CRISPR/Cas9 in Cancer Immunotherapy: Animal Models and Human Clinical Trials
Even though chemotherapy and immunotherapy emerged to limit continual and unregulated proliferation of cancer cells, currently available therapeutic agents are associated with high toxicity levels and low success rates. Additionally, ongoing multi-targeted therapies are limited only for few carcinog...
Gespeichert in:
Veröffentlicht in: | Genes 2020-08, Vol.11 (8), p.921 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 8 |
container_start_page | 921 |
container_title | Genes |
container_volume | 11 |
creator | Khalaf, Khalil Janowicz, Krzysztof Dyszkiewicz-Konwińska, Marta Hutchings, Greg Dompe, Claudia Moncrieff, Lisa Jankowski, Maurycy Machnik, Marta Oleksiewicz, Urszula Kocherova, Ievgeniia Petitte, Jim Mozdziak, Paul Shibli, Jamil A Iżycki, Dariusz Józkowiak, Małgorzata Piotrowska-Kempisty, Hanna Skowroński, Mariusz T Antosik, Paweł Kempisty, Bartosz |
description | Even though chemotherapy and immunotherapy emerged to limit continual and unregulated proliferation of cancer cells, currently available therapeutic agents are associated with high toxicity levels and low success rates. Additionally, ongoing multi-targeted therapies are limited only for few carcinogenesis pathways, due to continually emerging and evolving mutations of proto-oncogenes and tumor-suppressive genes. CRISPR/Cas9, as a specific gene-editing tool, is used to correct causative mutations with minimal toxicity, but is also employed as an adjuvant to immunotherapy to achieve a more robust immunological response. Some of the most critical limitations of the CRISPR/Cas9 technology include off-target mutations, resulting in nonspecific restrictions of DNA upstream of the Protospacer Adjacent Motifs (PAM), ethical agreements, and the lack of a scientific consensus aiming at risk evaluation. Currently, CRISPR/Cas9 is tested on animal models to enhance genome editing specificity and induce a stronger anti-tumor response. Moreover, ongoing clinical trials use the CRISPR/Cas9 system in immune cells to modify genomes in a target-specific manner. Recently, error-free in vitro systems have been engineered to overcome limitations of this gene-editing system. The aim of the article is to present the knowledge concerning the use of CRISPR Cas9 technique in targeting treatment-resistant cancers. Additionally, the use of CRISPR/Cas9 is aided as an emerging supplementation of immunotherapy, currently used in experimental oncology. Demonstrating further, applications and advances of the CRISPR/Cas9 technique are presented in animal models and human clinical trials. Concluding, an overview of the limitations of the gene-editing tool is proffered. |
doi_str_mv | 10.3390/genes11080921 |
format | Article |
fullrecord | <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7463827</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A643670227</galeid><sourcerecordid>A643670227</sourcerecordid><originalsourceid>FETCH-LOGICAL-c443t-4fc0503c926dc8d71e6cd3ac2c89462c88f1fe92fca6bdfee4bff10b5ea445533</originalsourceid><addsrcrecordid>eNpVkc9LwzAYhoMobswdvUrBc11-NW09CKOoG0yUOc8hS5Mto01nsgr7741uzi2HfIHv4eElLwDXCN4RksPBQlnlEYIZzDE6A10MUxJTipPzo3cH9L1fwXAoxBAml6BDcJqzlKEumBTT8fvbdFAIn0fGRoWwUrloXNetbTZL5cR6ex8NralFFb00pap8JGwZjdpaBLoy1siwmTkjKn8FLnQYqr-fPfDx9DgrRvHk9XlcDCexpJRsYqolTCCROWalzMoUKSZLIiSWWU5ZuDONtMqxloLNS60UnWuN4DxRgtIkIaQHHnbedTuvVSmV3ThR8bULKd2WN8Lw0401S75ovnhKGclwGgS3e4FrPlvlN3zVtM6GzBxTQkmehf_5pxaiUtxY3QSZrI2XfMgoYSnEv654R0nXeO-UPuRAkP-0xE9aCvzNcfgD_dcJ-QZ8EYzs</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2434398796</pqid></control><display><type>article</type><title>CRISPR/Cas9 in Cancer