IDH2 Deficiency Is Critical in Myogenesis and Fatty Acid Metabolism in Mice Skeletal Muscle
Mitochondrial NADP -dependent isocitrate dehydrogenase (IDH2) catalyzes the oxidative decarboxylation of isocitrate into α-ketoglutarate with concurrent reduction of NADP to NADPH. However, it is not fully understood how IDH2 is intertwined with muscle development and fatty acid metabolism. Here, we...
Gespeichert in:
Veröffentlicht in: | International journal of molecular sciences 2020-08, Vol.21 (16), p.5596 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 16 |
container_start_page | 5596 |
container_title | International journal of molecular sciences |
container_volume | 21 |
creator | Pan, Jeong Hoon Tang, Jingsi Kim, Young Jun Lee, Jin Hyup Shin, Eui-Cheol Zhao, Jiangchao Kim, Kee-Hong Hwang, Kyung A Huang, Yan Kim, Jae Kyeom |
description | Mitochondrial NADP
-dependent isocitrate dehydrogenase (IDH2) catalyzes the oxidative decarboxylation of isocitrate into α-ketoglutarate with concurrent reduction of NADP
to NADPH. However, it is not fully understood how IDH2 is intertwined with muscle development and fatty acid metabolism. Here, we examined the effects of IDH2 knockout (KO) on skeletal muscle energy homeostasis. Calf skeletal muscle samples from 10-week-old male IDH2 KO and wild-type (WT; C57BL/6N) mice were harvested, and the ratio of skeletal muscle weight to body and the ratio of mitochondrial to nucleic DNA were measured. In addition, genes involved in myogenesis, mitochondria biogenesis, adipogenesis, and thermogenesis were compared. Results showed that the ratio of skeletal muscle weight to body weight was lower in IDH2 KO mice than those in WT mice. Of note, a noticeable shift in fiber size distribution was found in IDH2 KO mice. Additionally, there was a trend of a decrease in mitochondrial content in IDH2 KO mice than in WT mice (
= 0.09). Further, mRNA expressions for myogenesis and mitochondrial biogenesis were either decreased or showed a trend of decrease in IDH2 KO mice. Moreover, genes for adipogenesis pathway (
,
, and
) were downregulated in IDH2 KO mice. Interestingly, mRNA and protein expression of uncoupling protein 1 (UCP1), a hallmark of thermogenesis, were remarkably increased in IDH2 KO mice. In line with the UCP1 expression, IDH2 KO mice showed higher rectal temperature than WT mice under cold stress. Taken together, IDH2 deficiency may affect myogenesis, possibly due to impairments of muscle generation and abnormal fatty acid oxidation as well as thermogenesis in muscle via upregulation of UCP1. |
doi_str_mv | 10.3390/ijms21165596 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7460611</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2432203239</sourcerecordid><originalsourceid>FETCH-LOGICAL-c412t-cdb7916299948cba0d3a9acb0127ad4bca2ae963c68ef62a66ca37d7cf02fc9b3</originalsourceid><addsrcrecordid>eNpVkUFPwkAQhTdGI4jePJtNvFrdnS1b9mJCQIQE4kE9edhsp1tcLC12W5P-e6sgwdNMZr68eZlHyCVnt0IodudWaw-cy35fySPS5SFAwJiMjg_6DjnzfsUYCOirU9IREMkQZNQlb7PxFOjYpg6dzbGhM09Hpascmoy6nC6aYmlz652nJk_oxFRVQ4foErqwlYmLzPn1L-fQ0ucPm7XTjC5qj5k9Jyepyby92NUeeZ08vIymwfzpcTYazgMMOVQBJnGkuASlVDjA2LBEGGUwZhwik4QxGjBWSYFyYFMJRko0IkoiTBmkqGLRI_db3U0dr22CNq9Kk-lN6dambHRhnP6_yd27XhZfOgolk5y3Atc7gbL4rK2v9Kqoy7z1rCEUAEyAUC11s6WwLLwvbbq_wJn-iUIfRtHiV4eu9vDf78U3AXGFmA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2432203239</pqid></control><display><type>article</type><title>IDH2 