Grapevine VlbZIP30 improves drought resistance by directly activating VvNAC17 and promoting lignin biosynthesis through the regulation of three peroxidase genes
Drought stress severely affects grapevine quality and yield, and recent reports have revealed that lignin plays an important role in protection from drought stress. Since little is known about lignin-mediated drought resistance in grapevine, we investigated its significance. Herein, we show that Vlb...
Gespeichert in:
Veröffentlicht in: | Horticulture research 2020-09, Vol.7 (1), p.150, Article 150 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | 150 |
container_title | Horticulture research |
container_volume | 7 |
creator | Tu, Mingxing Wang, Xianhang Yin, Wuchen Wang, Ya Li, Yajuan Zhang, Guofeng Li, Zhi Song, Junyang Wang, Xiping |
description | Drought stress severely affects grapevine quality and yield, and recent reports have revealed that lignin plays an important role in protection from drought stress. Since little is known about lignin-mediated drought resistance in grapevine, we investigated its significance. Herein, we show that
VlbZIP30
mediates drought resistance by activating the expression of lignin biosynthetic genes and increasing lignin deposition. Transgenic grapevine plants overexpressing
VlbZIP30
exhibited lignin deposition (mainly G and S monomers) in the stem secondary xylem under control conditions, which resulted from the upregulated expression of
VvPRX4
and
VvPRX72
. Overexpression of
VlbZIP30
improves drought tolerance, characterized by a reduction in the water loss rate, maintenance of an effective photosynthesis rate, and increased lignin content (mainly G monomer) in leaves under drought conditions. Electrophoretic mobility shift assay, luciferase reporter assays, and chromatin immunoprecipitation-qPCR assays indicated that
VlbZIP30
directly binds to the G-box
cis
-element in the promoters of lignin biosynthetic (
VvPRX N1
) and drought-responsive (
VvNAC17
) genes to regulate their expression. In summary, we report a novel
VlbZIP30
-mediated mechanism linking lignification and drought tolerance in grapevine. The results of this study may be of value for the development of molecular breeding strategies to produce drought-resistant fruit crops. |
doi_str_mv | 10.1038/s41438-020-00372-3 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7458916</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2438796006</sourcerecordid><originalsourceid>FETCH-LOGICAL-c572t-eaa3081428c531fe80c7bd2128386f86aea74f279acfacf629a2419249dedf573</originalsourceid><addsrcrecordid>eNqNksFu1DAURSMEolXpD7BAlliiFPs5iZ0NUjWCtlIFLKALNpaTvGRcZexgO4H5Gz4Vz0wZYIOQLNnyO_f62ddZ9pzRC0a5fB0KVnCZU6A5pVxAzh9lp0BLyAWI6nFaVxXklWT0JDsP4Z5SysoCeCmeZiccagAJcJr9uPJ6wsVYJHdj8-XmI6fEbCbvFgyk824e1pF4DCZEbVskzZZ0xmMbxy3RbTSLjsYO5G55f7ligmjbkSTeuP3uaAZrLGmMC1sb1zsXEtd70zRj8h3mMRk4S1y_qyCSCb37bjodkAxoMTzLnvR6DHj-MJ9ln9-9_bS6zm8_XN2sLm_zthQQc9SaU8kKkG3JWY-StqLpgIHksuplpVGLogdR67ZPo4JaQ8FqKOoOu74U_Cx7c_Cd5maDXYs2ej2qyZuN9lvltFF_V6xZq8EtShSlrFmVDF4-GHj3dcYQ1b2bvU09K0hJibqidEfBgWq9C8FjfzyBUbULVh2CVSlYtQ9W8SR68WdvR8mvGBMgD8A3bFwfWoMpqyOWoi-rumCi2H0CuTJx_-YrN9uYpK_-X5pofqBDIuyA_vcl_9H_T0yB03o</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2438796006</pqid></control><display><type>article</type><title>Grapevine VlbZIP30 improves drought resistance by directly activating VvNAC17 and promoting lignin biosynthesis through the regulation of three peroxidase genes</title><source>DOAJ Directory of Open Access Journals</source><source>Springer Nature OA Free Journals</source><source>Oxford Journals Open Access