Immunotherapy: Animal Models and Human Clinical Trials</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>PubMed Central Open Access</source><creator>Khalaf, Khalil ; Janowicz, Krzysztof ; Dyszkiewicz-Konwińska, Marta ; Hutchings, Greg ; Dompe, Claudia ; Moncrieff, Lisa ; Jankowski, Maurycy ; Machnik, Marta ; Oleksiewicz, Urszula ; Kocherova, Ievgeniia ; Petitte, Jim ; Mozdziak, Paul ; Shibli, Jamil A ; Iżycki, Dariusz ; Józkowiak, Małgorzata ; Piotrowska-Kempisty, Hanna ; Skowroński, Mariusz T ; Antosik, Paweł ; Kempisty, Bartosz</creator><creatorcontrib>Khalaf, Khalil ; Janowicz, Krzysztof ; Dyszkiewicz-Konwińska, Marta ; Hutchings, Greg ; Dompe, Claudia ; Moncrieff, Lisa ; Jankowski, Maurycy ; Machnik, Marta ; Oleksiewicz, Urszula ; Kocherova, Ievgeniia ; Petitte, Jim ; Mozdziak, Paul ; Shibli, Jamil A ; Iżycki, Dariusz ; Józkowiak, Małgorzata ; Piotrowska-Kempisty, Hanna ; Skowroński, Mariusz T ; Antosik, Paweł ; Kempisty, Bartosz</creatorcontrib><description>Even though chemotherapy and immunotherapy emerged to limit continual and unregulated proliferation of cancer cells, currently available therapeutic agents are associated with high toxicity levels and low success rates. Additionally, ongoing multi-targeted therapies are limited only for few carcinogenesis pathways, due to continually emerging and evolving mutations of proto-oncogenes and tumor-suppressive genes. CRISPR/Cas9, as a specific gene-editing tool, is used to correct causative mutations with minimal toxicity, but is also employed as an adjuvant to immunotherapy to achieve a more robust immunological response. Some of the most critical limitations of the CRISPR/Cas9 technology include off-target mutations, resulting in nonspecific restrictions of DNA upstream of the Protospacer Adjacent Motifs (PAM), ethical agreements, and the lack of a scientific consensus aiming at risk evaluation. Currently, CRISPR/Cas9 is tested on animal models to enhance genome editing specificity and induce a stronger anti-tumor response. Moreover, ongoing clinical trials use the CRISPR/Cas9 system in immune cells to modify genomes in a target-specific manner. Recently, error-free in vitro systems have been engineered to overcome limitations of this gene-editing system. The aim of the article is to present the knowledge concerning the use of CRISPR Cas9 technique in targeting treatment-resistant cancers. Additionally, the use of CRISPR/Cas9 is aided as an emerging supplementation of immunotherapy, currently used in experimental oncology. Demonstrating further, applications and advances of the CRISPR/Cas9 technique are presented in animal models and human clinical trials. Concluding, an overview of the limitations of the gene-editing tool is proffered.</description><identifier>ISSN: 2073-4425</identifier><identifier>EISSN: 2073-4425</identifier><identifier>DOI: 10.3390/genes11080921</identifier><identifier>PMID: 32796761</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Animal models ; Animals ; Cancer ; Cancer immunotherapy ; Cancer therapies ; Carcinogenesis ; Care and treatment ; Cell proliferation ; Chemotherapy ; Clinical trials ; Clinical Trials as Topic ; CRISPR ; CRISPR-Cas Systems ; Disease ; Disease Models, Animal ; DNA sequencing ; Drug Evaluation, Preclinical ; Drug resistance ; Gene Editing ; Genetic Therapy ; Genomes ; Humans ; Immune response ; Immunotherapy ; Immunotherapy, Adoptive ; Kinases ; Methods ; Mutation ; Neoplasms - etiology ; Neoplasms - therapy ; Nucleotide sequencing ; Oncology ; Precision Medicine - methods ; Proto-oncogenes ; Review ; Supplements ; Toxicity</subject><ispartof>Genes, 2020-08, Vol.11 (8), p.921</ispartof><rights>COPYRIGHT 2020 MDPI AG</rights><rights>2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2020 by the authors. 