Deficiency Is Critical in Myogenesis and Fatty Acid Metabolism in Mice Skeletal Muscle</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><creator>Pan, Jeong Hoon ; Tang, Jingsi ; Kim, Young Jun ; Lee, Jin Hyup ; Shin, Eui-Cheol ; Zhao, Jiangchao ; Kim, Kee-Hong ; Hwang, Kyung A ; Huang, Yan ; Kim, Jae Kyeom</creator><creatorcontrib>Pan, Jeong Hoon ; Tang, Jingsi ; Kim, Young Jun ; Lee, Jin Hyup ; Shin, Eui-Cheol ; Zhao, Jiangchao ; Kim, Kee-Hong ; Hwang, Kyung A ; Huang, Yan ; Kim, Jae Kyeom</creatorcontrib><description>Mitochondrial NADP
-dependent isocitrate dehydrogenase (IDH2) catalyzes the oxidative decarboxylation of isocitrate into α-ketoglutarate with concurrent reduction of NADP
to NADPH. However, it is not fully understood how IDH2 is intertwined with muscle development and fatty acid metabolism. Here, we examined the effects of IDH2 knockout (KO) on skeletal muscle energy homeostasis. Calf skeletal muscle samples from 10-week-old male IDH2 KO and wild-type (WT; C57BL/6N) mice were harvested, and the ratio of skeletal muscle weight to body and the ratio of mitochondrial to nucleic DNA were measured. In addition, genes involved in myogenesis, mitochondria biogenesis, adipogenesis, and thermogenesis were compared. Results showed that the ratio of skeletal muscle weight to body weight was lower in IDH2 KO mice than those in WT mice. Of note, a noticeable shift in fiber size distribution was found in IDH2 KO mice. Additionally, there was a trend of a decrease in mitochondrial content in IDH2 KO mice than in WT mice (
= 0.09). Further, mRNA expressions for myogenesis and mitochondrial biogenesis were either decreased or showed a trend of decrease in IDH2 KO mice. Moreover, genes for adipogenesis pathway (
,
, and
) were downregulated in IDH2 KO mice. Interestingly, mRNA and protein expression of uncoupling protein 1 (UCP1), a hallmark of thermogenesis, were remarkably increased in IDH2 KO mice. In line with the UCP1 expression, IDH2 KO mice showed higher rectal temperature than WT mice under cold stress. Taken together, IDH2 deficiency may affect myogenesis, possibly due to impairments of muscle generation and abnormal fatty acid oxidation as well as thermogenesis in muscle via upregulation of UCP1.</description><identifier>ISSN: 1422-0067</identifier><identifier>ISSN: 1661-6596</identifier><identifier>EISSN: 1422-0067</identifier><identifier>DOI: 10.3390/ijms21165596</identifier><identifier>PMID: 32764267</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Adipogenesis ; Animals ; Biosynthesis ; Body weight ; Cold ; Communication ; Decarboxylation ; Deoxyribonucleic acid ; DNA ; Energy ; Energy balance ; Energy Metabolism - genetics ; Enzymes ; Fatty acids ; Fatty Acids - genetics ; Fatty Acids - metabolism ; Gene expression ; Genes ; Genotype & phenotype ; Heat ; Homeostasis ; Humans ; Isocitrate dehydrogenase ; Isocitrate Dehydrogenase - deficiency ; Isocitrate Dehydrogenase - genetics ; Ketoglutaric acid ; Lipid Metabolism - genetics ; Liver - metabolism ; Metabolism ; Mice ; Mice, Knockout ; Mitochondria ; Mitochondria - genetics ; Mitochondria - metabolism ; Mitochondrial DNA ; mRNA ; Muscle Development - genetics ; Muscle, Skeletal - growth & development ; Muscle, Skeletal - metabolism ; Muscles ; Musculoskeletal system ; Myogenesis ; NADP ; Oxidation ; Oxidation-Reduction ; Peroxisome proliferator-activated receptors ; Protein expression ; Proteins ; Rodents ; Size distribution ; Skeletal muscle ; Thermogenesis ; Transcription factors ; Uncoupling protein 1</subject><ispartof>International journal of molecular sciences, 2020-08, Vol.21 (16), p.5596</ispartof><rights>2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2020 by the authors. 