IDH2 Deficiency Is Critical in Myogenesis and Fatty Acid Metabolism in Mice Skeletal Muscle

Mitochondrial NADP -dependent isocitrate dehydrogenase (IDH2) catalyzes the oxidative decarboxylation of isocitrate into α-ketoglutarate with concurrent reduction of NADP to NADPH. However, it is not fully understood how IDH2 is intertwined with muscle development and fatty acid metabolism. Here, we...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of molecular sciences 2020-08, Vol.21 (16), p.5596
Hauptverfasser: Pan, Jeong Hoon, Tang, Jingsi, Kim, Young Jun, Lee, Jin Hyup, Shin, Eui-Cheol, Zhao, Jiangchao, Kim, Kee-Hong, Hwang, Kyung A, Huang, Yan, Kim, Jae Kyeom
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 16
container_start_page 5596
container_title International journal of molecular sciences
container_volume 21
creator Pan, Jeong Hoon
Tang, Jingsi
Kim, Young Jun
Lee, Jin Hyup
Shin, Eui-Cheol
Zhao, Jiangchao
Kim, Kee-Hong
Hwang, Kyung A
Huang, Yan
Kim, Jae Kyeom
description Mitochondrial NADP -dependent isocitrate dehydrogenase (IDH2) catalyzes the oxidative decarboxylation of isocitrate into α-ketoglutarate with concurrent reduction of NADP to NADPH. However, it is not fully understood how IDH2 is intertwined with muscle development and fatty acid metabolism. Here, we examined the effects of IDH2 knockout (KO) on skeletal muscle energy homeostasis. Calf skeletal muscle samples from 10-week-old male IDH2 KO and wild-type (WT; C57BL/6N) mice were harvested, and the ratio of skeletal muscle weight to body and the ratio of mitochondrial to nucleic DNA were measured. In addition, genes involved in myogenesis, mitochondria biogenesis, adipogenesis, and thermogenesis were compared. Results showed that the ratio of skeletal muscle weight to body weight was lower in IDH2 KO mice than those in WT mice. Of note, a noticeable shift in fiber size distribution was found in IDH2 KO mice. Additionally, there was a trend of a decrease in mitochondrial content in IDH2 KO mice than in WT mice ( = 0.09). Further, mRNA expressions for myogenesis and mitochondrial biogenesis were either decreased or showed a trend of decrease in IDH2 KO mice. Moreover, genes for adipogenesis pathway ( , , and ) were downregulated in IDH2 KO mice. Interestingly, mRNA and protein expression of uncoupling protein 1 (UCP1), a hallmark of thermogenesis, were remarkably increased in IDH2 KO mice. In line with the UCP1 expression, IDH2 KO mice showed higher rectal temperature than WT mice under cold stress. Taken together, IDH2 deficiency may affect myogenesis, possibly due to impairments of muscle generation and abnormal fatty acid oxidation as well as thermogenesis in muscle via upregulation of UCP1.
