Multimodal Positron Emission Tomography Imaging to Quantify Uptake of 89Zr-Labeled Liposomes in the Atherosclerotic Vessel Wall

Nanotherapy has recently emerged as an experimental treatment option for atherosclerosis. To fulfill its promise, robust noninvasive imaging approaches for subject selection and treatment evaluation are warranted. To that end, we present here a positron emission tomography (PET)-based method for qua...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bioconjugate chemistry 2020-02, Vol.31 (2), p.360-368
Hauptverfasser: Lobatto, Mark E, Binderup, Tina, Robson, Philip M, Giesen, Luuk F. P, Calcagno, Claudia, Witjes, Julia, Fay, Francois, Baxter, Samantha, Wessel, Chang Ho, Eldib, Mootaz, Bini, Jason, Carlin, Sean D, Stroes, Erik S. G, Storm, Gert, Kjaer, Andreas, Lewis, Jason S, Reiner, Thomas, Fayad, Zahi A, Mulder, Willem J. M, Pérez-Medina, Carlos
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 368
container_issue 2
container_start_page 360
container_title Bioconjugate chemistry
container_volume 31
creator Lobatto, Mark E
Binderup, Tina
Robson, Philip M
Giesen, Luuk F. P
Calcagno, Claudia
Witjes, Julia
Fay, Francois
Baxter, Samantha
Wessel, Chang Ho
Eldib, Mootaz
Bini, Jason
Carlin, Sean D
Stroes, Erik S. G
Storm, Gert
Kjaer, Andreas
Lewis, Jason S
Reiner, Thomas
Fayad, Zahi A
Mulder, Willem J. M
Pérez-Medina, Carlos
description Nanotherapy has recently emerged as an experimental treatment option for atherosclerosis. To fulfill its promise, robust noninvasive imaging approaches for subject selection and treatment evaluation are warranted. To that end, we present here a positron emission tomography (PET)-based method for quantification of liposomal nanoparticle uptake in the atherosclerotic vessel wall. We evaluated a modular procedure to label liposomal nanoparticles with the radioisotope zirconium-89 (89Zr). Their biodistribution and vessel wall targeting in a rabbit atherosclerosis model was evaluated up to 15 days after intravenous injection by PET/computed tomography (CT) and PET/magnetic resonance imaging (PET/MRI). Vascular permeability was assessed in vivo using three-dimensional dynamic contrast-enhanced MRI (3D DCE-MRI) and ex vivo using near-infrared fluorescence (NIRF) imaging. The 89Zr-radiolabeled liposomes displayed a biodistribution pattern typical of long-circulating nanoparticles. Importantly, they markedly accumulated in atherosclerotic lesions in the abdominal aorta, as evident on PET/MRI and confirmed by autoradiography, and this uptake moderately correlated with vascular permeability. The method presented herein facilitates the development of nanotherapy for atherosclerotic disease as it provides a tool to screen for nanoparticle targeting in individual subjects’ plaques.
doi_str_mv 10.1021/acs.bioconjchem.9b00256
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7460274</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2360027093</sourcerecordid><originalsourceid>FETCH-LOGICAL-a2756-20cef48eaee3aaf24e28c7d0c491fcd24b42d559963e4324e215baebe828c843</originalsourceid><addsrcrecordid>eNpVUV2LFDEQDKJ4H_obDPg8e_marxfhOE7vYEWFvRN8CT2Znt2smcmYZIR98q9flltQX6qLrqJough5x9mKM8GvwMRVZ73x097scFy1HWOirF6Qc14KVqiGi5eZMyUL3jBxRi5i3DPGWt6I1-RMctaWshbn5M_nxSU7-h4c_eqjTcFP9Ha0MdpMNn702wDz7kDvR9jaaUuTp98WmJIdDvRhTvATqR9o0_4IxRo6dNjTtZ199CNGaieadkivMwQfjcuYrKGPGCM6-h2ce0NeDeAivj3NS7L5eLu5uSvWXz7d31yvCxB1WRWCGRxUg4AoAQahUDSm7plRLR9ML1SnRF-WbVtJVPIo87ID7LDJvkbJS_LhOXZeuhF7g1MK4PQc7AjhoD1Y_b8y2Z3e-t-6VhUT9THg_Skg-F8LxqT3fglTPlkLWeXn16yV2SWfXbmfvwbO9LE0fVz-U5o-lSafABZykQo</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2360027093</pqid></control><display><type>article</type><title>Multimodal Positron Emission Tomography Imaging to Quantify Uptake of 89Zr-Labeled Liposomes in the Atherosclerotic