Collection</source><source>Nature Free</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Tu, Mingxing ; Wang, Xianhang ; Yin, Wuchen ; Wang, Ya ; Li, Yajuan ; Zhang, Guofeng ; Li, Zhi ; Song, Junyang ; Wang, Xiping</creator><creatorcontrib>Tu, Mingxing ; Wang, Xianhang ; Yin, Wuchen ; Wang, Ya ; Li, Yajuan ; Zhang, Guofeng ; Li, Zhi ; Song, Junyang ; Wang, Xiping</creatorcontrib><description>Drought stress severely affects grapevine quality and yield, and recent reports have revealed that lignin plays an important role in protection from drought stress. Since little is known about lignin-mediated drought resistance in grapevine, we investigated its significance. Herein, we show that
VlbZIP30
mediates drought resistance by activating the expression of lignin biosynthetic genes and increasing lignin deposition. Transgenic grapevine plants overexpressing
VlbZIP30
exhibited lignin deposition (mainly G and S monomers) in the stem secondary xylem under control conditions, which resulted from the upregulated expression of
VvPRX4
and
VvPRX72
. Overexpression of
VlbZIP30
improves drought tolerance, characterized by a reduction in the water loss rate, maintenance of an effective photosynthesis rate, and increased lignin content (mainly G monomer) in leaves under drought conditions. Electrophoretic mobility shift assay, luciferase reporter assays, and chromatin immunoprecipitation-qPCR assays indicated that
VlbZIP30
directly binds to the G-box
cis
-element in the promoters of lignin biosynthetic (
VvPRX N1
) and drought-responsive (
VvNAC17
) genes to regulate their expression. In summary, we report a novel
VlbZIP30
-mediated mechanism linking lignification and drought tolerance in grapevine. The results of this study may be of value for the development of molecular breeding strategies to produce drought-resistant fruit crops.</description><identifier>ISSN: 2662-6810</identifier><identifier>EISSN: 2052-7276</identifier><identifier>DOI: 10.1038/s41438-020-00372-3</identifier><identifier>PMID: 32922822</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/449/1659 ; 631/449/2661/2665 ; Agriculture ; Assaying ; Biomedical and Life Sciences ; Biosynthesis ; Chromatin ; Deposition ; Drought ; Drought resistance ; Ecology ; Electrophoretic mobility ; Fruit crops ; Gene expression ; Gene regulation ; Genes ; Genetics & Heredity ; Horticulture ; Immunoprecipitation ; Leaves ; Life Sciences ; Life Sciences & Biomedicine ; Lignin ; Monomers ; Peroxidase ; Photosynthesis ; Plant breeding ; Plant Breeding/Biotechnology ; Plant Genetics and Genomics ; Plant Sciences ; Science & Technology ; Transgenic plants ; Water loss ; Xylem</subject><ispartof>Horticulture research, 2020-09, Vol.7 (1), p.150, Article 150</ispartof><rights>The Author(s) 2020</rights><rights>The Author(s) 2020.</rights><rights>The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>65</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000569417400018</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c572t-eaa3081428c531fe80c7bd2128386f86aea74f279acfacf629a2419249dedf573</citedby><cites>FETCH-LOGICAL-c572t-eaa3081428c531fe80c7bd2128386f86aea74f279acfacf629a2419249dedf573</cites><orcidid>0000-0002-3529-8113 ; 0000-0003-4144-0099</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7458916/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7458916/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2114,27924,27925,41120,42189,51576,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32922822$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tu, Mingxing</creatorcontrib><creatorcontrib>Wang, Xianhang</creatorcontrib><creatorcontrib>Yin, Wuchen</creatorcontrib><creatorcontrib>Wang, Ya</creatorcontrib><creatorcontrib>Li, Yajuan</creatorcontrib><creatorcontrib>Zhang, Guofeng</creatorcontrib><creatorcontrib>Li, Zhi</creatorcontrib><creatorcontrib>Song, Junyang</creatorcontrib><creatorcontrib>Wang, Xiping</creatorcontrib><title>Grapevine