doi_str_mv 10.3390/ijms21165596
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7460611</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2432203239</sourcerecordid><originalsourceid>FETCH-LOGICAL-c412t-cdb7916299948cba0d3a9acb0127ad4bca2ae963c68ef62a66ca37d7cf02fc9b3</originalsourceid><addsrcrecordid>eNpVkUFPwkAQhTdGI4jePJtNvFrdnS1b9mJCQIQE4kE9edhsp1tcLC12W5P-e6sgwdNMZr68eZlHyCVnt0IodudWaw-cy35fySPS5SFAwJiMjg_6DjnzfsUYCOirU9IREMkQZNQlb7PxFOjYpg6dzbGhM09Hpascmoy6nC6aYmlz652nJk_oxFRVQ4foErqwlYmLzPn1L-fQ0ucPm7XTjC5qj5k9Jyepyby92NUeeZ08vIymwfzpcTYazgMMOVQBJnGkuASlVDjA2LBEGGUwZhwik4QxGjBWSYFyYFMJRko0IkoiTBmkqGLRI_db3U0dr22CNq9Kk-lN6dambHRhnP6_yd27XhZfOgolk5y3Atc7gbL4rK2v9Kqoy7z1rCEUAEyAUC11s6WwLLwvbbq_wJn-iUIfRtHiV4eu9vDf78U3AXGFmA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2432203239</pqid></control><display><type>article</type><title>IDH2 Deficiency Is Critical in Myogenesis and Fatty Acid Metabolism in Mice Skeletal Muscle</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><creator>Pan, Jeong Hoon ; Tang, Jingsi ; Kim, Young Jun ; Lee, Jin Hyup ; Shin, Eui-Cheol ; Zhao, Jiangchao ; Kim, Kee-Hong ; Hwang, Kyung A ; Huang, Yan ; Kim, Jae Kyeom</creator><creatorcontrib>Pan, Jeong Hoon ; Tang, Jingsi ; Kim, Young Jun ; Lee, Jin Hyup ; Shin, Eui-Cheol ; Zhao, Jiangchao ; Kim, Kee-Hong ; Hwang, Kyung A ; Huang, Yan ; Kim, Jae Kyeom</creatorcontrib><description>Mitochondrial NADP -dependent isocitrate dehydrogenase (IDH2) catalyzes the oxidative decarboxylation of isocitrate into α-ketoglutarate with concurrent reduction of NADP to NADPH. However, it is not fully understood how IDH2 is intertwined with muscle development and fatty acid metabolism. Here, we examined the effects of IDH2 knockout (KO) on skeletal muscle energy homeostasis. Calf skeletal muscle samples from 10-week-old male IDH2 KO and wild-type (WT; C57BL/6N) mice were harvested, and the ratio of skeletal muscle weight to body and the ratio of mitochondrial to nucleic DNA were measured. In addition, genes involved in myogenesis, mitochondria biogenesis, adipogenesis, and thermogenesis were compared. Results showed that the ratio of skeletal muscle weight to body weight was lower in IDH2 KO mice than those in WT mice. Of note, a noticeable shift in fiber size distribution was found in IDH2 KO mice. Additionally, there was a trend of a decrease in mitochondrial content in IDH2 KO mice than in WT mice ( = 0.09). Further, mRNA expressions for myogenesis and mitochondrial biogenesis were either decreased or showed a trend of decrease in IDH2 KO mice. Moreover, genes for adipogenesis pathway ( , , and ) were downregulated in IDH2 KO mice. Interestingly, mRNA and protein expression of uncoupling protein 1 (UCP1), a hallmark of thermogenesis, were remarkably increased in IDH2 KO mice. In line with the UCP1 expression, IDH2 KO mice showed higher rectal temperature than WT mice under cold stress. Taken together, IDH2 deficiency may affect myogenesis, possibly due to impairments of muscle generation and abnormal fatty acid oxidation as well as thermogenesis in muscle via upregulation of UCP1.