Vessel Wall</title><source>ACS Publications</source><creator>Lobatto, Mark E ; Binderup, Tina ; Robson, Philip M ; Giesen, Luuk F. P ; Calcagno, Claudia ; Witjes, Julia ; Fay, Francois ; Baxter, Samantha ; Wessel, Chang Ho ; Eldib, Mootaz ; Bini, Jason ; Carlin, Sean D ; Stroes, Erik S. G ; Storm, Gert ; Kjaer, Andreas ; Lewis, Jason S ; Reiner, Thomas ; Fayad, Zahi A ; Mulder, Willem J. M ; Pérez-Medina, Carlos</creator><creatorcontrib>Lobatto, Mark E ; Binderup, Tina ; Robson, Philip M ; Giesen, Luuk F. P ; Calcagno, Claudia ; Witjes, Julia ; Fay, Francois ; Baxter, Samantha ; Wessel, Chang Ho ; Eldib, Mootaz ; Bini, Jason ; Carlin, Sean D ; Stroes, Erik S. G ; Storm, Gert ; Kjaer, Andreas ; Lewis, Jason S ; Reiner, Thomas ; Fayad, Zahi A ; Mulder, Willem J. M ; Pérez-Medina, Carlos</creatorcontrib><description>Nanotherapy has recently emerged as an experimental treatment option for atherosclerosis. To fulfill its promise, robust noninvasive imaging approaches for subject selection and treatment evaluation are warranted. To that end, we present here a positron emission tomography (PET)-based method for quantification of liposomal nanoparticle uptake in the atherosclerotic vessel wall. We evaluated a modular procedure to label liposomal nanoparticles with the radioisotope zirconium-89 (89Zr). Their biodistribution and vessel wall targeting in a rabbit atherosclerosis model was evaluated up to 15 days after intravenous injection by PET/computed tomography (CT) and PET/magnetic resonance imaging (PET/MRI). Vascular permeability was assessed in vivo using three-dimensional dynamic contrast-enhanced MRI (3D DCE-MRI) and ex vivo using near-infrared fluorescence (NIRF) imaging. The 89Zr-radiolabeled liposomes displayed a biodistribution pattern typical of long-circulating nanoparticles. Importantly, they markedly accumulated in atherosclerotic lesions in the abdominal aorta, as evident on PET/MRI and confirmed by autoradiography, and this uptake moderately correlated with vascular permeability. The method presented herein facilitates the development of nanotherapy for atherosclerotic disease as it provides a tool to screen for nanoparticle targeting in individual subjects’ plaques.</description><identifier>ISSN: 1043-1802</identifier><identifier>EISSN: 1520-4812</identifier><identifier>DOI: 10.1021/acs.bioconjchem.9b00256</identifier><identifier>PMID: 31095372</identifier><language>eng</language><publisher>Washington: American Chemical Society</publisher><subject>Aorta ; Arteriosclerosis ; Atherosclerosis ; Autoradiography ; Blood vessels ; Computed tomography ; Evaluation ; Fluorescence ; Infrared imaging ; Intravenous administration ; Liposomes ; Magnetic permeability ; Magnetic resonance imaging ; Medical imaging ; Nanoparticles ; Permeability ; Plaques ; Positron emission ; Positron emission tomography ; Radioisotopes ; Tomography ; Zirconium ; Zirconium isotopes</subject><ispartof>Bioconjugate chemistry, 2020-02, Vol.31 (2), p.360-368</ispartof><rights>Copyright American Chemical Society Feb 19, 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0001-7405-5600 ; 0000-0001-7065-4534 ; 0000-0001-8665-3878 ; 0000-0002-7819-5480 ; 0000-0002-6011-0629</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.bioconjchem.9b00256$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.bioconjchem.9b00256$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,776,780,881,27053,27901,27902,56713,56763</link.rule.ids></links><search><creatorcontrib>Lobatto, Mark E</creatorcontrib><creatorcontrib>Binderup, Tina</creatorcontrib><creatorcontrib>Robson, Philip M</creatorcontrib><creatorcontrib>Giesen, Luuk F. P</creatorcontrib><creatorcontrib>Calcagno, Claudia</creatorcontrib><creatorcontrib>Witjes, Julia</creatorcontrib><creatorcontrib>Fay, Francois</creatorcontrib><creatorcontrib>Baxter, Samantha</creatorcontrib><creatorcontrib>Wessel, Chang