VlbZIP30 improves drought resistance by directly activating VvNAC17 and promoting lignin biosynthesis through the regulation of three peroxidase genes</title><title>Horticulture research</title><addtitle>Hortic Res</addtitle><addtitle>HORTIC RES-ENGLAND</addtitle><addtitle>Hortic Res</addtitle><description>Drought stress severely affects grapevine quality and yield, and recent reports have revealed that lignin plays an important role in protection from drought stress. Since little is known about lignin-mediated drought resistance in grapevine, we investigated its significance. Herein, we show that
VlbZIP30
mediates drought resistance by activating the expression of lignin biosynthetic genes and increasing lignin deposition. Transgenic grapevine plants overexpressing
VlbZIP30
exhibited lignin deposition (mainly G and S monomers) in the stem secondary xylem under control conditions, which resulted from the upregulated expression of
VvPRX4
and
VvPRX72
. Overexpression of
VlbZIP30
improves drought tolerance, characterized by a reduction in the water loss rate, maintenance of an effective photosynthesis rate, and increased lignin content (mainly G monomer) in leaves under drought conditions. Electrophoretic mobility shift assay, luciferase reporter assays, and chromatin immunoprecipitation-qPCR assays indicated that
VlbZIP30
directly binds to the G-box
cis
-element in the promoters of lignin biosynthetic (
VvPRX N1
) and drought-responsive (
VvNAC17
) genes to regulate their expression. In summary, we report a novel
VlbZIP30
-mediated mechanism linking lignification and drought tolerance in grapevine. The results of this study may be of value for the development of molecular breeding strategies to produce drought-resistant fruit crops.</description><subject>631/449/1659</subject><subject>631/449/2661/2665</subject><subject>Agriculture</subject><subject>Assaying</subject><subject>Biomedical and Life Sciences</subject><subject>Biosynthesis</subject><subject>Chromatin</subject><subject>Deposition</subject><subject>Drought</subject><subject>Drought resistance</subject><subject>Ecology</subject><subject>Electrophoretic mobility</subject><subject>Fruit crops</subject><subject>Gene expression</subject><subject>Gene regulation</subject><subject>Genes</subject><subject>Genetics & Heredity</subject><subject>Horticulture</subject><subject>Immunoprecipitation</subject><subject>Leaves</subject><subject>Life Sciences</subject><subject>Life Sciences & Biomedicine</subject><subject>Lignin</subject><subject>Monomers</subject><subject>Peroxidase</subject><subject>Photosynthesis</subject><subject>Plant breeding</subject><subject>Plant Breeding/Biotechnology</subject><subject>Plant Genetics and Genomics</subject><subject>Plant Sciences</subject><subject>Science & Technology</subject><subject>Transgenic plants</subject><subject>Water