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c412t-cdb7916299948cba0d3a9acb0127ad4bca2ae963c68ef62a66ca37d7cf02fc9b3</citedby><cites>FETCH-LOGICAL-c412t-cdb7916299948cba0d3a9acb0127ad4bca2ae963c68ef62a66ca37d7cf02fc9b3</cites><orcidid>0000-0003-4243-4643 ; 0000-0002-0264-8391 ; 0000-0002-6437-5157</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7460611/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7460611/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32764267$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Pan, Jeong Hoon</creatorcontrib><creatorcontrib>Tang, Jingsi</creatorcontrib><creatorcontrib>Kim, Young Jun</creatorcontrib><creatorcontrib>Lee, Jin Hyup</creatorcontrib><creatorcontrib>Shin, Eui-Cheol</creatorcontrib><creatorcontrib>Zhao, Jiangchao</creatorcontrib><creatorcontrib>Kim, Kee-Hong</creatorcontrib><creatorcontrib>Hwang, Kyung A</creatorcontrib><creatorcontrib>Huang, Yan</creatorcontrib><creatorcontrib>Kim, Jae Kyeom</creatorcontrib><title>IDH2 Deficiency Is Critical in Myogenesis and Fatty Acid Metabolism in Mice Skeletal Muscle</title><title>International journal of molecular sciences</title><addtitle>Int J Mol Sci</addtitle><description>Mitochondrial NADP
-dependent isocitrate dehydrogenase (IDH2) catalyzes the oxidative decarboxylation of isocitrate into α-ketoglutarate with concurrent reduction of NADP
to NADPH. However, it is not fully understood how IDH2 is intertwined with muscle development and fatty acid metabolism. Here, we examined the effects of IDH2 knockout (KO) on skeletal muscle energy homeostasis. Calf skeletal muscle samples from 10-week-old male IDH2 KO and wild-type (WT; C57BL/6N) mice were harvested, and the ratio of skeletal muscle weight to body and the ratio of mitochondrial to nucleic DNA were measured. In addition, genes involved in myogenesis, mitochondria biogenesis, adipogenesis, and thermogenesis were compared. Results showed that the ratio of skeletal muscle weight to body weight was lower in IDH2 KO mice than those in WT mice. Of note, a noticeable shift in fiber size distribution was found in IDH2 KO mice. Additionally, there was a trend of a decrease in mitochondrial content in IDH2 KO mice than in WT mice (
= 0.09). Further, mRNA expressions for myogenesis and mitochondrial biogenesis were either decreased or showed a trend of decrease in IDH2 KO mice. Moreover, genes for adipogenesis pathway (
,
, and
) were downregulated in IDH2 KO mice. Interestingly, mRNA and protein expression of uncoupling protein 1 (UCP1), a hallmark of thermogenesis, were remarkably increased in IDH2 KO mice. In line with the UCP1 expression, IDH2 KO mice showed higher rectal temperature than WT mice under cold stress. Taken together, IDH2 deficiency may affect myogenesis, possibly due to impairments of muscle generation and abnormal fatty acid oxidation as well as thermogenesis in muscle via upregulation of UCP1.