Ho</creatorcontrib><creatorcontrib>Eldib, Mootaz</creatorcontrib><creatorcontrib>Bini, Jason</creatorcontrib><creatorcontrib>Carlin, Sean D</creatorcontrib><creatorcontrib>Stroes, Erik S. G</creatorcontrib><creatorcontrib>Storm, Gert</creatorcontrib><creatorcontrib>Kjaer, Andreas</creatorcontrib><creatorcontrib>Lewis, Jason S</creatorcontrib><creatorcontrib>Reiner, Thomas</creatorcontrib><creatorcontrib>Fayad, Zahi A</creatorcontrib><creatorcontrib>Mulder, Willem J. M</creatorcontrib><creatorcontrib>Pérez-Medina, Carlos</creatorcontrib><title>Multimodal Positron Emission Tomography Imaging to Quantify Uptake of 89Zr-Labeled Liposomes in the Atherosclerotic Vessel Wall</title><title>Bioconjugate chemistry</title><addtitle>Bioconjugate Chem</addtitle><description>Nanotherapy has recently emerged as an experimental treatment option for atherosclerosis. To fulfill its promise, robust noninvasive imaging approaches for subject selection and treatment evaluation are warranted. To that end, we present here a positron emission tomography (PET)-based method for quantification of liposomal nanoparticle uptake in the atherosclerotic vessel wall. We evaluated a modular procedure to label liposomal nanoparticles with the radioisotope zirconium-89 (89Zr). Their biodistribution and vessel wall targeting in a rabbit atherosclerosis model was evaluated up to 15 days after intravenous injection by PET/computed tomography (CT) and PET/magnetic resonance imaging (PET/MRI). Vascular permeability was assessed in vivo using three-dimensional dynamic contrast-enhanced MRI (3D DCE-MRI) and ex vivo using near-infrared fluorescence (NIRF) imaging. The 89Zr-radiolabeled liposomes displayed a biodistribution pattern typical of long-circulating nanoparticles. Importantly, they markedly accumulated in atherosclerotic lesions in the abdominal aorta, as evident on PET/MRI and confirmed by autoradiography, and this uptake moderately correlated with vascular permeability. The method presented herein facilitates the development of nanotherapy for atherosclerotic disease as it provides a tool to screen for nanoparticle targeting in individual subjects’ plaques.</description><subject>Aorta</subject><subject>Arteriosclerosis</subject><subject>Atherosclerosis</subject><subject>Autoradiography</subject><subject>Blood vessels</subject><subject>Computed tomography</subject><subject>Evaluation</subject><subject>Fluorescence</subject><subject>Infrared imaging</subject><subject>Intravenous administration</subject><subject>Liposomes</subject><subject>Magnetic permeability</subject><subject>Magnetic resonance imaging</subject><subject>Medical imaging</subject><subject>Nanoparticles</subject><subject>Permeability</subject><subject>Plaques</subject><subject>Positron emission</subject><subject>Positron emission tomography</subject><subject>Radioisotopes</subject><subject>Tomography</subject><subject>Zirconium</subject><subject>Zirconium isotopes</subject><issn>1043-1802</issn><issn>1520-4812</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNpVUV2LFDEQDKJ4H_obDPg8e_marxfhOE7vYEWFvRN8CT2Znt2smcmYZIR98q9flltQX6qLrqJough5x9mKM8GvwMRVZ73x097scFy1HWOirF6Qc14KVqiGi5eZMyUL3jBxRi5i3DPGWt6I1-RMctaWshbn5M_nxSU7-h4c_eqjTcFP9Ha0MdpMNn702wDz7kDvR9jaaUuTp98WmJIdDvRhTvATqR9o0_4IxRo6dNjTtZ199CNGaieadkivMwQfjcuYrKGPGCM6-h2ce0NeDeAivj3NS7L5eLu5uSvWXz7d31yvCxB1WRWCGRxUg4AoAQahUDSm7plRLR9ML1SnRF-WbVtJVPIo87ID7LDJvkbJS_LhOXZeuhF7g1MK4PQc7AjhoD1Y_b8y2Z3e-t-6VhUT9THg_Skg-F8LxqT3fglTPlkLWeXn16yV2SWfXbmfvwbO9LE0fVz-U5o-lSafABZykQo</recordid><startdate>20200219</startdate><enddate>20200219</enddate><creator>Lobatto, Mark E</creator><creator>Binderup, Tina</creator><creator>Robson, Philip M</creator><creator>Giesen, Luuk