Grapevine VlbZIP30 improves drought resistance by directly activating VvNAC17 and promoting lignin biosynthesis through the regulation of three peroxidase genes

Drought stress severely affects grapevine quality and yield, and recent reports have revealed that lignin plays an important role in protection from drought stress. Since little is known about lignin-mediated drought resistance in grapevine, we investigated its significance. Herein, we show that Vlb...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Horticulture research 2020-09, Vol.7 (1), p.150, Article 150
Hauptverfasser: Tu, Mingxing, Wang, Xianhang, Yin, Wuchen, Wang, Ya, Li, Yajuan, Zhang, Guofeng, Li, Zhi, Song, Junyang, Wang, Xiping
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page 150
container_title Horticulture research
container_volume 7
creator Tu, Mingxing
Wang, Xianhang
Yin, Wuchen
Wang, Ya
Li, Yajuan
Zhang, Guofeng
Li, Zhi
Song, Junyang
Wang, Xiping
description Drought stress severely affects grapevine quality and yield, and recent reports have revealed that lignin plays an important role in protection from drought stress. Since little is known about lignin-mediated drought resistance in grapevine, we investigated its significance. Herein, we show that VlbZIP30 mediates drought resistance by activating the expression of lignin biosynthetic genes and increasing lignin deposition. Transgenic grapevine plants overexpressing VlbZIP30 exhibited lignin deposition (mainly G and S monomers) in the stem secondary xylem under control conditions, which resulted from the upregulated expression of VvPRX4 and VvPRX72 . Overexpression of VlbZIP30 improves drought tolerance, characterized by a reduction in the water loss rate, maintenance of an effective photosynthesis rate, and increased lignin content (mainly G monomer) in leaves under drought conditions. Electrophoretic mobility shift assay, luciferase reporter assays, and chromatin immunoprecipitation-qPCR assays indicated that VlbZIP30 directly binds to the G-box cis -element in the promoters of lignin biosynthetic ( VvPRX N1 ) and drought-responsive ( VvNAC17 ) genes to regulate their expression. In summary, we report a novel VlbZIP30 -mediated mechanism linking lignification and drought tolerance in grapevine. The results of this study may be of value for the development of molecular breeding strategies to produce drought-resistant fruit crops.
doi_str_mv 10.1038/s41438-020-00372-3
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7458916</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2438796006</sourcerecordid><originalsourceid>FETCH-LOGICAL-c572t-eaa3081428c531fe80c7bd2128386f86aea74f279acfacf629a2419249dedf573</originalsourceid><addsrcrecordid>eNqNksFu1DAURSMEolXpD7BAlliiFPs5iZ0NUjWCtlIFLKALNpaTvGRcZexgO4H5Gz4Vz0wZYIOQLNnyO_f62ddZ9pzRC0a5fB0KVnCZU6A5pVxAzh9lp0BLyAWI6nFaVxXklWT0JDsP4Z5SysoCeCmeZiccagAJcJr9uPJ6wsVYJHdj8-XmI6fEbCbvFgyk824e1pF4DCZEbVskzZZ0xmMbxy3RbTSLjsYO5G55f7ligmjbkSTeuP3uaAZrLGmMC1sb1zsXEtd70zRj8h3mMRk4S1y_qyCSCb37bjodkAxoMTzLnvR6DHj-MJ9ln9-9_bS6zm8_XN2sLm_zthQQc9SaU8kKkG3JWY-StqLpgIHksuplpVGLogdR67ZPo4JaQ8FqKOoOu74U_Cx7c_Cd5maDXYs2ej2qyZuN9lvltFF_V6xZq8EtShSlrFmVDF4-GHj3dcYQ1b2bvU09K0hJibqidEfBgWq9C8FjfzyBUbULVh2CVSlYtQ9W8SR68WdvR8mvGBMgD8A3bFwfWoMpqyOWoi-rumCi2H0CuTJx_-YrN9uYpK_-X5pofqBDIuyA_vcl_9H_T0yB03o</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2438796006</pqid></control><display><type>article</type><title>Grapevine VlbZIP30 improves drought resistance by directly activating VvNAC17 and promoting lignin biosynthesis through the regulation of three peroxidase genes</title><source>DOAJ Directory of Open Access Journals</source><source>Springer Nature OA Free Journals</source><source>Oxford Journals Open Access