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c443t-4fc0503c926dc8d71e6cd3ac2c89462c88f1fe92fca6bdfee4bff10b5ea445533</citedby><cites>FETCH-LOGICAL-c443t-4fc0503c926dc8d71e6cd3ac2c89462c88f1fe92fca6bdfee4bff10b5ea445533</cites><orcidid>0000-0002-9826-2345 ; 0000-0003-0357-9284 ; 0000-0001-9476-0235 ; 0000-0003-2561-9750 ; 0000-0003-2764-6007 ; 0000-0002-2670-5629 ; 0000-0003-1971-0195 ; 0000-0002-8069-9004 ; 0000-0002-1575-3123 ; 0000-0001-7278-8077 ; 0000-0003-1129-1563</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7463827/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7463827/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32796761$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Khalaf, Khalil</creatorcontrib><creatorcontrib>Janowicz, Krzysztof</creatorcontrib><creatorcontrib>Dyszkiewicz-Konwińska, Marta</creatorcontrib><creatorcontrib>Hutchings, Greg</creatorcontrib><creatorcontrib>Dompe, Claudia</creatorcontrib><creatorcontrib>Moncrieff, Lisa</creatorcontrib><creatorcontrib>Jankowski, Maurycy</creatorcontrib><creatorcontrib>Machnik, Marta</creatorcontrib><creatorcontrib>Oleksiewicz, Urszula</creatorcontrib><creatorcontrib>Kocherova, Ievgeniia</creatorcontrib><creatorcontrib>Petitte, Jim</creatorcontrib><creatorcontrib>Mozdziak, Paul</creatorcontrib><creatorcontrib>Shibli, Jamil A</creatorcontrib><creatorcontrib>Iżycki, Dariusz</creatorcontrib><creatorcontrib>Józkowiak, Małgorzata</creatorcontrib><creatorcontrib>Piotrowska-Kempisty, Hanna</creatorcontrib><creatorcontrib>Skowroński, Mariusz T</creatorcontrib><creatorcontrib>Antosik, Paweł</creatorcontrib><creatorcontrib>Kempisty, Bartosz</creatorcontrib><title>CRISPR/Cas9 in Cancer Immunotherapy: Animal Models and Human Clinical Trials</title><title>Genes</title><addtitle>Genes (Basel)</addtitle><description>Even though chemotherapy and immunotherapy emerged to limit continual and unregulated proliferation of cancer cells, currently available therapeutic agents are associated with high toxicity levels and low success rates. Additionally, ongoing multi-targeted therapies are limited only for few carcinogenesis pathways, due to continually emerging and evolving mutations of proto-oncogenes and tumor-suppressive genes. CRISPR/Cas9, as a specific gene-editing tool, is used to correct causative mutations with minimal toxicity, but is also employed as an adjuvant to immunotherapy to achieve a more robust immunological response. Some of the most critical limitations of the CRISPR/Cas9 technology include off-target mutations, resulting in nonspecific restrictions of DNA upstream of the Protospacer Adjacent Motifs (PAM), ethical agreements, and the lack of a scientific consensus aiming at risk evaluation. Currently, CRISPR/Cas9 is tested on animal models to enhance genome editing specificity and induce a stronger anti-tumor response. Moreover, ongoing clinical trials use the CRISPR/Cas9 system in immune cells to modify genomes in a target-specific manner. Recently, error-free in vitro systems have been engineered to overcome limitations of this gene-editing system. The aim of the article is to present the knowledge concerning the use of CRISPR Cas9 technique in targeting treatment-resistant cancers. Additionally, the use of CRISPR/Cas9 is aided as an emerging supplementation of immunotherapy, currently used in experimental oncology. Demonstrating further, applications and advances of the CRISPR/Cas9 technique are presented in animal models and human clinical trials. Concluding, an overview of the limitations of the gene-editing tool is proffered.