Stable retention of chloramphenicol-resistant mtDNA to rescue metabolically impaired cells

The permanent transfer of specific mtDNA sequences into mammalian cells could generate improved models of mtDNA disease and support future cell-based therapies. Previous studies documented multiple biochemical changes in recipient cells shortly after mtDNA transfer, but the long-term retention and f...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2020-08, Vol.10 (1), p.14328-14328, Article 14328
Hauptverfasser: Dawson, Emma R., Patananan, Alexander N., Sercel, Alexander J., Teitell, Michael A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 14328
container_issue 1
container_start_page 14328
container_title Scientific reports
container_volume 10
creator Dawson, Emma R.
Patananan, Alexander N.
Sercel, Alexander J.
Teitell, Michael A.
description The permanent transfer of specific mtDNA sequences into mammalian cells could generate improved models of mtDNA disease and support future cell-based therapies. Previous studies documented multiple biochemical changes in recipient cells shortly after mtDNA transfer, but the long-term retention and function of transferred mtDNA remains unknown. Here, we evaluate mtDNA retention in new host cells using ‘MitoPunch’, a device that transfers isolated mitochondria into mouse and human cells. We show that newly introduced mtDNA is stably retained in mtDNA-deficient (ρ0) recipient cells following uridine-free selection, although exogenous mtDNA is lost from metabolically impaired, mtDNA-intact (ρ+) cells. We then introduced a second selective pressure by transferring chloramphenicol-resistant mitochondria into chloramphenicol-sensitive, metabolically impaired ρ+ mouse cybrid cells. Following double selection, recipient cells with mismatched nuclear (nDNA) and mitochondrial (mtDNA) genomes retained transferred mtDNA, which replaced the endogenous mutant mtDNA and improved cell respiration. However, recipient cells with matched mtDNA-nDNA failed to retain transferred mtDNA and sustained impaired respiration. Our results suggest that exogenous mtDNA retention in metabolically impaired ρ+ recipients depends on the degree of recipient mtDNA-nDNA co-evolution. Uncovering factors that stabilize exogenous mtDNA integration will improve our understanding of in vivo mitochondrial transfer and the interplay between mitochondrial and nuclear genomes.
doi_str_mv 10.1038/s41598-020-71199-0
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7459123</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2439624197</sourcerecordid><originalsourceid>FETCH-LOGICAL-c511t-62c245924ac19b0b20db94e214abe3fcfcd1d1002cea85df175abe9c6e51a60c3</originalsourceid><addsrcrecordid>eNp1kUFP3DAQhS0EAgT8AQ4oUi9cQj2TOIkvlRCFUgmVA-2lF8txJqyRE29tpxL_vqZL0bZSfbGl-ebNPD_GToFfAK-697EGIbuSIy9bAClLvsMOkdeixApxd-t9wE5ifOL5CJQ1yH12UGHXdG0nDtn3h6R7R0WgRHOyfi78WJiV80FP6xXN1nhXBoo2Jj2nYkofv1wWyWc-moWKiXK7d9Zo554LO621DTQUhpyLx2xv1C7Syet9xL7dXH-9ui3v7j99vrq8K40ASGWDBmshsdYGZM975EMva0KodU_VaEYzwACcoyHdiWGEVuSCNA0J0A031RH7sNFdL_1Eg8k-gnZqHeykw7Py2qq_K7NdqUf_U7V5LGCVBc5fBYL_sVBMarLxxYKeyS9RYV3JBvPPtRl99w_65JcwZ3sKuq5BmZMQmcINZYKPMdD4tgxw9ZKe2qSncnrqd3qK56azbRtvLX-yykC1AWIuzY8Utmb_X_YXLs6ndw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1886291995</pqid></control><display><type>article</type><title>Stable retention of chloramphenicol-resistant mtDNA to rescue metabolically impaired cells</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Springer Nature OA Free Journals</source><source>Nature Free</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Dawson, Emma R. ; Patananan, Alexander N. ; Sercel, Alexander J. ; Teitell, Michael A.</creator><creatorcontrib>Dawson, Emma R. ; Patananan, Alexander N. ; Sercel, Alexander J. ; Teitell, Michael A.