Collection</source><source>Nature Free</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Tu, Mingxing ; Wang, Xianhang ; Yin, Wuchen ; Wang, Ya ; Li, Yajuan ; Zhang, Guofeng ; Li, Zhi ; Song, Junyang ; Wang, Xiping</creator><creatorcontrib>Tu, Mingxing ; Wang, Xianhang ; Yin, Wuchen ; Wang, Ya ; Li, Yajuan ; Zhang, Guofeng ; Li, Zhi ; Song, Junyang ; Wang, Xiping</creatorcontrib><description>Drought stress severely affects grapevine quality and yield, and recent reports have revealed that lignin plays an important role in protection from drought stress. Since little is known about lignin-mediated drought resistance in grapevine, we investigated its significance. Herein, we show that VlbZIP30 mediates drought resistance by activating the expression of lignin biosynthetic genes and increasing lignin deposition. Transgenic grapevine plants overexpressing VlbZIP30 exhibited lignin deposition (mainly G and S monomers) in the stem secondary xylem under control conditions, which resulted from the upregulated expression of VvPRX4 and VvPRX72 . Overexpression of VlbZIP30 improves drought tolerance, characterized by a reduction in the water loss rate, maintenance of an effective photosynthesis rate, and increased lignin content (mainly G monomer) in leaves under drought conditions. Electrophoretic mobility shift assay, luciferase reporter assays, and chromatin immunoprecipitation-qPCR assays indicated that VlbZIP30 directly binds to the G-box cis -element in the promoters of lignin biosynthetic ( VvPRX N1 ) and drought-responsive ( VvNAC17 ) genes to regulate their expression. In summary, we report a novel VlbZIP30 -mediated mechanism linking lignification and drought tolerance in grapevine. The results of this study may be of value for the development of molecular breeding strategies to produce drought-resistant fruit crops.</description><identifier>ISSN: 2662-6810</identifier><identifier>EISSN: 2052-7276</identifier><identifier>DOI: 10.1038/s41438-020-00372-3</identifier><identifier>PMID: 32922822</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/449/1659 ; 631/449/2661/2665 ; Agriculture ; Assaying ; Biomedical and Life Sciences ; Biosynthesis ; Chromatin ; Deposition ; Drought ; Drought resistance ; Ecology ; Electrophoretic mobility ; Fruit crops ; Gene expression ; Gene regulation ; Genes ; Genetics &amp; Heredity ; Horticulture ; Immunoprecipitation ; Leaves ; Life Sciences ; Life Sciences &amp; Biomedicine ; Lignin ; Monomers ; Peroxidase ; Photosynthesis ; Plant breeding ; Plant Breeding/Biotechnology ; Plant Genetics and Genomics ; Plant Sciences ; Science &amp; Technology ; Transgenic plants ; Water loss ; Xylem</subject><ispartof>Horticulture research, 2020-09, Vol.7 (1), p.150, Article 150</ispartof><rights>The Author(s) 2020</rights><rights>The Author(s) 2020.</rights><rights>The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>65</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000569417400018</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c572t-eaa3081428c531fe80c7bd2128386f86aea74f279acfacf629a2419249dedf573</citedby><cites>FETCH-LOGICAL-c572t-eaa3081428c531fe80c7bd2128386f86aea74f279acfacf629a2419249dedf573</cites><orcidid>0000-0002-3529-8113 ; 0000-0003-4144-0099</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7458916/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7458916/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2114,27924,27925,41120,42189,51576,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32922822$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tu, Mingxing</creatorcontrib><creatorcontrib>Wang, Xianhang</creatorcontrib><creatorcontrib>Yin, Wuchen</creatorcontrib><creatorcontrib>Wang, Ya</creatorcontrib><creatorcontrib>Li, Yajuan</creatorcontrib><creatorcontrib>Zhang, Guofeng</creatorcontrib><creatorcontrib>Li, Zhi</creatorcontrib><creatorcontrib>Song, Junyang</creatorcontrib><creatorcontrib>Wang, Xiping</creatorcontrib><title>Grapevine