</description><subject>Animal models</subject><subject>Animals</subject><subject>Cancer</subject><subject>Cancer immunotherapy</subject><subject>Cancer therapies</subject><subject>Carcinogenesis</subject><subject>Care and treatment</subject><subject>Cell proliferation</subject><subject>Chemotherapy</subject><subject>Clinical trials</subject><subject>Clinical Trials as Topic</subject><subject>CRISPR</subject><subject>CRISPR-Cas Systems</subject><subject>Disease</subject><subject>Disease Models, Animal</subject><subject>DNA sequencing</subject><subject>Drug Evaluation, Preclinical</subject><subject>Drug resistance</subject><subject>Gene Editing</subject><subject>Genetic Therapy</subject><subject>Genomes</subject><subject>Humans</subject><subject>Immune response</subject><subject>Immunotherapy</subject><subject>Immunotherapy, Adoptive</subject><subject>Kinases</subject><subject>Methods</subject><subject>Mutation</subject><subject>Neoplasms - etiology</subject><subject>Neoplasms - therapy</subject><subject>Nucleotide sequencing</subject><subject>Oncology</subject><subject>Precision Medicine - methods</subject><subject>Proto-oncogenes</subject><subject>Review</subject><subject>Supplements</subject><subject>Toxicity</subject><issn>2073-4425</issn><issn>2073-4425</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNpVkc9LwzAYhoMobswdvUrBc11-NW09CKOoG0yUOc8hS5Mto01nsgr7741uzi2HfIHv4eElLwDXCN4RksPBQlnlEYIZzDE6A10MUxJTipPzo3cH9L1fwXAoxBAml6BDcJqzlKEumBTT8fvbdFAIn0fGRoWwUrloXNetbTZL5cR6ex8NralFFb00pap8JGwZjdpaBLoy1siwmTkjKn8FLnQYqr-fPfDx9DgrRvHk9XlcDCexpJRsYqolTCCROWalzMoUKSZLIiSWWU5ZuDONtMqxloLNS60UnWuN4DxRgtIkIaQHHnbedTuvVSmV3ThR8bULKd2WN8Lw0401S75ovnhKGclwGgS3e4FrPlvlN3zVtM6GzBxTQkmehf_5pxaiUtxY3QSZrI2XfMgoYSnEv654R0nXeO-UPuRAkP-0xE9aCvzNcfgD_dcJ-QZ8EYzs</recordid><startdate>20200811</startdate><enddate>20200811</enddate><creator>Khalaf, Khalil</creator><creator>Janowicz, Krzysztof</creator><creator>Dyszkiewicz-Konwińska, Marta</creator><creator>Hutchings, Greg</creator><creator>Dompe, Claudia</creator><creator>Moncrieff, Lisa</creator><creator>Jankowski, Maurycy</creator><creator>Machnik, Marta</creator><creator>Oleksiewicz, Urszula</creator><creator>Kocherova, Ievgeniia</creator><creator>Petitte, Jim</creator><creator>Mozdziak, Paul</creator><creator>Shibli, Jamil A</creator><creator>Iżycki, Dariusz</creator><creator>Józkowiak, Małgorzata</creator><creator>Piotrowska-Kempisty, Hanna</creator><creator>Skowroński, Mariusz T</creator><creator>Antosik, Paweł</creator><creator>Kempisty, Bartosz</creator><general>MDPI AG</general><general>MDPI</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M7P</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-9826-2345</orcidid><orcidid>https://orcid.org/0000-0003-0357-9284</orcidid><orcidid>https://orcid.org/0000-0001-9476-0235</orcidid><orcidid>https://orcid.org/0000-0003-2561-9750</orcidid><orcidid>https://orcid.org/0000-0003-2764-6007</orcidid><orcidid>https://orcid.org/0000-0002-2670-5629</orcidid><orcidid>https://orcid.org/0000-0003-1971-0195</orcidid><orcidid>https://orcid.org/0000-0002-8069-9004</orcidid><orcidid>https://orcid.org/0000-0002-1575-3123</orcidid><orcidid>https://orcid.org/0000-0001-7278-8077</orcidid><orcidid>https://orcid.org/0000-0003-1129-1563</orcidid></search><sort><creationdate>20200811</creationdate><title>CRISPR/Cas9 in Cancer Immunotherapy: Animal Models and Human Clinical Trials</title><author>Khalaf, Khalil ; Janowicz, Krzysztof ; Dyszkiewicz-Konwińska, Marta ; Hutchings, Greg ; Dompe, Claudia ; Moncrieff, Lisa ; Jankowski, Maurycy ; Machnik, Marta ; Oleksiewicz, Urszula ; Kocherova, Ievgeniia ; Petitte, Jim ; Mozdziak, Paul ; Shibli, Jamil A ; Iżycki, Dariusz ; Józkowiak, Małgorzata ; Piotrowska-Kempisty, Hanna ; Skowroński, Mariusz T ; Antosik, Paweł ; Kempisty, Bartosz</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c443t-4fc0503c926dc8d71e6cd3ac2c89462c88f1fe92fca6bdfee4bff10b5ea445533</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Animal models</topic><topic>Animals</topic><topic>Cancer</topic><topic>Cancer immunotherapy</topic><topic>Cancer therapies</topic><topic>Carcinogenesis</topic><topic>Care and treatment</topic><topic>Cell proliferation</topic><topic>Chemotherapy</topic><topic>Clinical trials</topic><topic>Clinical Trials as Topic</topic><topic>CRISPR</topic><topic>CRISPR-Cas Systems</topic><topic>Disease</topic><topic>Disease Models, Animal</topic><topic>DNA sequencing</topic><topic>Drug Evaluation, Preclinical</topic><topic>Drug resistance</topic><topic>Gene Editing</topic><topic>Genetic Therapy</topic><topic>Genomes</topic><topic>Humans</topic><topic>Immune response</topic><topic>Immunotherapy</topic><topic>Immunotherapy, Adoptive</topic><topic>Kinases</topic><topic>Methods</topic><topic>Mutation</topic><topic>Neoplasms - etiology</topic><topic>Neoplasms - therapy</topic><topic>Nucleotide sequencing</topic><topic>Oncology</topic><topic>Precision Medicine - methods</topic><topic>Proto-oncogenes</topic><topic>Review</topic><topic>Supplements</topic><topic>Toxicity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Khalaf, Khalil</creatorcontrib><creatorcontrib>Janowicz, Krzysztof</creatorcontrib><creatorcontrib>Dyszkiewicz-Konwińska, Marta</creatorcontrib><creatorcontrib>Hutchings, Greg</creatorcontrib><creatorcontrib>Dompe, Claudia</creatorcontrib><creatorcontrib>Moncrieff, Lisa</creatorcontrib><creatorcontrib>Jankowski, Maurycy</creatorcontrib><creatorcontrib>Machnik, Marta</creatorcontrib><creatorcontrib>Oleksiewicz, Urszula</creatorcontrib><creatorcontrib>Kocherova, Ievgeniia</creatorcontrib><creatorcontrib>Petitte, Jim</creatorcontrib><creatorcontrib>Mozdziak, Paul</creatorcontrib><creatorcontrib>Shibli, Jamil A</creatorcontrib><creatorcontrib>Iżycki, Dariusz</creatorcontrib><creatorcontrib>Józkowiak, Małgorzata</creatorcontrib><creatorcontrib>Piotrowska-Kempisty, Hanna</creatorcontrib><creatorcontrib>Skowroński, Mariusz T</creatorcontrib><creatorcontrib>Antosik, Paweł</creatorcontrib><creatorcontrib>Kempisty, Bartosz</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>ProQuest Biological Science Journals</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Genes</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Khalaf, Khalil</au><au>Janowicz, Krzysztof</au><au>Dyszkiewicz-Konwińska, Marta</au><au>Hutchings, Greg</au><au>Dompe, Claudia</au><au>Moncrieff, Lisa</au><au>Jankowski, Maurycy</au><au>Machnik, Marta</au><au>Oleksiewicz, Urszula</au><au>Kocherova, Ievgeniia</au><au>Petitte, Jim</au><au>Mozdziak, Paul</au><au>Shibli, Jamil A</au><au>Iżycki, Dariusz</au><au>Józkowiak, Małgorzata</au><au>Piotrowska-Kempisty, Hanna</au><au>Skowroński, Mariusz T</au><au>Antosik, Paweł</au><au>Kempisty, Bartosz</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>CRISPR/Cas9 in Cancer Immunotherapy: Animal Models and Human Clinical Trials</atitle><jtitle>Genes</jtitle><addtitle>Genes (Basel)</addtitle><date>2020-08-11</date><risdate>2020</risdate><volume>11</volume><issue>8</issue><spage>921</spage><pages>921-</pages><issn>2073-4425</issn><eissn>2073-4425</eissn><abstract>Even though chemotherapy and immunotherapy emerged to limit continual and unregulated proliferation of cancer cells, currently available therapeutic agents are associated with high toxicity levels and low success rates. Additionally, ongoing multi-targeted therapies are limited only for few carcinogenesis pathways, due to continually emerging and evolving