loss</subject><subject>Xylem</subject><issn>2662-6810</issn><issn>2052-7276</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>AOWDO</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqNksFu1DAURSMEolXpD7BAlliiFPs5iZ0NUjWCtlIFLKALNpaTvGRcZexgO4H5Gz4Vz0wZYIOQLNnyO_f62ddZ9pzRC0a5fB0KVnCZU6A5pVxAzh9lp0BLyAWI6nFaVxXklWT0JDsP4Z5SysoCeCmeZiccagAJcJr9uPJ6wsVYJHdj8-XmI6fEbCbvFgyk824e1pF4DCZEbVskzZZ0xmMbxy3RbTSLjsYO5G55f7ligmjbkSTeuP3uaAZrLGmMC1sb1zsXEtd70zRj8h3mMRk4S1y_qyCSCb37bjodkAxoMTzLnvR6DHj-MJ9ln9-9_bS6zm8_XN2sLm_zthQQc9SaU8kKkG3JWY-StqLpgIHksuplpVGLogdR67ZPo4JaQ8FqKOoOu74U_Cx7c_Cd5maDXYs2ej2qyZuN9lvltFF_V6xZq8EtShSlrFmVDF4-GHj3dcYQ1b2bvU09K0hJibqidEfBgWq9C8FjfzyBUbULVh2CVSlYtQ9W8SR68WdvR8mvGBMgD8A3bFwfWoMpqyOWoi-rumCi2H0CuTJx_-YrN9uYpK_-X5pofqBDIuyA_vcl_9H_T0yB03o</recordid><startdate>20200901</startdate><enddate>20200901</enddate><creator>Tu, Mingxing</creator><creator>Wang, Xianhang</creator><creator>Yin, Wuchen</creator><creator>Wang, Ya</creator><creator>Li, Yajuan</creator><creator>Zhang, Guofeng</creator><creator>Li, Zhi</creator><creator>Song, Junyang</creator><creator>Wang, Xiping</creator><general>Nature Publishing Group UK</general><general>Nanjing Agricultural Univ</general><general>Oxford University Press</general><scope>C6C</scope><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-3529-8113</orcidid><orcidid>https://orcid.org/0000-0003-4144-0099</orcidid></search><sort><creationdate>20200901</creationdate><title>Grapevine VlbZIP30 improves drought resistance by directly activating VvNAC17 and promoting lignin biosynthesis through the regulation of three peroxidase genes</title><author>Tu, Mingxing ; Wang, Xianhang ; Yin, Wuchen ; Wang, Ya ; Li, Yajuan ; Zhang, Guofeng ; Li, Zhi ; Song, Junyang ; Wang, Xiping</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c572t-eaa3081428c531fe80c7bd2128386f86aea74f279acfacf629a2419249dedf573</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>631/449/1659</topic><topic>631/449/2661/2665</topic><topic>Agriculture</topic><topic>Assaying</topic><topic>Biomedical and Life Sciences</topic><topic>Biosynthesis</topic><topic>Chromatin</topic><topic>Deposition</topic><topic>Drought</topic><topic>Drought resistance</topic><topic>Ecology</topic><topic>Electrophoretic mobility</topic><topic>Fruit crops</topic><topic>Gene expression</topic><topic>Gene regulation</topic><topic>Genes</topic><topic>Genetics & Heredity</topic><topic>Horticulture</topic><topic>Immunoprecipitation</topic><topic>Leaves</topic><topic>Life Sciences</topic><topic>Life Sciences & Biomedicine</topic><topic>Lignin</topic><topic>Monomers</topic><topic>Peroxidase</topic><topic>Photosynthesis</topic><topic>Plant breeding</topic><topic>Plant Breeding/Biotechnology</topic><topic>Plant Genetics and Genomics</topic><topic>Plant Sciences</topic><topic>Science & Technology</topic><topic>Transgenic plants</topic><topic>Water loss</topic><topic>Xylem</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tu, Mingxing</creatorcontrib><creatorcontrib>Wang, Xianhang</creatorcontrib><creatorcontrib>Yin, Wuchen</creatorcontrib><creatorcontrib>Wang, Ya</creatorcontrib><creatorcontrib>Li, Yajuan</creatorcontrib><creatorcontrib>Zhang, Guofeng</creatorcontrib><creatorcontrib>Li, Zhi</creatorcontrib><creatorcontrib>Song, Junyang</creatorcontrib><creatorcontrib>Wang, Xiping</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Horticulture research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tu, Mingxing</au><au>Wang, Xianhang</au><au>Yin, Wuchen</au><au>Wang, Ya</au><au>Li, Yajuan</au><au>Zhang, Guofeng</au><au>Li, Zhi</au><au>Song, Junyang</au><au>Wang, Xiping</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Grapevine VlbZIP30 improves drought resistance by directly activating VvNAC17 and promoting lignin biosynthesis through the regulation of three peroxidase genes</atitle><jtitle>Horticulture research</jtitle><stitle>Hortic Res</stitle><stitle>HORTIC RES-ENGLAND</stitle><addtitle>Hortic Res</addtitle><date>2020-09-01</date><risdate>2020</risdate><volume>7</volume><issue>1</issue><spage>150</spage><pages>150-</pages><artnum>150</artnum><issn>2662-6810</issn><eissn>2052-7276</eissn><abstract>Drought stress severely affects grapevine quality and yield, and recent reports have revealed that lignin plays an important role in protection from drought stress. Since little is known about lignin-mediated drought resistance in grapevine, we investigated its significance. Herein, we show that