</creatorcontrib><description>The permanent transfer of specific mtDNA sequences into mammalian cells could generate improved models of mtDNA disease and support future cell-based therapies. Previous studies documented multiple biochemical changes in recipient cells shortly after mtDNA transfer, but the long-term retention and function of transferred mtDNA remains unknown. Here, we evaluate mtDNA retention in new host cells using ‘MitoPunch’, a device that transfers isolated mitochondria into mouse and human cells. We show that newly introduced mtDNA is stably retained in mtDNA-deficient (ρ0) recipient cells following uridine-free selection, although exogenous mtDNA is lost from metabolically impaired, mtDNA-intact (ρ+) cells. We then introduced a second selective pressure by transferring chloramphenicol-resistant mitochondria into chloramphenicol-sensitive, metabolically impaired ρ+ mouse cybrid cells. Following double selection, recipient cells with mismatched nuclear (nDNA) and mitochondrial (mtDNA) genomes retained transferred mtDNA, which replaced the endogenous mutant mtDNA and improved cell respiration. However, recipient cells with matched mtDNA-nDNA failed to retain transferred mtDNA and sustained impaired respiration. Our results suggest that exogenous mtDNA retention in metabolically impaired ρ+ recipients depends on the degree of recipient mtDNA-nDNA co-evolution. Uncovering factors that stabilize exogenous mtDNA integration will improve our understanding of in vivo mitochondrial transfer and the interplay between mitochondrial and nuclear genomes.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-020-71199-0</identifier><identifier>PMID: 32868785</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/80/642/333 ; 631/80/642/333/1465 ; Adipose tissue ; Animals ; Arteriosclerosis ; Body weight gain ; Cell Line, Tumor ; Chloramphenicol ; Diabetes mellitus ; Diabetes mellitus (non-insulin dependent) ; DNA, Mitochondrial ; Gene Transfer Techniques ; Glucose tolerance ; Growth factors ; Heart diseases ; HEK293 Cells ; Hepatocyte growth factor ; High fat diet ; Humanities and Social Sciences ; Humans ; Hybrid Cells ; Immunological tolerance ; Inflammation ; Insulin ; Insulin resistance ; Macrophages ; Mice ; Mitochondria ; multidisciplinary ; Obesity ; Overexpression ; Respiration ; Retention ; Rodents ; Science ; Science (multidisciplinary)</subject><ispartof>Scientific reports, 2020-08, Vol.10 (1), p.14328-14328, Article 14328</ispartof><rights>The Author(s) 2020</rights><rights>The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c511t-62c245924ac19b0b20db94e214abe3fcfcd1d1002cea85df175abe9c6e51a60c3</citedby><cites>FETCH-LOGICAL-c511t-62c245924ac19b0b20db94e214abe3fcfcd1d1002cea85df175abe9c6e51a60c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7459123/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7459123/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,27924,27925,41120,42189,51576,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32868785$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Dawson, Emma R.</creatorcontrib><creatorcontrib>Patananan, Alexander N.</creatorcontrib><creatorcontrib>Sercel, Alexander J.</creatorcontrib><creatorcontrib>Teitell, Michael A.</creatorcontrib><title>Stable retention of chloramphenicol-resistant mtDNA to rescue metabolically impaired cells</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>The permanent transfer of specific mtDNA sequences into mammalian cells could generate improved models of mtDNA disease and support future cell-based therapies. Previous studies documented multiple biochemical changes in recipient cells shortly after mtDNA transfer, but the long-term retention and function of transferred mtDNA remains unknown. Here, we evaluate mtDNA retention in new host cells using ‘MitoPunch’, a device that transfers isolated mitochondria into mouse and human cells. We show that newly introduced mtDNA is stably retained in mtDNA-deficient (ρ0) recipient cells following uridine-free selection, although exogenous mtDNA is lost from metabolically impaired, mtDNA-intact (ρ+) cells. We then introduced a second selective pressure by transferring chloramphenicol-resistant mitochondria into chloramphenicol-sensitive, metabolically impaired ρ+ mouse cybrid cells. Following double selection, recipient