</description><identifier>ISSN: 1422-0067</identifier><identifier>ISSN: 1661-6596</identifier><identifier>EISSN: 1422-0067</identifier><identifier>DOI: 10.3390/ijms21165596</identifier><identifier>PMID: 32764267</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Adipogenesis ; Animals ; Biosynthesis ; Body weight ; Cold ; Communication ; Decarboxylation ; Deoxyribonucleic acid ; DNA ; Energy ; Energy balance ; Energy Metabolism - genetics ; Enzymes ; Fatty acids ; Fatty Acids - genetics ; Fatty Acids - metabolism ; Gene expression ; Genes ; Genotype &amp; phenotype ; Heat ; Homeostasis ; Humans ; Isocitrate dehydrogenase ; Isocitrate Dehydrogenase - deficiency ; Isocitrate Dehydrogenase - genetics ; Ketoglutaric acid ; Lipid Metabolism - genetics ; Liver - metabolism ; Metabolism ; Mice ; Mice, Knockout ; Mitochondria ; Mitochondria - genetics ; Mitochondria - metabolism ; Mitochondrial DNA ; mRNA ; Muscle Development - genetics ; Muscle, Skeletal - growth &amp; development ; Muscle, Skeletal - metabolism ; Muscles ; Musculoskeletal system ; Myogenesis ; NADP ; Oxidation ; Oxidation-Reduction ; Peroxisome proliferator-activated receptors ; Protein expression ; Proteins ; Rodents ; Size distribution ; Skeletal muscle ; Thermogenesis ; Transcription factors ; Uncoupling protein 1</subject><ispartof>International journal of molecular sciences, 2020-08, Vol.21 (16), p.5596</ispartof><rights>2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2020 by the authors. 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c412t-cdb7916299948cba0d3a9acb0127ad4bca2ae963c68ef62a66ca37d7cf02fc9b3</citedby><cites>FETCH-LOGICAL-c412t-cdb7916299948cba0d3a9acb0127ad4bca2ae963c68ef62a66ca37d7cf02fc9b3</cites><orcidid>0000-0003-4243-4643 ; 0000-0002-0264-8391 ; 0000-0002-6437-5157</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7460611/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7460611/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32764267$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Pan, Jeong Hoon</creatorcontrib><creatorcontrib>Tang, Jingsi</creatorcontrib><creatorcontrib>Kim, Young Jun</creatorcontrib><creatorcontrib>Lee, Jin Hyup</creatorcontrib><creatorcontrib>Shin, Eui-Cheol</creatorcontrib><creatorcontrib>Zhao, Jiangchao</creatorcontrib><creatorcontrib>Kim, Kee-Hong</creatorcontrib><creatorcontrib>Hwang, Kyung A</creatorcontrib><creatorcontrib>Huang, Yan</creatorcontrib><creatorcontrib>Kim, Jae Kyeom</creatorcontrib><title>IDH2 Deficiency Is Critical in Myogenesis and Fatty Acid Metabolism in Mice Skeletal Muscle</title><title>International journal of molecular sciences</title><addtitle>Int J Mol Sci</addtitle><description>Mitochondrial NADP -dependent isocitrate dehydrogenase (IDH2) catalyzes the oxidative decarboxylation of isocitrate into α-ketoglutarate with concurrent reduction of NADP to NADPH. However, it is not fully understood how IDH2 is intertwined with muscle development and fatty acid metabolism. Here, we examined the effects of IDH2 knockout (KO) on skeletal muscle energy homeostasis. Calf skeletal muscle samples from 10-week-old male IDH2 KO and wild-type (WT; C57BL/6N) mice were harvested, and the ratio of skeletal muscle weight to body and the ratio of mitochondrial to nucleic DNA were measured. In addition, genes involved in myogenesis, mitochondria biogenesis, adipogenesis, and thermogenesis were compared. Results showed that the ratio of skeletal muscle weight to body weight was lower in IDH2 KO mice than those in WT mice. Of note, a noticeable shift in fiber size distribution was found in IDH2 KO mice. Additionally, there was a trend of a decrease in mitochondrial content in IDH2 KO mice than in WT mice ( = 0.09). Further, mRNA expressions for myogenesis and mitochondrial biogenesis were either decreased or showed a trend of decrease in IDH2 KO mice. Moreover, genes for adipogenesis pathway ( , , and ) were downregulated in IDH2 KO mice. Interestingly, mRNA and protein expression of uncoupling protein 1 (UCP1), a hallmark of thermogenesis, were remarkably increased in IDH2 KO mice. In line with the UCP1 expression, IDH2 KO mice showed higher rectal temperature than WT mice under cold stress. Taken together, IDH2 deficiency may affect myogenesis, possibly due to impairments of muscle generation and abnormal fatty acid oxidation as well as thermogenesis in muscle via upregulation of UCP1.