</description><subject>Adipogenesis</subject><subject>Animals</subject><subject>Biosynthesis</subject><subject>Body weight</subject><subject>Cold</subject><subject>Communication</subject><subject>Decarboxylation</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>Energy</subject><subject>Energy balance</subject><subject>Energy Metabolism - genetics</subject><subject>Enzymes</subject><subject>Fatty acids</subject><subject>Fatty Acids - genetics</subject><subject>Fatty Acids - metabolism</subject><subject>Gene expression</subject><subject>Genes</subject><subject>Genotype & phenotype</subject><subject>Heat</subject><subject>Homeostasis</subject><subject>Humans</subject><subject>Isocitrate dehydrogenase</subject><subject>Isocitrate Dehydrogenase - deficiency</subject><subject>Isocitrate Dehydrogenase - genetics</subject><subject>Ketoglutaric acid</subject><subject>Lipid Metabolism - genetics</subject><subject>Liver - metabolism</subject><subject>Metabolism</subject><subject>Mice</subject><subject>Mice, Knockout</subject><subject>Mitochondria</subject><subject>Mitochondria - genetics</subject><subject>Mitochondria - metabolism</subject><subject>Mitochondrial DNA</subject><subject>mRNA</subject><subject>Muscle Development - genetics</subject><subject>Muscle, Skeletal - growth & development</subject><subject>Muscle, Skeletal - metabolism</subject><subject>Muscles</subject><subject>Musculoskeletal system</subject><subject>Myogenesis</subject><subject>NADP</subject><subject>Oxidation</subject><subject>Oxidation-Reduction</subject><subject>Peroxisome proliferator-activated receptors</subject><subject>Protein expression</subject><subject>Proteins</subject><subject>Rodents</subject><subject>Size distribution</subject><subject>Skeletal muscle</subject><subject>Thermogenesis</subject><subject>Transcription factors</subject><subject>Uncoupling protein 1</subject><issn>1422-0067</issn><issn>1661-6596</issn><issn>1422-0067</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNpVkUFPwkAQhTdGI4jePJtNvFrdnS1b9mJCQIQE4kE9edhsp1tcLC12W5P-e6sgwdNMZr68eZlHyCVnt0IodudWaw-cy35fySPS5SFAwJiMjg_6DjnzfsUYCOirU9IREMkQZNQlb7PxFOjYpg6dzbGhM09Hpascmoy6nC6aYmlz652nJk_oxFRVQ4foErqwlYmLzPn1L-fQ0ucPm7XTjC5qj5k9Jyepyby92NUeeZ08vIymwfzpcTYazgMMOVQBJnGkuASlVDjA2LBEGGUwZhwik4QxGjBWSYFyYFMJRko0IkoiTBmkqGLRI_db3U0dr22CNq9Kk-lN6dambHRhnP6_yd27XhZfOgolk5y3Atc7gbL4rK2v9Kqoy7z1rCEUAEyAUC11s6WwLLwvbbq_wJn-iUIfRtHiV4eu9vDf78U3AXGFmA</recordid><startdate>20200805</startdate><enddate>20200805</enddate><creator>Pan, Jeong Hoon</creator><creator>Tang, Jingsi</creator><creator>Kim, Young Jun</creator><creator>Lee, Jin Hyup</creator><creator>Shin, Eui-Cheol</creator><creator>Zhao, Jiangchao</creator><creator>Kim, Kee-Hong</creator><creator>Hwang, Kyung A</creator><creator>Huang, Yan</creator><creator>Kim, Jae Kyeom</creator><general>MDPI AG</general><general>MDPI</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>MBDVC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-4243-4643</orcidid><orcidid>https://orcid.org/0000-0002-0264-8391</orcidid><orcidid>https://orcid.org/0000-0002-6437-5157</orcidid></search><sort><creationdate>20200805</creationdate><title>IDH2 Deficiency Is Critical in Myogenesis and Fatty Acid Metabolism in Mice Skeletal Muscle</title><author>Pan, Jeong Hoon ; Tang, Jingsi ; Kim, Young Jun ; Lee, Jin Hyup ; Shin, Eui-Cheol ; Zhao, Jiangchao ; Kim, Kee-Hong ; Hwang, Kyung A ; Huang, Yan ; Kim, Jae Kyeom</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c412t-cdb7916299948cba0d3a9acb0127ad4bca2ae963c68ef62a66ca37d7cf02fc9b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Adipogenesis</topic><topic>Animals</topic><topic>Biosynthesis</topic><topic>Body