mutations of proto-oncogenes and tumor-suppressive genes. CRISPR/Cas9, as a specific gene-editing tool, is used to correct causative mutations with minimal toxicity, but is also employed as an adjuvant to immunotherapy to achieve a more robust immunological response. Some of the most critical limitations of the CRISPR/Cas9 technology include off-target mutations, resulting in nonspecific restrictions of DNA upstream of the Protospacer Adjacent Motifs (PAM), ethical agreements, and the lack of a scientific consensus aiming at risk evaluation. Currently, CRISPR/Cas9 is tested on animal models to enhance genome editing specificity and induce a stronger anti-tumor response. Moreover, ongoing clinical trials use the CRISPR/Cas9 system in immune cells to modify genomes in a target-specific manner. Recently, error-free in vitro systems have been engineered to overcome limitations of this gene-editing system. The aim of the article is to present the knowledge concerning the use of CRISPR Cas9 technique in targeting treatment-resistant cancers. Additionally, the use of CRISPR/Cas9 is aided as an emerging supplementation of immunotherapy, currently used in experimental oncology. Demonstrating further, applications and advances of the CRISPR/Cas9 technique are presented in animal models and human clinical trials. Concluding, an overview of the limitations of the gene-editing tool is proffered.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>32796761</pmid><doi>10.3390/genes11080921</doi><orcidid>https://orcid.org/0000-0002-9826-2345</orcidid><orcidid>https://orcid.org/0000-0003-0357-9284</orcidid><orcidid>https://orcid.org/0000-0001-9476-0235</orcidid><orcidid>https://orcid.org/0000-0003-2561-9750</orcidid><orcidid>https://orcid.org/0000-0003-2764-6007</orcidid><orcidid>https://orcid.org/0000-0002-2670-5629</orcidid><orcidid>https://orcid.org/0000-0003-1971-0195</orcidid><orcidid>https://orcid.org/0000-0002-8069-9004</orcidid><orcidid>https://orcid.org/0000-0002-1575-3123</orcidid><orcidid>https://orcid.org/0000-0001-7278-8077</orcidid><orcidid>https://orcid.org/0000-0003-1129-1563</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2073-4425 |
ispartof | Genes, 2020-08, Vol.11 (8), p.921 |
issn | 2073-4425 2073-4425 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7463827 |
source | MDPI - Multidisciplinary Digital Publishing Institute; MEDLINE; EZB-FREE-00999 freely available EZB journals; PubMed Central; PubMed Central Open Access |
subjects | Animal models Animals Cancer Cancer immunotherapy Cancer therapies Carcinogenesis Care and treatment Cell proliferation Chemotherapy Clinical trials Clinical Trials as Topic CRISPR CRISPR-Cas Systems Disease Disease Models, Animal DNA sequencing Drug Evaluation, Preclinical Drug resistance Gene Editing Genetic Therapy Genomes Humans Immune response Immunotherapy Immunotherapy, Adoptive Kinases Methods Mutation Neoplasms - etiology Neoplasms - therapy Nucleotide sequencing Oncology Precision Medicine - methods Proto-oncogenes Review Supplements Toxicity |
title | CRISPR/Cas9 in Cancer Immunotherapy: Animal Models and Human Clinical Trials |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T13%3A42%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=CRISPR/Cas9%20in%20Cancer%20Immunotherapy:%20Animal%20Models%20and%20Human%20Clinical%20Trials&rft.jtitle=Genes&rft.au=Khalaf,%20Khalil&rft.date=2020-08-11&rft.volume=11&rft.issue=8&rft.spage=921&rft.pages=921-&rft.issn=2073-4425&rft.eissn=2073-4425&rft_id=info:doi/10.3390/genes11080921&rft_dat=%3Cgale_pubme%3EA643670227%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2434398796&rft_id=info:pmid/32796761&rft_galeid=A643670227&rfr_iscdi=true |