Comparative Analysis of the Transcriptome and Distribution of Putative SNPs in Two Rainbow Trout ( Oncorhynchus mykiss ) Breeding Strains by Using Next-Generation Sequencing

Selective breeding can significantly improve the establishment of sustainable and profitable aquaculture fish farming. For rainbow trout ( ), one of the main aquaculture coldwater species in Europe, a variety of selected hatchery strains are commercially available. In this study, we investigated the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Genes 2020-07, Vol.11 (8), p.841
Hauptverfasser: de Los Ríos-Pérez, Lidia, Brunner, Ronald Marco, Hadlich, Frieder, Rebl, Alexander, Kühn, Carsten, Wittenburg, Dörte, Goldammer, Tom, Verleih, Marieke
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 8
container_start_page 841
container_title Genes
container_volume 11
creator de Los Ríos-Pérez, Lidia
Brunner, Ronald Marco
Hadlich, Frieder
Rebl, Alexander
Kühn, Carsten
Wittenburg, Dörte
Goldammer, Tom
Verleih, Marieke
description Selective breeding can significantly improve the establishment of sustainable and profitable aquaculture fish farming. For rainbow trout ( ), one of the main aquaculture coldwater species in Europe, a variety of selected hatchery strains are commercially available. In this study, we investigated the genetic variation between the local Born strain, selected for survival, and the commercially available Silver Steelhead strain, selected for growth. We sequenced the transcriptome of six tissues (gills, head kidney, heart, liver, spleen, and white muscle) from eight healthy individuals per strain, using RNA-seq technology to identify strain-specific gene-expression patterns and single nucleotide polymorphisms (SNPs). In total, 1760 annotated genes were differentially expressed across all tissues. Pathway analysis assigned them to different gene networks. We also identified a set of SNPs, which are heterozygous for one of the two breeding strains: 1229 of which represent polymorphisms over all tissues and individuals. Our data indicate a strong genetic differentiation between Born and Silver Steelhead trout, despite the relatively short time of evolutionary separation of the two breeding strains. The results most likely reflect their specifically adapted genotypes and might contribute to the understanding of differences regarding their robustness toward high stress and pathogenic challenge described in former studies.
doi_str_mv 10.3390/genes11080841
format Article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7464081</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A643670147</galeid><sourcerecordid>A643670147</sourcerecordid><originalsourceid>FETCH-LOGICAL-c443t-6830d3eca3d7756403b557cb3bd1107dea3c0f13f59720fe7d5dc53e3158d14e3</originalsourceid><addsrcrecordid>eNpdkk1v1DAQhiMEolXpkSuyxKUcAv5cZy9IywIFqWordnu2HGey65LYW9tpyY_iP-JoS2nxxZbnmXfesacoXhP8nrE5_rABB5EQXOGKk2fFIcWSlZxT8fzR-aA4jvEa58UxxVi8LA4YlZRiQQ6L30vf73TQyd4CWjjdjdFG5FuUtoDWQbtogt0l3wPSrkGfbUzB1kOy3k3U5ZD2qavzy4isQ-s7j35o62p_l9P9kNAJunDGh-3ozHaIqB9_2hjRO_QpADTWbdAqhZwQUT2iqzhdnMOvVJ7m1iZbuc4KbgZwJodeFS9a3UU4vt-PiquvX9bLb-XZxen35eKsNJyzVM4qhhsGRrNGSjHjmNVCSFOzusmPJRvQzOCWsFbMJcUtyEY0RjBgRFQN4cCOio973d1Q99AYcNljp3bB9jqMymurnkac3aqNv1WS52oVyQIn9wLBZ_Mxqd5GA12nHfghKsppJQSf0wl9-x967YeQf2JPES4Jqf5RG92Bsq71ua6ZRNVixtlM4gxmqtxTJvgYA7QPlglW08SoJxOT-TeP-3yg_84H-wNykb6M</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2428147118</pqid></control><display><type>article</type><title>Comparative Analysis of the Transcriptome and Distribution of Putative SNPs in Two Rainbow Trout ( Oncorhynchus mykiss ) Breeding Strains by Using Next-Generation Sequencing</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central Open Access</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>PubMed Central</source><creator>de Los Ríos-Pérez, Lidia ; Brunner, Ronald Marco ; Hadlich, Frieder ; Rebl, Alexander ; Kühn, Carsten ; Wittenburg, Dörte ; Goldammer, Tom ; Verleih, Marieke</creator><creatorcontrib>de Los Ríos-Pérez, Lidia ; Brunner, Ronald Marco ; Hadlich, Frieder ; Rebl, Alexander ; Kühn, Carsten ; Wittenburg, Dörte ; Goldammer, Tom ; Verleih, Marieke</creatorcontrib><description>Selective breeding can significantly improve the establishment of sustainable and profitable aquaculture fish farming. For rainbow trout ( ), one of the main aquaculture coldwater species in Europe, a variety of selected hatchery strains are commercially available. In this study, we investigated the genetic variation between the local Born strain, selected for survival, and the commercially available Silver Steelhead strain, selected for growth. We sequenced the transcriptome of six tissues (gills, head kidney, heart, liver, spleen, and white muscle) from eight healthy individuals per strain, using RNA-seq technology to identify strain-specific gene-expression patterns and single nucleotide polymorphisms (SNPs). In total, 1760 annotated genes were differentially expressed across all tissues. Pathway analysis assigned them to different gene networks. We also identified a set of SNPs, which are heterozygous for one of the two breeding strains: 1229 of which represent polymorphisms over all tissues and individuals. Our data indicate a strong genetic differentiation between Born and Silver Steelhead trout, despite the relatively short time of evolutionary separation of the two breeding strains. The results most likely reflect their specifically adapted genotypes and might contribute to the understanding of differences regarding their robustness toward high stress and pathogenic challenge described in former studies.</description><identifier>ISSN: 2073-4425</identifier><identifier>EISSN: 2073-4425</identifier><identifier>DOI: 10.3390/genes11080841</identifier><identifier>PMID: 32722051</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Animal breeding ; Animals ; Aquaculture ; Breeding ; Comparative analysis ; Deoxyribonucleic acid ; DNA ; DNA methylation ; DNA sequencing ; Epigenetics ; Fish hatcheries ; Fisheries ; Gene expression ; Gene Regulatory Networks ; Genes ; Genetic aspects ; Genetic diversity ; Genetic Markers ; Genetic transcription ; Genomes ; Genotype &amp; phenotype ; Gills ; Growth ; High-Throughput Nucleotide Sequencing - methods ; Kidneys ; Methods ; Molecular Sequence Annotation ; Next-generation sequencing ; Nucleotide sequencing ; Oncorhynchus mykiss ; Oncorhynchus mykiss - classification ; Oncorhynchus mykiss - genetics ; Oncorhynchus mykiss - growth &amp; development ; Pipelines ; Polymorphism, Single Nucleotide ; Quality control ; Rainbow trout ; Ribonucleic acid ; RNA ; Single nucleotide polymorphisms ; Single-nucleotide polymorphism ; Species Specificity ; Spleen ; Strains (organisms) ; Transcriptome ; Trout</subject><ispartof>Genes, 2020-07, Vol.11 (8), p.841</ispartof><rights>COPYRIGHT 2020 MDPI AG</rights><rights>2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2020 by the authors. 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c443t-6830d3eca3d7756403b557cb3bd1107dea3c0f13f59720fe7d5dc53e3158d14e3</citedby><cites>FETCH-LOGICAL-c443t-6830d3eca3d7756403b557cb3bd1107dea3c0f13f59720fe7d5dc53e3158d14e3</cites><orcidid>0000-0001-8392-2657 ; 0000-0002-5141-5818 ; 0000-0003-1215-5504 ; 0000-0002-2918-7433</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7464081/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7464081/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,724,777,781,882,27905,27906,53772,53774</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32722051$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>de Los Ríos-Pérez, Lidia</creatorcontrib><creatorcontrib>Brunner, Ronald Marco</creatorcontrib><creatorcontrib>Hadlich, Frieder</creatorcontrib><creatorcontrib>Rebl, Alexander</creatorcontrib><creatorcontrib>Kühn, Carsten</creatorcontrib><creatorcontrib>Wittenburg, Dörte</creatorcontrib><creatorcontrib>Goldammer, Tom</creatorcontrib><creatorcontrib>Verleih, Marieke</creatorcontrib><title>Comparative