Multimodal Positron Emission Tomography Imaging to Quantify Uptake of 89Zr-Labeled Liposomes in the Atherosclerotic Vessel Wall
Nanotherapy has recently emerged as an experimental treatment option for atherosclerosis. To fulfill its promise, robust noninvasive imaging approaches for subject selection and treatment evaluation are warranted. To that end, we present here a positron emission tomography (PET)-based method for qua...
Gespeichert in:
Veröffentlicht in: | Bioconjugate chemistry 2020-02, Vol.31 (2), p.360-368 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 368 |
---|---|
container_issue | 2 |
container_start_page | 360 |
container_title | Bioconjugate chemistry |
container_volume | 31 |
creator | Lobatto, Mark E Binderup, Tina Robson, Philip M Giesen, Luuk F. P Calcagno, Claudia Witjes, Julia Fay, Francois Baxter, Samantha Wessel, Chang Ho Eldib, Mootaz Bini, Jason Carlin, Sean D Stroes, Erik S. G Storm, Gert Kjaer, Andreas Lewis, Jason S Reiner, Thomas Fayad, Zahi A Mulder, Willem J. M Pérez-Medina, Carlos |
description | Nanotherapy has recently emerged as an experimental treatment option for atherosclerosis. To fulfill its promise, robust noninvasive imaging approaches for subject selection and treatment evaluation are warranted. To that end, we present here a positron emission tomography (PET)-based method for quantification of liposomal nanoparticle uptake in the atherosclerotic vessel wall. We evaluated a modular procedure to label liposomal nanoparticles with the radioisotope zirconium-89 (89Zr). Their biodistribution and vessel wall targeting in a rabbit atherosclerosis model was evaluated up to 15 days after intravenous injection by PET/computed tomography (CT) and PET/magnetic resonance imaging (PET/MRI). Vascular permeability was assessed in vivo using three-dimensional dynamic contrast-enhanced MRI (3D DCE-MRI) and ex vivo using near-infrared fluorescence (NIRF) imaging. The 89Zr-radiolabeled liposomes displayed a biodistribution pattern typical of long-circulating nanoparticles. Importantly, they markedly accumulated in atherosclerotic lesions in the abdominal aorta, as evident on PET/MRI and confirmed by autoradiography, and this uptake moderately correlated with vascular permeability. The method presented herein facilitates the development of nanotherapy for atherosclerotic disease as it provides a tool to screen for nanoparticle targeting in individual subjects’ plaques. |
doi_str_mv | 10.1021/acs.bioconjchem.9b00256 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7460274</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2360027093</sourcerecordid><originalsourceid>FETCH-LOGICAL-a2756-20cef48eaee3aaf24e28c7d0c491fcd24b42d559963e4324e215baebe828c843</originalsourceid><addsrcrecordid>eNpVUV2LFDEQDKJ4H_obDPg8e_marxfhOE7vYEWFvRN8CT2Znt2smcmYZIR98q9flltQX6qLrqJough5x9mKM8GvwMRVZ73x097scFy1HWOirF6Qc14KVqiGi5eZMyUL3jBxRi5i3DPGWt6I1-RMctaWshbn5M_nxSU7-h4c_eqjTcFP9Ha0MdpMNn702wDz7kDvR9jaaUuTp98WmJIdDvRhTvATqR9o0_4IxRo6dNjTtZ199CNGaieadkivMwQfjcuYrKGPGCM6-h2ce0NeDeAivj3NS7L5eLu5uSvWXz7d31yvCxB1WRWCGRxUg4AoAQahUDSm7plRLR9ML1SnRF-WbVtJVPIo87ID7LDJvkbJS_LhOXZeuhF7g1MK4PQc7AjhoD1Y_b8y2Z3e-t-6VhUT9THg_Skg-F8LxqT3fglTPlkLWeXn16yV2SWfXbmfvwbO9LE0fVz-U5o-lSafABZykQo</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2360027093</pqid></control><display><type>article</type><title>Multimodal Positron Emission Tomography Imaging to Quantify Uptake of 89Zr-Labeled Liposomes in the Atherosclerotic Vessel Wall</title><source>ACS Publications</source><creator>Lobatto, Mark E ; Binderup, Tina ; Robson, Philip M ; Giesen, Luuk F. P ; Calcagno, Claudia ; Witjes, Julia ; Fay, Francois ; Baxter, Samantha ; Wessel, Chang Ho ; Eldib, Mootaz ; Bini, Jason ; Carlin, Sean D ; Stroes, Erik S. G ; Storm, Gert ; Kjaer, Andreas ; Lewis, Jason S ; Reiner, Thomas ; Fayad, Zahi A ; Mulder, Willem J. M ; Pérez-Medina, Carlos</creator><creatorcontrib>Lobatto, Mark E ; Binderup, Tina ; Robson, Philip M ; Giesen, Luuk F. P ; Calcagno, Claudia ; Witjes, Julia ; Fay, Francois ; Baxter, Samantha ; Wessel, Chang Ho ; Eldib, Mootaz ; Bini, Jason ; Carlin, Sean D ; Stroes, Erik S. G ; Storm, Gert ; Kjaer, Andreas ; Lewis, Jason S ; Reiner, Thomas ; Fayad, Zahi A ; Mulder, Willem J. M ; Pérez-Medina, Carlos</creatorcontrib><description>Nanotherapy has recently emerged as an experimental treatment option for atherosclerosis. To fulfill its promise, robust noninvasive imaging approaches for subject selection and treatment evaluation are warranted. To that end, we present here a positron emission tomography (PET)-based method for quantification of liposomal nanoparticle uptake in the atherosclerotic vessel wall. We evaluated a modular procedure to label liposomal nanoparticles with the radioisotope zirconium-89 (89Zr). Their biodistribution and vessel wall targeting in a rabbit atherosclerosis model was evaluated up to 15 days after intravenous injection by PET/computed tomography (CT) and PET/magnetic resonance imaging (PET/MRI). Vascular permeability was assessed in vivo using three-dimensional dynamic contrast-enhanced MRI (3D DCE-MRI) and ex vivo using near-infrared fluorescence (NIRF) imaging. The 89Zr-radiolabeled liposomes displayed a biodistribution pattern typical of long-circulating nanoparticles. Importantly, they markedly accumulated in atherosclerotic lesions in the abdominal aorta, as evident on PET/MRI and confirmed by autoradiography, and this uptake moderately correlated with vascular permeability. The method presented herein facilitates the development of nanotherapy for atherosclerotic disease as it provides a tool to screen for nanoparticle targeting in individual subjects’ plaques.</description><identifier>ISSN: 1043-1802</identifier><identifier>EISSN: 1520-4812</identifier><identifier>DOI: 10.1021/acs.bioconjchem.9b00256</identifier><identifier>PMID: 31095372</identifier><language>eng</language><publisher>Washington: American Chemical Society</publisher><subject>Aorta ; Arteriosclerosis ; Atherosclerosis ; Autoradiography ; Blood vessels ; Computed tomography ; Evaluation ; Fluorescence ; Infrared imaging ; Intravenous administration ; Liposomes ; Magnetic permeability ; Magnetic resonance imaging ; Medical imaging ; Nanoparticles ; Permeability ; Plaques ; Positron emission ; Positron emission tomography ; Radioisotopes ; Tomography ; Zirconium ; Zirconium isotopes</subject><ispartof>Bioconjugate chemistry, 2020-02, Vol.31 (2), p.360-368</ispartof><rights>Copyright American Chemical Society Feb 19, 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0001-7405-5600 ; 0000-0001-7065-4534 ; 0000-0001-8665-3878 ; 0000-0002-7819-5480 ; 0000-0002-6011-0629</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.bioconjchem.9b00256$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.bioconjchem.9b00256$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,776,780,881,27053,27901,27902,56713,56763</link.rule.ids></links><search><creatorcontrib>Lobatto, Mark E</creatorcontrib><creatorcontrib>Binderup, Tina</creatorcontrib><creatorcontrib>Robson, Philip M</creatorcontrib><creatorcontrib>Giesen, Luuk F. P</creatorcontrib><creatorcontrib>Calcagno, Claudia</creatorcontrib><creatorcontrib>Witjes, Julia</creatorcontrib><creatorcontrib>Fay, Francois</creatorcontrib><creatorcontrib>Baxter, Samantha</creatorcontrib><creatorcontrib>Wessel, Chang Ho</creatorcontrib><creatorcontrib>Eldib, Mootaz</creatorcontrib><creatorcontrib>Bini, Jason</creatorcontrib><creatorcontrib>Carlin, Sean