weight</topic><topic>Cold</topic><topic>Communication</topic><topic>Decarboxylation</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>Energy</topic><topic>Energy balance</topic><topic>Energy Metabolism - genetics</topic><topic>Enzymes</topic><topic>Fatty acids</topic><topic>Fatty Acids - genetics</topic><topic>Fatty Acids - metabolism</topic><topic>Gene expression</topic><topic>Genes</topic><topic>Genotype & phenotype</topic><topic>Heat</topic><topic>Homeostasis</topic><topic>Humans</topic><topic>Isocitrate dehydrogenase</topic><topic>Isocitrate Dehydrogenase - deficiency</topic><topic>Isocitrate Dehydrogenase - genetics</topic><topic>Ketoglutaric acid</topic><topic>Lipid Metabolism - genetics</topic><topic>Liver - metabolism</topic><topic>Metabolism</topic><topic>Mice</topic><topic>Mice, Knockout</topic><topic>Mitochondria</topic><topic>Mitochondria - genetics</topic><topic>Mitochondria - metabolism</topic><topic>Mitochondrial DNA</topic><topic>mRNA</topic><topic>Muscle Development - genetics</topic><topic>Muscle, Skeletal - growth & development</topic><topic>Muscle, Skeletal - metabolism</topic><topic>Muscles</topic><topic>Musculoskeletal system</topic><topic>Myogenesis</topic><topic>NADP</topic><topic>Oxidation</topic><topic>Oxidation-Reduction</topic><topic>Peroxisome proliferator-activated receptors</topic><topic>Protein expression</topic><topic>Proteins</topic><topic>Rodents</topic><topic>Size distribution</topic><topic>Skeletal muscle</topic><topic>Thermogenesis</topic><topic>Transcription factors</topic><topic>Uncoupling protein 1</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pan, Jeong Hoon</creatorcontrib><creatorcontrib>Tang, Jingsi</creatorcontrib><creatorcontrib>Kim, Young Jun</creatorcontrib><creatorcontrib>Lee, Jin Hyup</creatorcontrib><creatorcontrib>Shin, Eui-Cheol</creatorcontrib><creatorcontrib>Zhao, Jiangchao</creatorcontrib><creatorcontrib>Kim, Kee-Hong</creatorcontrib><creatorcontrib>Hwang, Kyung A</creatorcontrib><creatorcontrib>Huang, Yan</creatorcontrib><creatorcontrib>Kim, Jae Kyeom</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>International journal of molecular sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pan, Jeong Hoon</au><au>Tang, Jingsi</au><au>Kim, Young Jun</au><au>Lee, Jin Hyup</au><au>Shin, Eui-Cheol</au><au>Zhao, Jiangchao</au><au>Kim, Kee-Hong</au><au>Hwang, Kyung A</au><au>Huang, Yan</au><au>Kim, Jae Kyeom</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>IDH2 Deficiency Is Critical in Myogenesis and Fatty Acid Metabolism in Mice Skeletal Muscle</atitle><jtitle>International journal of molecular sciences</jtitle><addtitle>Int J Mol Sci</addtitle><date>2020-08-05</date><risdate>2020</risdate><volume>21</volume><issue>16</issue><spage>5596</spage><pages>5596-</pages><issn>1422-0067</issn><issn>1661-6596</issn><eissn>1422-0067</eissn><abstract>Mitochondrial NADP
-dependent isocitrate dehydrogenase (IDH2) catalyzes the oxidative decarboxylation of isocitrate into α-ketoglutarate with concurrent reduction of NADP