VlbZIP30
mediates drought resistance by activating the expression of lignin biosynthetic genes and increasing lignin deposition. Transgenic grapevine plants overexpressing
VlbZIP30
exhibited lignin deposition (mainly G and S monomers) in the stem secondary xylem under control conditions, which resulted from the upregulated expression of
VvPRX4
and
VvPRX72
. Overexpression of
VlbZIP30
improves drought tolerance, characterized by a reduction in the water loss rate, maintenance of an effective photosynthesis rate, and increased lignin content (mainly G monomer) in leaves under drought conditions. Electrophoretic mobility shift assay, luciferase reporter assays, and chromatin immunoprecipitation-qPCR assays indicated that
VlbZIP30
directly binds to the G-box
cis
-element in the promoters of lignin biosynthetic (
VvPRX N1
) and drought-responsive (
VvNAC17
) genes to regulate their expression. In summary, we report a novel
VlbZIP30
-mediated mechanism linking lignification and drought tolerance in grapevine. The results of this study may be of value for the development of molecular breeding strategies to produce drought-resistant fruit crops.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>32922822</pmid><doi>10.1038/s41438-020-00372-3</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-3529-8113</orcidid><orcidid>https://orcid.org/0000-0003-4144-0099</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2662-6810 |
ispartof | Horticulture research, 2020-09, Vol.7 (1), p.150, Article 150 |
issn | 2662-6810 2052-7276 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7458916 |
source | DOAJ Directory of Open Access Journals; Springer Nature OA Free Journals; Oxford Journals Open Access Collection; Nature Free; EZB-FREE-00999 freely available EZB journals; PubMed Central |
subjects | 631/449/1659 631/449/2661/2665 Agriculture Assaying Biomedical and Life Sciences Biosynthesis Chromatin Deposition Drought Drought resistance Ecology Electrophoretic mobility Fruit crops Gene expression Gene regulation Genes Genetics & Heredity Horticulture Immunoprecipitation Leaves Life Sciences Life Sciences & Biomedicine Lignin Monomers Peroxidase Photosynthesis Plant breeding Plant Breeding/Biotechnology Plant Genetics and Genomics Plant Sciences Science & Technology Transgenic plants Water loss Xylem |
title | Grapevine VlbZIP30 improves drought resistance by directly activating VvNAC17 and promoting lignin biosynthesis through the regulation of three peroxidase genes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T18%3A08%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Grapevine%20VlbZIP30%20improves%20drought%20resistance%20by%20directly%20activating%20VvNAC17%20and%20promoting%20lignin%20biosynthesis%20through%20the%20regulation%20of%20three%20peroxidase%20genes&rft.jtitle=Horticulture%20research&rft.au=Tu,%20Mingxing&rft.date=2020-09-01&rft.volume=7&rft.issue=1&rft.spage=150&rft.pages=150-&rft.artnum=150&rft.issn=2662-6810&rft.eissn=2052-7276&rft_id=info:doi/10.1038/s41438-020-00372-3&rft_dat=%3Cproquest_pubme%3E2438796006%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2438796006&rft_id=info:pmid/32922822&rfr_iscdi=true |