D</creatorcontrib><creatorcontrib>Stroes, Erik S. G</creatorcontrib><creatorcontrib>Storm, Gert</creatorcontrib><creatorcontrib>Kjaer, Andreas</creatorcontrib><creatorcontrib>Lewis, Jason S</creatorcontrib><creatorcontrib>Reiner, Thomas</creatorcontrib><creatorcontrib>Fayad, Zahi A</creatorcontrib><creatorcontrib>Mulder, Willem J. M</creatorcontrib><creatorcontrib>Pérez-Medina, Carlos</creatorcontrib><title>Multimodal Positron Emission Tomography Imaging to Quantify Uptake of 89Zr-Labeled Liposomes in the Atherosclerotic Vessel Wall</title><title>Bioconjugate chemistry</title><addtitle>Bioconjugate Chem</addtitle><description>Nanotherapy has recently emerged as an experimental treatment option for atherosclerosis. To fulfill its promise, robust noninvasive imaging approaches for subject selection and treatment evaluation are warranted. To that end, we present here a positron emission tomography (PET)-based method for quantification of liposomal nanoparticle uptake in the atherosclerotic vessel wall. We evaluated a modular procedure to label liposomal nanoparticles with the radioisotope zirconium-89 (89Zr). Their biodistribution and vessel wall targeting in a rabbit atherosclerosis model was evaluated up to 15 days after intravenous injection by PET/computed tomography (CT) and PET/magnetic resonance imaging (PET/MRI). Vascular permeability was assessed in vivo using three-dimensional dynamic contrast-enhanced MRI (3D DCE-MRI) and ex vivo using near-infrared fluorescence (NIRF) imaging. The 89Zr-radiolabeled liposomes displayed a biodistribution pattern typical of long-circulating nanoparticles. Importantly, they markedly accumulated in atherosclerotic lesions in the abdominal aorta, as evident on PET/MRI and confirmed by autoradiography, and this uptake moderately correlated with vascular permeability. The method presented herein facilitates the development of nanotherapy for atherosclerotic disease as it provides a tool to screen for nanoparticle targeting in individual subjects’ plaques.</description><subject>Aorta</subject><subject>Arteriosclerosis</subject><subject>Atherosclerosis</subject><subject>Autoradiography</subject><subject>Blood vessels</subject><subject>Computed tomography</subject><subject>Evaluation</subject><subject>Fluorescence</subject><subject>Infrared imaging</subject><subject>Intravenous administration</subject><subject>Liposomes</subject><subject>Magnetic permeability</subject><subject>Magnetic resonance imaging</subject><subject>Medical imaging</subject><subject>Nanoparticles</subject><subject>Permeability</subject><subject>Plaques</subject><subject>Positron emission</subject><subject>Positron emission tomography</subject><subject>Radioisotopes</subject><subject>Tomography</subject><subject>Zirconium</subject><subject>Zirconium isotopes</subject><issn>1043-1802</issn><issn>1520-4812</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNpVUV2LFDEQDKJ4H_obDPg8e_marxfhOE7vYEWFvRN8CT2Znt2smcmYZIR98q9flltQX6qLrqJough5x9mKM8GvwMRVZ73x097scFy1HWOirF6Qc14KVqiGi5eZMyUL3jBxRi5i3DPGWt6I1-RMctaWshbn5M_nxSU7-h4c_eqjTcFP9Ha0MdpMNn702wDz7kDvR9jaaUuTp98WmJIdDvRhTvATqR9o0_4IxRo6dNjTtZ199CNGaieadkivMwQfjcuYrKGPGCM6-h2ce0NeDeAivj3NS7L5eLu5uSvWXz7d31yvCxB1WRWCGRxUg4AoAQahUDSm7plRLR9ML1SnRF-WbVtJVPIo87ID7LDJvkbJS_LhOXZeuhF7g1MK4PQc7AjhoD1Y_b8y2Z3e-t-6VhUT9THg_Skg-F8LxqT3fglTPlkLWeXn16yV2SWfXbmfvwbO9LE0fVz-U5o-lSafABZykQo</recordid><startdate>20200219</startdate><enddate>20200219</enddate><creator>Lobatto, Mark E</creator><creator>Binderup, Tina</creator><creator>Robson, Philip M</creator><creator>Giesen, Luuk F. P</creator><creator>Calcagno, Claudia</creator><creator>Witjes, Julia</creator><creator>Fay, Francois</creator><creator>Baxter, Samantha</creator><creator>Wessel, Chang