</description><subject>Adipogenesis</subject><subject>Animals</subject><subject>Biosynthesis</subject><subject>Body weight</subject><subject>Cold</subject><subject>Communication</subject><subject>Decarboxylation</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>Energy</subject><subject>Energy balance</subject><subject>Energy Metabolism - genetics</subject><subject>Enzymes</subject><subject>Fatty acids</subject><subject>Fatty Acids - genetics</subject><subject>Fatty Acids - metabolism</subject><subject>Gene expression</subject><subject>Genes</subject><subject>Genotype &amp; phenotype</subject><subject>Heat</subject><subject>Homeostasis</subject><subject>Humans</subject><subject>Isocitrate dehydrogenase</subject><subject>Isocitrate Dehydrogenase - deficiency</subject><subject>Isocitrate Dehydrogenase - genetics</subject><subject>Ketoglutaric acid</subject><subject>Lipid Metabolism - genetics</subject><subject>Liver - metabolism</subject><subject>Metabolism</subject><subject>Mice</subject><subject>Mice, Knockout</subject><subject>Mitochondria</subject><subject>Mitochondria - genetics</subject><subject>Mitochondria - metabolism</subject><subject>Mitochondrial DNA</subject><subject>mRNA</subject><subject>Muscle Development - genetics</subject><subject>Muscle, Skeletal - growth &amp; development</subject><subject>Muscle, Skeletal - metabolism</subject><subject>Muscles</subject><subject>Musculoskeletal system</subject><subject>Myogenesis</subject><subject>NADP</subject><subject>Oxidation</subject><subject>Oxidation-Reduction</subject><subject>Peroxisome proliferator-activated receptors</subject><subject>Protein expression</subject><subject>Proteins</subject><subject>Rodents</subject><subject>Size distribution</subject><subject>Skeletal muscle</subject><subject>Thermogenesis</subject><subject>Transcription factors</subject><subject>Uncoupling protein 1</subject><issn>1422-0067</issn><issn>1661-6596</issn><issn>1422-0067</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNpVkUFPwkAQhTdGI4jePJtNvFrdnS1b9mJCQIQE4kE9edhsp1tcLC12W5P-e6sgwdNMZr68eZlHyCVnt0IodudWaw-cy35fySPS5SFAwJiMjg_6DjnzfsUYCOirU9IREMkQZNQlb7PxFOjYpg6dzbGhM09Hpascmoy6nC6aYmlz652nJk_oxFRVQ4foErqwlYmLzPn1L-fQ0ucPm7XTjC5qj5k9Jyepyby92NUeeZ08vIymwfzpcTYazgMMOVQBJnGkuASlVDjA2LBEGGUwZhwik4QxGjBWSYFyYFMJRko0IkoiTBmkqGLRI_db3U0dr22CNq9Kk-lN6dambHRhnP6_yd27XhZfOgolk5y3Atc7gbL4rK2v9Kqoy7z1rCEUAEyAUC11s6WwLLwvbbq_wJn-iUIfRtHiV4eu9vDf78U3AXGFmA</recordid><startdate>20200805</startdate><enddate>20200805</enddate><creator>Pan, Jeong Hoon</creator><creator>Tang, Jingsi</creator><creator>Kim, Young Jun</creator><creator>Lee, Jin Hyup</creator><creator>Shin, Eui-Cheol</creator><creator>Zhao, Jiangchao</creator><creator>Kim, Kee-Hong</creator><creator>Hwang, Kyung A</creator><creator>Huang, Yan</creator><creator>Kim, Jae Kyeom</creator><general>MDPI AG</general><general>MDPI</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>MBDVC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-4243-4643</orcidid><orcidid>https://orcid.org/0000-0002-0264-8391</orcidid><orcidid>https://orcid.org/0000-0002-6437-5157</orcidid></search><sort><creationdate>20200805</creationdate><title>IDH2 Deficiency Is Critical in Myogenesis and Fatty Acid Metabolism in Mice Skeletal Muscle</title><author>Pan, Jeong Hoon ; Tang, Jingsi ; Kim, Young Jun ; Lee, Jin Hyup ; Shin, Eui-Cheol ; Zhao, Jiangchao ; Kim, Kee-Hong ; Hwang, Kyung A ; Huang, Yan ; Kim, Jae Kyeom</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c412t-cdb7916299948cba0d3a9acb0127ad4bca2ae963c68ef62a66ca37d7cf02fc9b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Adipogenesis</topic><topic>Animals</topic><topic>Biosynthesis</topic><topic>Body weight</topic><topic>Cold</topic><topic>Communication</topic><topic>Decarboxylation</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>Energy</topic><topic>Energy balance</topic><topic>Energy Metabolism - genetics</topic><topic>Enzymes</topic><topic>Fatty acids</topic><topic>Fatty Acids - genetics</topic><topic>Fatty Acids - metabolism</topic><topic>Gene expression</topic><topic>Genes</topic><topic>Genotype &amp; phenotype</topic><topic>Heat</topic><topic>Homeostasis</topic><topic>Humans</topic><topic>Isocitrate dehydrogenase</topic><topic>Isocitrate Dehydrogenase - deficiency</topic><topic>Isocitrate Dehydrogenase - genetics</topic><topic>Ketoglutaric acid</topic><topic>Lipid Metabolism - genetics</topic><topic>Liver - metabolism</topic><topic>Metabolism</topic><topic>Mice</topic><topic>Mice, Knockout</topic><topic>Mitochondria</topic><topic>Mitochondria - genetics</topic><topic>Mitochondria - metabolism</topic><topic>Mitochondrial DNA</topic><topic>mRNA</topic><topic>Muscle Development - genetics</topic><topic>Muscle, Skeletal - growth &amp; development</topic><topic>Muscle, Skeletal - metabolism</topic><topic>Muscles</topic><topic>Musculoskeletal system</topic><topic>Myogenesis</topic><topic>NADP</topic><topic>Oxidation</topic><topic>Oxidation-Reduction</topic><topic>Peroxisome proliferator-activated receptors</topic><topic>Protein expression</topic><topic>Proteins</topic><topic>Rodents</topic><topic>Size distribution</topic><topic>Skeletal muscle</topic><topic>Thermogenesis</topic><topic>Transcription factors</topic><topic>Uncoupling protein 1</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pan, Jeong Hoon</creatorcontrib><creatorcontrib>Tang, Jingsi</creatorcontrib><creatorcontrib>Kim, Young Jun</creatorcontrib><creatorcontrib>Lee, Jin Hyup</creatorcontrib><creatorcontrib>Shin, Eui-Cheol</creatorcontrib><creatorcontrib>Zhao, Jiangchao</creatorcontrib><creatorcontrib>Kim, Kee-Hong</creatorcontrib><creatorcontrib>Hwang, Kyung A</creatorcontrib><creatorcontrib>Huang, Yan</creatorcontrib><creatorcontrib>Kim, Jae Kyeom</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>International journal of molecular sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pan, Jeong Hoon</au><au>Tang, Jingsi</au><au>Kim, Young Jun</au><au>Lee, Jin Hyup</au><au>Shin, Eui-Cheol</au><au>Zhao, Jiangchao</au><au>Kim, Kee-Hong</au><au>Hwang, Kyung A</au><au>Huang, Yan</au><au>Kim, Jae Kyeom</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>IDH2 Deficiency Is Critical in Myogenesis and Fatty Acid Metabolism in Mice Skeletal Muscle</atitle><jtitle>International journal of molecular sciences</jtitle><addtitle>Int J Mol Sci</addtitle><date>2020-08-05</date><risdate>2020</risdate><volume>21</volume><issue>16</issue><spage>5596</spage><pages>5596-</pages><issn>1422-0067</issn><issn>1661-6596</issn><eissn>1422-0067</eissn><abstract>Mitochondrial NADP -dependent isocitrate dehydrogenase (IDH2) catalyzes the oxidative decarboxylation of isocitrate into α-ketoglutarate with concurrent reduction of NADP to NADPH. However, it is not fully understood how IDH2 is intertwined with muscle development and fatty acid metabolism. Here, we examined the effects of IDH2 knockout (KO) on skeletal muscle energy