Analysis of the Transcriptome and Distribution of Putative SNPs in Two Rainbow Trout ( Oncorhynchus mykiss ) Breeding Strains by Using Next-Generation Sequencing</title><title>Genes</title><addtitle>Genes (Basel)</addtitle><description>Selective breeding can significantly improve the establishment of sustainable and profitable aquaculture fish farming. For rainbow trout ( ), one of the main aquaculture coldwater species in Europe, a variety of selected hatchery strains are commercially available. In this study, we investigated the genetic variation between the local Born strain, selected for survival, and the commercially available Silver Steelhead strain, selected for growth. We sequenced the transcriptome of six tissues (gills, head kidney, heart, liver, spleen, and white muscle) from eight healthy individuals per strain, using RNA-seq technology to identify strain-specific gene-expression patterns and single nucleotide polymorphisms (SNPs). In total, 1760 annotated genes were differentially expressed across all tissues. Pathway analysis assigned them to different gene networks. We also identified a set of SNPs, which are heterozygous for one of the two breeding strains: 1229 of which represent polymorphisms over all tissues and individuals. Our data indicate a strong genetic differentiation between Born and Silver Steelhead trout, despite the relatively short time of evolutionary separation of the two breeding strains. The results most likely reflect their specifically adapted genotypes and might contribute to the understanding of differences regarding their robustness toward high stress and pathogenic challenge described in former studies.</description><subject>Animal breeding</subject><subject>Animals</subject><subject>Aquaculture</subject><subject>Breeding</subject><subject>Comparative analysis</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA methylation</subject><subject>DNA sequencing</subject><subject>Epigenetics</subject><subject>Fish hatcheries</subject><subject>Fisheries</subject><subject>Gene expression</subject><subject>Gene Regulatory Networks</subject><subject>Genes</subject><subject>Genetic aspects</subject><subject>Genetic diversity</subject><subject>Genetic Markers</subject><subject>Genetic transcription</subject><subject>Genomes</subject><subject>Genotype &amp; phenotype</subject><subject>Gills</subject><subject>Growth</subject><subject>High-Throughput Nucleotide Sequencing - methods</subject><subject>Kidneys</subject><subject>Methods</subject><subject>Molecular Sequence Annotation</subject><subject>Next-generation sequencing</subject><subject>Nucleotide sequencing</subject><subject>Oncorhynchus mykiss</subject><subject>Oncorhynchus mykiss - classification</subject><subject>Oncorhynchus mykiss - genetics</subject><subject>Oncorhynchus mykiss - growth &amp; development</subject><subject>Pipelines</subject><subject>Polymorphism, Single Nucleotide</subject><subject>Quality control</subject><subject>Rainbow trout</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>Single nucleotide polymorphisms</subject><subject>Single-nucleotide polymorphism</subject><subject>Species Specificity</subject><subject>Spleen</subject><subject>Strains (organisms)</subject><subject>Transcriptome</subject><subject>Trout</subject><issn>2073-4425</issn><issn>2073-4425</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNpdkk1v1DAQhiMEolXpkSuyxKUcAv5cZy9IywIFqWordnu2HGey65LYW9tpyY_iP-JoS2nxxZbnmXfesacoXhP8nrE5_rABB5EQXOGKk2fFIcWSlZxT8fzR-aA4jvEa58UxxVi8LA4YlZRiQQ6L30vf73TQyd4CWjjdjdFG5FuUtoDWQbtogt0l3wPSrkGfbUzB1kOy3k3U5ZD2qavzy4isQ-s7j35o62p_l9P9kNAJunDGh-3ozHaIqB9_2hjRO_QpADTWbdAqhZwQUT2iqzhdnMOvVJ7m1iZbuc4KbgZwJodeFS9a3UU4vt-PiquvX9bLb-XZxen35eKsNJyzVM4qhhsGRrNGSjHjmNVCSFOzusmPJRvQzOCWsFbMJcUtyEY0RjBgRFQN4cCOio973d1Q99AYcNljp3bB9jqMymurnkac3aqNv1WS52oVyQIn9wLBZ_Mxqd5GA12nHfghKsppJQSf0wl9-x967YeQf2JPES4Jqf5RG92Bsq71ua6ZRNVixtlM4gxmqtxTJvgYA7QPlglW08SoJxOT-TeP-3yg_84H-wNykb6M</recordid><startdate>20200724</startdate><enddate>20200724</enddate><creator>de