0003-0973-138X</orcidid><orcidid>https://orcid.org/0000-0002-4539-2103</orcidid><orcidid>https://orcid.org/0000-0001-8510-7576</orcidid><orcidid>https://orcid.org/0000-0002-2973-2200</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2073-4360 |
ispartof | Polymers, 2020-08, Vol.12 (8), p.1758 |
issn | 2073-4360 2073-4360 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7465675 |
source | PubMed Central Open Access; MDPI - Multidisciplinary Digital Publishing Institute; EZB-FREE-00999 freely available EZB journals; PubMed Central |
subjects | Antiinfectives and antibacterials Antimicrobial agents Biodegradability Biomarkers Biomedical materials Cartilage Contact angle Cornea Cultivation Differentiation Drug delivery systems Drugs Dynamic mechanical analysis Electrospinning Fibrin Mechanical properties Medical equipment Molecular weight Polycaprolactone Polymers Post-production processing Pseudomonas aeruginosa Researchers Scaffolds Skin Stem cells Surgical implants Tissue engineering Titanium Titanium dioxide Transplantation Transplants & implants Viscoelasticity Wetting |
title | Poly(ε-caprolactone) Titanium Dioxide and Cefuroxime Antimicrobial Scaffolds for Cultivation of Human Limbal Stem Cells |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T18%3A53%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Poly(%CE%B5-caprolactone)%20Titanium%20Dioxide%20and%20Cefuroxime%20Antimicrobial%20Scaffolds%20for%20Cultivation%20of%20Human%20Limbal%20Stem%20Cells&rft.jtitle=Polymers&rft.au=Tominac%20Trcin,%20Mirna&rft.date=2020-08-06&rft.volume=12&rft.issue=8&rft.spage=1758&rft.pages=1758-&rft.issn=2073-4360&rft.eissn=2073-4360&rft_id=info:doi/10.3390/polym12081758&rft_dat=%3Cproquest_pubme%3E2433241029%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2432290508&rft_id=info:pmid/32781567&rfr_iscdi=true |