homeostasis. Calf skeletal muscle samples from 10-week-old male IDH2 KO and wild-type (WT; C57BL/6N) mice were harvested, and the ratio of skeletal muscle weight to body and the ratio of mitochondrial to nucleic DNA were measured. In addition, genes involved in myogenesis, mitochondria biogenesis, adipogenesis, and thermogenesis were compared. Results showed that the ratio of skeletal muscle weight to body weight was lower in IDH2 KO mice than those in WT mice. Of note, a noticeable shift in fiber size distribution was found in IDH2 KO mice. Additionally, there was a trend of a decrease in mitochondrial content in IDH2 KO mice than in WT mice ( = 0.09). Further, mRNA expressions for myogenesis and mitochondrial biogenesis were either decreased or showed a trend of decrease in IDH2 KO mice. Moreover, genes for adipogenesis pathway ( , , and ) were downregulated in IDH2 KO mice. Interestingly, mRNA and protein expression of uncoupling protein 1 (UCP1), a hallmark of thermogenesis, were remarkably increased in IDH2 KO mice. In line with the UCP1 expression, IDH2 KO mice showed higher rectal temperature than WT mice under cold stress. Taken together, IDH2 deficiency may affect myogenesis, possibly due to impairments of muscle generation and abnormal fatty acid oxidation as well as thermogenesis in muscle via upregulation of UCP1.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>32764267</pmid><doi>10.3390/ijms21165596</doi><orcidid>https://orcid.org/0000-0003-4243-4643</orcidid><orcidid>https://orcid.org/0000-0002-0264-8391</orcidid><orcidid>https://orcid.org/0000-0002-6437-5157</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1422-0067
ispartof International journal of molecular sciences, 2020-08, Vol.21 (16), p.5596
issn 1422-0067
1661-6596
1422-0067
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7460611
source MDPI - Multidisciplinary Digital Publishing Institute; MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central
subjects Adipogenesis
Animals
Biosynthesis
Body weight
Cold
Communication
Decarboxylation
Deoxyribonucleic acid
DNA
Energy
Energy balance
Energy Metabolism - genetics
Enzymes
Fatty acids
Fatty Acids - genetics
Fatty Acids - metabolism
Gene expression
Genes
Genotype & phenotype
Heat
Homeostasis
Humans
Isocitrate dehydrogenase
Isocitrate Dehydrogenase - deficiency
Isocitrate Dehydrogenase - genetics
Ketoglutaric acid
Lipid Metabolism - genetics
Liver - metabolism
Metabolism
Mice
Mice, Knockout
Mitochondria
Mitochondria - genetics
Mitochondria - metabolism
Mitochondrial DNA
mRNA
Muscle Development - genetics
Muscle, Skeletal - growth & development
Muscle, Skeletal - metabolism
Muscles
Musculoskeletal system
Myogenesis
NADP
Oxidation
Oxidation-Reduction
Peroxisome proliferator-activated receptors
Protein expression
Proteins
Rodents
Size distribution
Skeletal muscle
Thermogenesis
Transcription factors
Uncoupling protein 1
title IDH2 Deficiency Is Critical in Myogenesis and Fatty Acid Metabolism in Mice Skeletal Muscle
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T22%3A38%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=IDH2%20Deficiency%20Is%20Critical%20in%20Myogenesis%20and%20Fatty%20Acid%20Metabolism%20in%20Mice%20Skeletal%20Muscle&rft.jtitle=International%20journal%20of%20molecular%20sciences&rft.au=Pan,%20Jeong%20Hoon&rft.date=2020-08-05&rft.volume=21&rft.issue=16&rft.spage=5596&rft.pages=5596-&rft.issn=1422-0067&rft.eissn=1422-0067&rft_id=info:doi/10.3390/ijms21165596&rft_dat=%3Cproquest_pubme%3E2432203239%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2432203239&rft_id=info:pmid/32764267&rfr_iscdi=true