cells with mismatched nuclear (nDNA) and mitochondrial (mtDNA) genomes retained transferred mtDNA, which replaced the endogenous mutant mtDNA and improved cell respiration. However, recipient cells with matched mtDNA-nDNA failed to retain transferred mtDNA and sustained impaired respiration. Our results suggest that exogenous mtDNA retention in metabolically impaired ρ+ recipients depends on the degree of recipient mtDNA-nDNA co-evolution. Uncovering factors that stabilize exogenous mtDNA integration will improve our understanding of in vivo mitochondrial transfer and the interplay between mitochondrial and nuclear genomes.</description><subject>631/80/642/333</subject><subject>631/80/642/333/1465</subject><subject>Adipose tissue</subject><subject>Animals</subject><subject>Arteriosclerosis</subject><subject>Body weight gain</subject><subject>Cell Line, Tumor</subject><subject>Chloramphenicol</subject><subject>Diabetes mellitus</subject><subject>Diabetes mellitus (non-insulin dependent)</subject><subject>DNA, Mitochondrial</subject><subject>Gene Transfer Techniques</subject><subject>Glucose tolerance</subject><subject>Growth factors</subject><subject>Heart diseases</subject><subject>HEK293 Cells</subject><subject>Hepatocyte growth factor</subject><subject>High fat diet</subject><subject>Humanities and Social Sciences</subject><subject>Humans</subject><subject>Hybrid Cells</subject><subject>Immunological tolerance</subject><subject>Inflammation</subject><subject>Insulin</subject><subject>Insulin resistance</subject><subject>Macrophages</subject><subject>Mice</subject><subject>Mitochondria</subject><subject>multidisciplinary</subject><subject>Obesity</subject><subject>Overexpression</subject><subject>Respiration</subject><subject>Retention</subject><subject>Rodents</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kUFP3DAQhS0EAgT8AQ4oUi9cQj2TOIkvlRCFUgmVA-2lF8txJqyRE29tpxL_vqZL0bZSfbGl-ebNPD_GToFfAK-697EGIbuSIy9bAClLvsMOkdeixApxd-t9wE5ifOL5CJQ1yH12UGHXdG0nDtn3h6R7R0WgRHOyfi78WJiV80FP6xXN1nhXBoo2Jj2nYkofv1wWyWc-moWKiXK7d9Zo554LO621DTQUhpyLx2xv1C7Syet9xL7dXH-9ui3v7j99vrq8K40ASGWDBmshsdYGZM975EMva0KodU_VaEYzwACcoyHdiWGEVuSCNA0J0A031RH7sNFdL_1Eg8k-gnZqHeykw7Py2qq_K7NdqUf_U7V5LGCVBc5fBYL_sVBMarLxxYKeyS9RYV3JBvPPtRl99w_65JcwZ3sKuq5BmZMQmcINZYKPMdD4tgxw9ZKe2qSncnrqd3qK56azbRtvLX-yykC1AWIuzY8Utmb_X_YXLs6ndw</recordid><startdate>20200831</startdate><enddate>20200831</enddate><creator>Dawson, Emma R.</creator><creator>Patananan, Alexander N.</creator><creator>Sercel, Alexander J.</creator><creator>Teitell, Michael A.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20200831</creationdate><title>Stable retention of chloramphenicol-resistant mtDNA to rescue metabolically impaired cells</title><author>Dawson, Emma R. ; Patananan, Alexander N. ; Sercel, Alexander J. ; Teitell, Michael A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c511t-62c245924ac19b0b20db94e214abe3fcfcd1d1002cea85df175abe9c6e51a60c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>631/80/642/333</topic><topic>631/80/642/333/1465</topic><topic>Adipose tissue</topic><topic>Animals</topic><topic>Arteriosclerosis</topic><topic>Body weight gain</topic><topic>Cell Line, Tumor</topic><topic>Chloramphenicol</topic><topic>Diabetes mellitus</topic><topic>Diabetes mellitus (non-insulin dependent)</topic><topic>DNA, Mitochondrial</topic><topic>Gene Transfer Techniques</topic><topic>Glucose tolerance</topic><topic>Growth factors</topic><topic>Heart diseases</topic><topic>HEK293 Cells</topic><topic>Hepatocyte growth factor</topic><topic>High fat diet</topic><topic>Humanities and Social Sciences</topic><topic>Humans</topic><topic>Hybrid Cells</topic><topic>Immunological tolerance</topic><topic>Inflammation</topic><topic>Insulin</topic><topic>Insulin resistance</topic><topic>Macrophages</topic><topic>Mice</topic><topic>Mitochondria</topic><topic>multidisciplinary</topic><topic>Obesity</topic><topic>Overexpression</topic><topic>Respiration</topic><topic>Retention</topic><topic>Rodents</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dawson, Emma R.