F. P</creator><creator>Calcagno, Claudia</creator><creator>Witjes, Julia</creator><creator>Fay, Francois</creator><creator>Baxter, Samantha</creator><creator>Wessel, Chang Ho</creator><creator>Eldib, Mootaz</creator><creator>Bini, Jason</creator><creator>Carlin, Sean D</creator><creator>Stroes, Erik S. G</creator><creator>Storm, Gert</creator><creator>Kjaer, Andreas</creator><creator>Lewis, Jason S</creator><creator>Reiner, Thomas</creator><creator>Fayad, Zahi A</creator><creator>Mulder, Willem J. M</creator><creator>Pérez-Medina, Carlos</creator><general>American Chemical Society</general><scope>7QO</scope><scope>7TM</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-7405-5600</orcidid><orcidid>https://orcid.org/0000-0001-7065-4534</orcidid><orcidid>https://orcid.org/0000-0001-8665-3878</orcidid><orcidid>https://orcid.org/0000-0002-7819-5480</orcidid><orcidid>https://orcid.org/0000-0002-6011-0629</orcidid></search><sort><creationdate>20200219</creationdate><title>Multimodal Positron Emission Tomography Imaging to Quantify Uptake of 89Zr-Labeled Liposomes in the Atherosclerotic Vessel Wall</title><author>Lobatto, Mark E ; Binderup, Tina ; Robson, Philip M ; Giesen, Luuk F. P ; Calcagno, Claudia ; Witjes, Julia ; Fay, Francois ; Baxter, Samantha ; Wessel, Chang Ho ; Eldib, Mootaz ; Bini, Jason ; Carlin, Sean D ; Stroes, Erik S. G ; Storm, Gert ; Kjaer, Andreas ; Lewis, Jason S ; Reiner, Thomas ; Fayad, Zahi A ; Mulder, Willem J. M ; Pérez-Medina, Carlos</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a2756-20cef48eaee3aaf24e28c7d0c491fcd24b42d559963e4324e215baebe828c843</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Aorta</topic><topic>Arteriosclerosis</topic><topic>Atherosclerosis</topic><topic>Autoradiography</topic><topic>Blood vessels</topic><topic>Computed tomography</topic><topic>Evaluation</topic><topic>Fluorescence</topic><topic>Infrared imaging</topic><topic>Intravenous administration</topic><topic>Liposomes</topic><topic>Magnetic permeability</topic><topic>Magnetic resonance imaging</topic><topic>Medical imaging</topic><topic>Nanoparticles</topic><topic>Permeability</topic><topic>Plaques</topic><topic>Positron emission</topic><topic>Positron emission tomography</topic><topic>Radioisotopes</topic><topic>Tomography</topic><topic>Zirconium</topic><topic>Zirconium isotopes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lobatto, Mark E</creatorcontrib><creatorcontrib>Binderup, Tina</creatorcontrib><creatorcontrib>Robson, Philip M</creatorcontrib><creatorcontrib>Giesen, Luuk F. P</creatorcontrib><creatorcontrib>Calcagno, Claudia</creatorcontrib><creatorcontrib>Witjes, Julia</creatorcontrib><creatorcontrib>Fay, Francois</creatorcontrib><creatorcontrib>Baxter, Samantha</creatorcontrib><creatorcontrib>Wessel, Chang Ho</creatorcontrib><creatorcontrib>Eldib, Mootaz</creatorcontrib><creatorcontrib>Bini, Jason</creatorcontrib><creatorcontrib>Carlin, Sean D</creatorcontrib><creatorcontrib>Stroes, Erik S. G</creatorcontrib><creatorcontrib>Storm, Gert</creatorcontrib><creatorcontrib>Kjaer, Andreas</creatorcontrib><creatorcontrib>Lewis, Jason S</creatorcontrib><creatorcontrib>Reiner, Thomas</creatorcontrib><creatorcontrib>Fayad, Zahi A</creatorcontrib><creatorcontrib>Mulder, Willem J. M</creatorcontrib><creatorcontrib>Pérez-Medina, Carlos</creatorcontrib><collection>Biotechnology Research Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Bioconjugate chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lobatto, Mark E</au><au>Binderup, Tina</au><au>Robson, Philip M</au><au>Giesen, Luuk F. P</au><au>Calcagno, Claudia</au><au>Witjes, Julia</au><au>Fay, Francois</au><au>Baxter, Samantha</au><au>Wessel, Chang Ho</au><au>Eldib, Mootaz</au><au>Bini, Jason</au><au>Carlin, Sean D</au><au>Stroes, Erik S. G</au><au>Storm, Gert</au><au>Kjaer, Andreas</au><au>Lewis, Jason