Ho</creator><creator>Eldib, Mootaz</creator><creator>Bini, Jason</creator><creator>Carlin, Sean D</creator><creator>Stroes, Erik S. G</creator><creator>Storm, Gert</creator><creator>Kjaer, Andreas</creator><creator>Lewis, Jason S</creator><creator>Reiner, Thomas</creator><creator>Fayad, Zahi A</creator><creator>Mulder, Willem J. M</creator><creator>Pérez-Medina, Carlos</creator><general>American Chemical Society</general><scope>7QO</scope><scope>7TM</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-7405-5600</orcidid><orcidid>https://orcid.org/0000-0001-7065-4534</orcidid><orcidid>https://orcid.org/0000-0001-8665-3878</orcidid><orcidid>https://orcid.org/0000-0002-7819-5480</orcidid><orcidid>https://orcid.org/0000-0002-6011-0629</orcidid></search><sort><creationdate>20200219</creationdate><title>Multimodal Positron Emission Tomography Imaging to Quantify Uptake of 89Zr-Labeled Liposomes in the Atherosclerotic Vessel Wall</title><author>Lobatto, Mark E ; Binderup, Tina ; Robson, Philip M ; Giesen, Luuk F. P ; Calcagno, Claudia ; Witjes, Julia ; Fay, Francois ; Baxter, Samantha ; Wessel, Chang Ho ; Eldib, Mootaz ; Bini, Jason ; Carlin, Sean D ; Stroes, Erik S. G ; Storm, Gert ; Kjaer, Andreas ; Lewis, Jason S ; Reiner, Thomas ; Fayad, Zahi A ; Mulder, Willem J. M ; Pérez-Medina, Carlos</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a2756-20cef48eaee3aaf24e28c7d0c491fcd24b42d559963e4324e215baebe828c843</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Aorta</topic><topic>Arteriosclerosis</topic><topic>Atherosclerosis</topic><topic>Autoradiography</topic><topic>Blood vessels</topic><topic>Computed tomography</topic><topic>Evaluation</topic><topic>Fluorescence</topic><topic>Infrared imaging</topic><topic>Intravenous administration</topic><topic>Liposomes</topic><topic>Magnetic permeability</topic><topic>Magnetic resonance imaging</topic><topic>Medical imaging</topic><topic>Nanoparticles</topic><topic>Permeability</topic><topic>Plaques</topic><topic>Positron emission</topic><topic>Positron emission tomography</topic><topic>Radioisotopes</topic><topic>Tomography</topic><topic>Zirconium</topic><topic>Zirconium isotopes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lobatto, Mark E</creatorcontrib><creatorcontrib>Binderup, Tina</creatorcontrib><creatorcontrib>Robson, Philip M</creatorcontrib><creatorcontrib>Giesen, Luuk F. P</creatorcontrib><creatorcontrib>Calcagno, Claudia</creatorcontrib><creatorcontrib>Witjes, Julia</creatorcontrib><creatorcontrib>Fay, Francois</creatorcontrib><creatorcontrib>Baxter, Samantha</creatorcontrib><creatorcontrib>Wessel, Chang Ho</creatorcontrib><creatorcontrib>Eldib, Mootaz</creatorcontrib><creatorcontrib>Bini, Jason</creatorcontrib><creatorcontrib>Carlin, Sean D</creatorcontrib><creatorcontrib>Stroes, Erik S. G</creatorcontrib><creatorcontrib>Storm, Gert</creatorcontrib><creatorcontrib>Kjaer, Andreas</creatorcontrib><creatorcontrib>Lewis, Jason S</creatorcontrib><creatorcontrib>Reiner, Thomas</creatorcontrib><creatorcontrib>Fayad, Zahi A</creatorcontrib><creatorcontrib>Mulder, Willem J. M</creatorcontrib><creatorcontrib>Pérez-Medina, Carlos</creatorcontrib><collection>Biotechnology Research Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Bioconjugate chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lobatto, Mark E</au><au>Binderup, Tina</au><au>Robson, Philip M</au><au>Giesen, Luuk F. P</au><au>Calcagno, Claudia</au><au>Witjes, Julia</au><au>Fay, Francois</au><au>Baxter, Samantha</au><au>Wessel, Chang Ho</au><au>Eldib, Mootaz</au><au>Bini, Jason</au><au>Carlin, Sean D</au><au>Stroes, Erik S. G</au><au>Storm, Gert</au><au>Kjaer, Andreas</au><au>Lewis, Jason S</au><au>Reiner, Thomas</au><au>Fayad, Zahi