</creatorcontrib><creatorcontrib>Patananan, Alexander N.</creatorcontrib><creatorcontrib>Sercel, Alexander J.</creatorcontrib><creatorcontrib>Teitell, Michael A.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dawson, Emma R.</au><au>Patananan, Alexander N.</au><au>Sercel, Alexander J.</au><au>Teitell, Michael A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stable retention of chloramphenicol-resistant mtDNA to rescue metabolically impaired cells</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2020-08-31</date><risdate>2020</risdate><volume>10</volume><issue>1</issue><spage>14328</spage><epage>14328</epage><pages>14328-14328</pages><artnum>14328</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>The permanent transfer of specific mtDNA sequences into mammalian cells could generate improved models of mtDNA disease and support future cell-based therapies. Previous studies documented multiple biochemical changes in recipient cells shortly after mtDNA transfer, but the long-term retention and function of transferred mtDNA remains unknown. Here, we evaluate mtDNA retention in new host cells using ‘MitoPunch’, a device that transfers isolated mitochondria into mouse and human cells. We show that newly introduced mtDNA is stably retained in mtDNA-deficient (ρ0) recipient cells following uridine-free selection, although exogenous mtDNA is lost from metabolically impaired, mtDNA-intact (ρ+) cells. We then introduced a second selective pressure by transferring chloramphenicol-resistant mitochondria into chloramphenicol-sensitive, metabolically impaired ρ+ mouse cybrid cells. Following double selection, recipient cells with mismatched nuclear (nDNA) and mitochondrial (mtDNA) genomes retained transferred mtDNA, which replaced the endogenous mutant mtDNA and improved cell respiration. However, recipient cells with matched mtDNA-nDNA failed to retain transferred mtDNA and sustained impaired respiration. Our results suggest that exogenous mtDNA retention in metabolically impaired ρ+ recipients depends on the degree of recipient mtDNA-nDNA co-evolution. Uncovering factors that stabilize exogenous mtDNA integration will improve our understanding of in vivo mitochondrial transfer and the interplay between mitochondrial and nuclear genomes.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>32868785</pmid><doi>10.1038/s41598-020-71199-0</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2045-2322
ispartof Scientific reports, 2020-08, Vol.10 (1), p.14328-14328, Article 14328
issn 2045-2322
2045-2322
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7459123
source MEDLINE; DOAJ Directory of Open Access Journals; Springer Nature OA Free Journals; Nature Free; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry
subjects 631/80/642/333
631/80/642/333/1465
Adipose tissue
Animals
Arteriosclerosis
Body weight gain
Cell Line, Tumor
Chloramphenicol
Diabetes mellitus
Diabetes mellitus (non-insulin dependent)
DNA, Mitochondrial
Gene Transfer Techniques
Glucose tolerance
Growth factors
Heart diseases
HEK293 Cells
Hepatocyte growth factor
High fat diet
Humanities and Social Sciences
Humans
Hybrid Cells
Immunological tolerance
Inflammation
Insulin
Insulin resistance
Macrophages
Mice
Mitochondria
multidisciplinary
Obesity
Overexpression
Respiration
Retention
Rodents
Science
Science (multidisciplinary)
title Stable retention of chloramphenicol-resistant mtDNA to rescue metabolically impaired cells
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T14%3A29%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stable%20retention%20of%20chloramphenicol-resistant%20mtDNA%20to%20rescue%20metabolically%20impaired%20cells&rft.jtitle=Scientific%20reports&rft.au=Dawson,%20Emma%20R.&rft.date=2020-08-31&rft.volume=10&rft.issue=1&rft.spage=14328&rft.epage=14328&rft.pages=14328-14328&rft.artnum=14328&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-020-71199-0&rft_dat=%3Cproquest_pubme%3E2439624197%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1886291995&rft_id=info:pmid/32868785&rfr_iscdi=true