Los Ríos-Pérez, Lidia</creator><creator>Brunner, Ronald Marco</creator><creator>Hadlich, Frieder</creator><creator>Rebl, Alexander</creator><creator>Kühn, Carsten</creator><creator>Wittenburg, Dörte</creator><creator>Goldammer, Tom</creator><creator>Verleih, Marieke</creator><general>MDPI AG</general><general>MDPI</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M7P</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-8392-2657</orcidid><orcidid>https://orcid.org/0000-0002-5141-5818</orcidid><orcidid>https://orcid.org/0000-0003-1215-5504</orcidid><orcidid>https://orcid.org/0000-0002-2918-7433</orcidid></search><sort><creationdate>20200724</creationdate><title>Comparative Analysis of the Transcriptome and Distribution of Putative SNPs in Two Rainbow Trout ( Oncorhynchus mykiss ) Breeding Strains by Using Next-Generation Sequencing</title><author>de Los Ríos-Pérez, Lidia ; Brunner, Ronald Marco ; Hadlich, Frieder ; Rebl, Alexander ; Kühn, Carsten ; Wittenburg, Dörte ; Goldammer, Tom ; Verleih, Marieke</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c443t-6830d3eca3d7756403b557cb3bd1107dea3c0f13f59720fe7d5dc53e3158d14e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Animal breeding</topic><topic>Animals</topic><topic>Aquaculture</topic><topic>Breeding</topic><topic>Comparative analysis</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA methylation</topic><topic>DNA sequencing</topic><topic>Epigenetics</topic><topic>Fish hatcheries</topic><topic>Fisheries</topic><topic>Gene expression</topic><topic>Gene Regulatory Networks</topic><topic>Genes</topic><topic>Genetic aspects</topic><topic>Genetic diversity</topic><topic>Genetic Markers</topic><topic>Genetic transcription</topic><topic>Genomes</topic><topic>Genotype &amp; phenotype</topic><topic>Gills</topic><topic>Growth</topic><topic>High-Throughput Nucleotide Sequencing - methods</topic><topic>Kidneys</topic><topic>Methods</topic><topic>Molecular Sequence Annotation</topic><topic>Next-generation sequencing</topic><topic>Nucleotide sequencing</topic><topic>Oncorhynchus mykiss</topic><topic>Oncorhynchus mykiss - classification</topic><topic>Oncorhynchus mykiss - genetics</topic><topic>Oncorhynchus mykiss - growth &amp; development</topic><topic>Pipelines</topic><topic>Polymorphism, Single Nucleotide</topic><topic>Quality control</topic><topic>Rainbow trout</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>Single nucleotide polymorphisms</topic><topic>Single-nucleotide polymorphism</topic><topic>Species Specificity</topic><topic>Spleen</topic><topic>Strains (organisms)</topic><topic>Transcriptome</topic><topic>Trout</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>de Los Ríos-Pérez, Lidia</creatorcontrib><creatorcontrib>Brunner, Ronald Marco</creatorcontrib><creatorcontrib>Hadlich, Frieder</creatorcontrib><creatorcontrib>Rebl, Alexander</creatorcontrib><creatorcontrib>Kühn, Carsten</creatorcontrib><creatorcontrib>Wittenburg, Dörte</creatorcontrib><creatorcontrib>Goldammer, Tom</creatorcontrib><creatorcontrib>Verleih, Marieke</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Genes</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>de Los Ríos-Pérez, Lidia</au><au>Brunner, Ronald Marco</au><au>Hadlich, Frieder</au><au>Rebl, Alexander</au><au>Kühn, Carsten</au><au>Wittenburg, Dörte</au><au>Goldammer, Tom</au><au>Verleih, Marieke</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Comparative Analysis of the Transcriptome and Distribution of Putative SNPs in Two Rainbow Trout ( Oncorhynchus mykiss ) Breeding Strains by Using Next-Generation Sequencing</atitle><jtitle>Genes</jtitle><addtitle>Genes (Basel)</addtitle><date>2020-07-24</date><risdate>2020</risdate><volume>11</volume><issue>8</issue><spage>841</spage><pages>841-</pages><issn>2073-4425</issn><eissn>2073-4425</eissn><abstract>Selective breeding can significantly improve the establishment of sustainable and profitable aquaculture fish farming. For rainbow trout ( ), one of the main aquaculture coldwater species in Europe, a variety of selected hatchery strains are commercially available. In this study, we investigated the genetic variation between the local Born strain, selected for survival, and the commercially available Silver Steelhead strain, selected for growth. We sequenced the transcriptome of six tissues (gills, head kidney, heart, liver, spleen, and white muscle) from eight healthy individuals per strain, using RNA-seq technology to identify strain-specific gene-expression patterns and single nucleotide polymorphisms (SNPs). In total, 1760 annotated genes were differentially expressed across all tissues. Pathway analysis assigned them to different gene networks. We also identified a set of SNPs, which are heterozygous for one of the two breeding strains: 1229 of which represent polymorphisms over all tissues and individuals. Our data indicate a strong genetic differentiation between Born and Silver Steelhead trout, despite the relatively short time of evolutionary separation of the two breeding strains. The results most likely reflect their specifically adapted genotypes and might contribute to the understanding of differences regarding their robustness toward high stress and pathogenic challenge described in former studies.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>32722051</pmid><doi>10.3390/genes11080841</doi><orcidid>https://orcid.org/0000-0001-8392-2657</orcidid><orcidid>https://orcid.org/0000-0002-5141-5818</orcidid><orcidid>https://orcid.org/0000-0003-1215-5504</orcidid><orcidid>https://orcid.org/0000-0002-2918-7433</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2073-4425
ispartof Genes, 2020-07, Vol.11 (8), p.841
issn 2073-4425
2073-4425
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7464081
source MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central Open Access; MDPI - Multidisciplinary Digital Publishing Institute; PubMed Central
subjects Animal breeding
Animals
Aquaculture
Breeding
Comparative analysis
Deoxyribonucleic acid
DNA
DNA methylation
DNA sequencing
Epigenetics
Fish hatcheries
Fisheries
Gene expression
Gene Regulatory Networks
Genes
Genetic aspects
Genetic diversity
Genetic Markers
Genetic transcription
Genomes
Genotype & phenotype
Gills
Growth
High-Throughput Nucleotide Sequencing - methods
Kidneys
Methods
Molecular Sequence Annotation
Next-generation sequencing
Nucleotide sequencing
Oncorhynchus mykiss
Oncorhynchus mykiss - classification
Oncorhynchus mykiss - genetics
Oncorhynchus mykiss - growth & development
Pipelines
Polymorphism, Single Nucleotide
Quality control
Rainbow trout
Ribonucleic acid
RNA
Single nucleotide polymorphisms
Single-nucleotide polymorphism
Species Specificity
Spleen
Strains (organisms)
Transcriptome
Trout
title Comparative Analysis of the Transcriptome and Distribution of Putative SNPs in Two Rainbow Trout ( Oncorhynchus mykiss ) Breeding Strains by Using Next-Generation Sequencing
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T12%3A20%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Comparative%20Analysis%20of%20the%20Transcriptome%20and%20Distribution%20of%20Putative%20SNPs%20in%20Two%20Rainbow%20Trout%20(%20Oncorhynchus%20mykiss%20)%20Breeding%20Strains%20by%20Using%20Next-Generation%20Sequencing&rft.jtitle=Genes&rft.au=de%20Los%20R%C3%ADos-P%C3%A9rez,%20Lidia&rft.date=2020-07-24&rft.volume=11&rft.issue=8&rft.spage=841&rft.pages=841-&rft.issn=2073-4425&rft.eissn=2073-4425&rft_id=info:doi/10.3390/genes11080841&rft_dat=%3Cgale_pubme%3EA643670147%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2428147118&rft_id=info:pmid/32722051&rft_galeid=A643670147&rfr_iscdi=true