to NADPH. However, it is not fully understood how IDH2 is intertwined with muscle development and fatty acid metabolism. Here, we examined the effects of IDH2 knockout (KO) on skeletal muscle energy homeostasis. Calf skeletal muscle samples from 10-week-old male IDH2 KO and wild-type (WT; C57BL/6N) mice were harvested, and the ratio of skeletal muscle weight to body and the ratio of mitochondrial to nucleic DNA were measured. In addition, genes involved in myogenesis, mitochondria biogenesis, adipogenesis, and thermogenesis were compared. Results showed that the ratio of skeletal muscle weight to body weight was lower in IDH2 KO mice than those in WT mice. Of note, a noticeable shift in fiber size distribution was found in IDH2 KO mice. Additionally, there was a trend of a decrease in mitochondrial content in IDH2 KO mice than in WT mice (
= 0.09). Further, mRNA expressions for myogenesis and mitochondrial biogenesis were either decreased or showed a trend of decrease in IDH2 KO mice. Moreover, genes for adipogenesis pathway (
,
, and
) were downregulated in IDH2 KO mice. Interestingly, mRNA and protein expression of uncoupling protein 1 (UCP1), a hallmark of thermogenesis, were remarkably increased in IDH2 KO mice. In line with the UCP1 expression, IDH2 KO mice showed higher rectal temperature than WT mice under cold stress. Taken together, IDH2 deficiency may affect myogenesis, possibly due to impairments of muscle generation and abnormal fatty acid oxidation as well as thermogenesis in muscle via upregulation of UCP1.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>32764267</pmid><doi>10.3390/ijms21165596</doi><orcidid>https://orcid.org/0000-0003-4243-4643</orcidid><orcidid>https://orcid.org/0000-0002-0264-8391</orcidid><orcidid>https://orcid.org/0000-0002-6437-5157</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1422-0067 |
ispartof | International journal of molecular sciences, 2020-08, Vol.21 (16), p.5596 |
issn | 1422-0067 1661-6596 1422-0067 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7460611 |
source | MDPI - Multidisciplinary Digital Publishing Institute; MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central |
subjects | Adipogenesis Animals Biosynthesis Body weight Cold Communication Decarboxylation Deoxyribonucleic acid DNA Energy Energy balance Energy Metabolism - genetics Enzymes Fatty acids Fatty Acids - genetics Fatty Acids - metabolism Gene expression Genes Genotype & phenotype Heat Homeostasis Humans Isocitrate dehydrogenase Isocitrate Dehydrogenase - deficiency Isocitrate Dehydrogenase - genetics Ketoglutaric acid Lipid Metabolism - genetics Liver - metabolism Metabolism Mice Mice, Knockout Mitochondria Mitochondria - genetics Mitochondria - metabolism Mitochondrial DNA mRNA Muscle Development - genetics Muscle, Skeletal - growth & development Muscle, Skeletal - metabolism Muscles Musculoskeletal system Myogenesis NADP Oxidation Oxidation-Reduction Peroxisome proliferator-activated receptors Protein expression Proteins Rodents Size distribution Skeletal muscle Thermogenesis Transcription factors Uncoupling protein 1 |
title | IDH2 Deficiency Is Critical in Myogenesis and Fatty Acid Metabolism in Mice Skeletal Muscle |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T22%3A38%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=IDH2%20Deficiency%20Is%20Critical%20in%20Myogenesis%20and%20Fatty%20Acid%20Metabolism%20in%20Mice%20Skeletal%20Muscle&rft.jtitle=International%20journal%20of%20molecular%20sciences&rft.au=Pan,%20Jeong%20Hoon&rft.date=2020-08-05&rft.volume=21&rft.issue=16&rft.spage=5596&rft.pages=5596-&rft.issn=1422-0067&rft.eissn=1422-0067&rft_id=info:doi/10.3390/ijms21165596&rft_dat=%3Cproquest_pubme%3E2432203239%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2432203239&rft_id=info:pmid/32764267&rfr_iscdi=true |