A</au><au>Mulder, Willem J. M</au><au>Pérez-Medina, Carlos</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multimodal Positron Emission Tomography Imaging to Quantify Uptake of 89Zr-Labeled Liposomes in the Atherosclerotic Vessel Wall</atitle><jtitle>Bioconjugate chemistry</jtitle><addtitle>Bioconjugate Chem</addtitle><date>2020-02-19</date><risdate>2020</risdate><volume>31</volume><issue>2</issue><spage>360</spage><epage>368</epage><pages>360-368</pages><issn>1043-1802</issn><eissn>1520-4812</eissn><abstract>Nanotherapy has recently emerged as an experimental treatment option for atherosclerosis. To fulfill its promise, robust noninvasive imaging approaches for subject selection and treatment evaluation are warranted. To that end, we present here a positron emission tomography (PET)-based method for quantification of liposomal nanoparticle uptake in the atherosclerotic vessel wall. We evaluated a modular procedure to label liposomal nanoparticles with the radioisotope zirconium-89 (89Zr). Their biodistribution and vessel wall targeting in a rabbit atherosclerosis model was evaluated up to 15 days after intravenous injection by PET/computed tomography (CT) and PET/magnetic resonance imaging (PET/MRI). Vascular permeability was assessed in vivo using three-dimensional dynamic contrast-enhanced MRI (3D DCE-MRI) and ex vivo using near-infrared fluorescence (NIRF) imaging. The 89Zr-radiolabeled liposomes displayed a biodistribution pattern typical of long-circulating nanoparticles. Importantly, they markedly accumulated in atherosclerotic lesions in the abdominal aorta, as evident on PET/MRI and confirmed by autoradiography, and this uptake moderately correlated with vascular permeability. The method presented herein facilitates the development of nanotherapy for atherosclerotic disease as it provides a tool to screen for nanoparticle targeting in individual subjects’ plaques.</abstract><cop>Washington</cop><pub>American Chemical Society</pub><pmid>31095372</pmid><doi>10.1021/acs.bioconjchem.9b00256</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-7405-5600</orcidid><orcidid>https://orcid.org/0000-0001-7065-4534</orcidid><orcidid>https://orcid.org/0000-0001-8665-3878</orcidid><orcidid>https://orcid.org/0000-0002-7819-5480</orcidid><orcidid>https://orcid.org/0000-0002-6011-0629</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1043-1802 |
ispartof | Bioconjugate chemistry, 2020-02, Vol.31 (2), p.360-368 |
issn | 1043-1802 1520-4812 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7460274 |
source | ACS Publications |
subjects | Aorta Arteriosclerosis Atherosclerosis Autoradiography Blood vessels Computed tomography Evaluation Fluorescence Infrared imaging Intravenous administration Liposomes Magnetic permeability Magnetic resonance imaging Medical imaging Nanoparticles Permeability Plaques Positron emission Positron emission tomography Radioisotopes Tomography Zirconium Zirconium isotopes |
title | Multimodal Positron Emission Tomography Imaging to Quantify Uptake of 89Zr-Labeled Liposomes in the Atherosclerotic Vessel Wall |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T01%3A58%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multimodal%20Positron%20Emission%20Tomography%20Imaging%20to%20Quantify%20Uptake%20of%2089Zr-Labeled%20Liposomes%20in%20the%20Atherosclerotic%20Vessel%20Wall&rft.jtitle=Bioconjugate%20chemistry&rft.au=Lobatto,%20Mark%20E&rft.date=2020-02-19&rft.volume=31&rft.issue=2&rft.spage=360&rft.epage=368&rft.pages=360-368&rft.issn=1043-1802&rft.eissn=1520-4812&rft_id=info:doi/10.1021/acs.bioconjchem.9b00256&rft_dat=%3Cproquest_pubme%3E2360027093%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2360027093&rft_id=info:pmid/31095372&rfr_iscdi=true |