S</au><au>Reiner, Thomas</au><au>Fayad, Zahi A</au><au>Mulder, Willem J. M</au><au>Pérez-Medina, Carlos</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multimodal Positron Emission Tomography Imaging to Quantify Uptake of 89Zr-Labeled Liposomes in the Atherosclerotic Vessel Wall</atitle><jtitle>Bioconjugate chemistry</jtitle><addtitle>Bioconjugate Chem</addtitle><date>2020-02-19</date><risdate>2020</risdate><volume>31</volume><issue>2</issue><spage>360</spage><epage>368</epage><pages>360-368</pages><issn>1043-1802</issn><eissn>1520-4812</eissn><abstract>Nanotherapy has recently emerged as an experimental treatment option for atherosclerosis. To fulfill its promise, robust noninvasive imaging approaches for subject selection and treatment evaluation are warranted. To that end, we present here a positron emission tomography (PET)-based method for quantification of liposomal nanoparticle uptake in the atherosclerotic vessel wall. We evaluated a modular procedure to label liposomal nanoparticles with the radioisotope zirconium-89 (89Zr). Their biodistribution and vessel wall targeting in a rabbit atherosclerosis model was evaluated up to 15 days after intravenous injection by PET/computed tomography (CT) and PET/magnetic resonance imaging (PET/MRI). Vascular permeability was assessed in vivo using three-dimensional dynamic contrast-enhanced MRI (3D DCE-MRI) and ex vivo using near-infrared fluorescence (NIRF) imaging. The 89Zr-radiolabeled liposomes displayed a biodistribution pattern typical of long-circulating nanoparticles. Importantly, they markedly accumulated in atherosclerotic lesions in the abdominal aorta, as evident on PET/MRI and confirmed by autoradiography, and this uptake moderately correlated with vascular permeability. The method presented herein facilitates the development of nanotherapy for atherosclerotic disease as it provides a tool to screen for nanoparticle targeting in individual subjects’ plaques.</abstract><cop>Washington</cop><pub>American Chemical Society</pub><pmid>31095372</pmid><doi>10.1021/acs.bioconjchem.9b00256</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-7405-5600</orcidid><orcidid>https://orcid.org/0000-0001-7065-4534</orcidid><orcidid>https://orcid.org/0000-0001-8665-3878</orcidid><orcidid>https://orcid.org/0000-0002-7819-5480</orcidid><orcidid>https://orcid.org/0000-0002-6011-0629</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1043-1802
ispartof Bioconjugate chemistry, 2020-02, Vol.31 (2), p.360-368
issn 1043-1802
1520-4812
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7460274
source ACS Publications
subjects Aorta
Arteriosclerosis
Atherosclerosis
Autoradiography
Blood vessels
Computed tomography
Evaluation
Fluorescence
Infrared imaging
Intravenous administration
Liposomes
Magnetic permeability
Magnetic resonance imaging
Medical imaging
Nanoparticles
Permeability
Plaques
Positron emission
Positron emission tomography
Radioisotopes
Tomography
Zirconium
Zirconium isotopes
title Multimodal Positron Emission Tomography Imaging to Quantify Uptake of 89Zr-Labeled Liposomes in the Atherosclerotic Vessel Wall
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T01%3A58%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multimodal%20Positron%20Emission%20Tomography%20Imaging%20to%20Quantify%20Uptake%20of%2089Zr-Labeled%20Liposomes%20in%20the%20Atherosclerotic%20Vessel%20Wall&rft.jtitle=Bioconjugate%20chemistry&rft.au=Lobatto,%20Mark%20E&rft.date=2020-02-19&rft.volume=31&rft.issue=2&rft.spage=360&rft.epage=368&rft.pages=360-368&rft.issn=1043-1802&rft.eissn=1520-4812&rft_id=info:doi/10.1021/acs.bioconjchem.9b00256&rft_dat=%3Cproquest_pubme%3E2360027093%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2360027093&rft_id=info:pmid/31095372&rfr_iscdi=true