VlbZIP30 improves drought resistance by directly activating VvNAC17 and promoting lignin biosynthesis through the regulation of three peroxidase genes</title><title>Horticulture research</title><addtitle>Hortic Res</addtitle><addtitle>HORTIC RES-ENGLAND</addtitle><addtitle>Hortic Res</addtitle><description>Drought stress severely affects grapevine quality and yield, and recent reports have revealed that lignin plays an important role in protection from drought stress. Since little is known about lignin-mediated drought resistance in grapevine, we investigated its significance. Herein, we show that VlbZIP30 mediates drought resistance by activating the expression of lignin biosynthetic genes and increasing lignin deposition. Transgenic grapevine plants overexpressing VlbZIP30 exhibited lignin deposition (mainly G and S monomers) in the stem secondary xylem under control conditions, which resulted from the upregulated expression of VvPRX4 and VvPRX72 . Overexpression of VlbZIP30 improves drought tolerance, characterized by a reduction in the water loss rate, maintenance of an effective photosynthesis rate, and increased lignin content (mainly G monomer) in leaves under drought conditions. Electrophoretic mobility shift assay, luciferase reporter assays, and chromatin immunoprecipitation-qPCR assays indicated that VlbZIP30 directly binds to the G-box cis -element in the promoters of lignin biosynthetic ( VvPRX N1 ) and drought-responsive ( VvNAC17 ) genes to regulate their expression. In summary, we report a novel VlbZIP30 -mediated mechanism linking lignification and drought tolerance in grapevine. The results of this study may be of value for the development of molecular breeding strategies to produce drought-resistant fruit crops.</description><subject>631/449/1659</subject><subject>631/449/2661/2665</subject><subject>Agriculture</subject><subject>Assaying</subject><subject>Biomedical and Life Sciences</subject><subject>Biosynthesis</subject><subject>Chromatin</subject><subject>Deposition</subject><subject>Drought</subject><subject>Drought resistance</subject><subject>Ecology</subject><subject>Electrophoretic mobility</subject><subject>Fruit crops</subject><subject>Gene expression</subject><subject>Gene regulation</subject><subject>Genes</subject><subject>Genetics &amp; Heredity</subject><subject>Horticulture</subject><subject>Immunoprecipitation</subject><subject>Leaves</subject><subject>Life Sciences</subject><subject>Life Sciences &amp; Biomedicine</subject><subject>Lignin</subject><subject>Monomers</subject><subject>Peroxidase</subject><subject>Photosynthesis</subject><subject>Plant breeding</subject><subject>Plant Breeding/Biotechnology</subject><subject>Plant Genetics and Genomics</subject><subject>Plant Sciences</subject><subject>Science &amp; Technology</subject><subject>Transgenic plants</subject><subject>Water loss</subject><subject>Xylem</subject><issn>2662-6810</issn><issn>2052-7276</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>AOWDO</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqNksFu1DAURSMEolXpD7BAlliiFPs5iZ0NUjWCtlIFLKALNpaTvGRcZexgO4H5Gz4Vz0wZYIOQLNnyO_f62ddZ9pzRC0a5fB0KVnCZU6A5pVxAzh9lp0BLyAWI6nFaVxXklWT0JDsP4Z5SysoCeCmeZiccagAJcJr9uPJ6wsVYJHdj8-XmI6fEbCbvFgyk824e1pF4DCZEbVskzZZ0xmMbxy3RbTSLjsYO5G55f7ligmjbkSTeuP3uaAZrLGmMC1sb1zsXEtd70zRj8h3mMRk4S1y_qyCSCb37bjodkAxoMTzLnvR6DHj-MJ9ln9-9_bS6zm8_XN2sLm_zthQQc9SaU8kKkG3JWY-StqLpgIHksuplpVGLogdR67ZPo4JaQ8FqKOoOu74U_Cx7c_Cd5maDXYs2ej2qyZuN9lvltFF_V6xZq8EtShSlrFmVDF4-GHj3dcYQ1b2bvU09K0hJibqidEfBgWq9C8FjfzyBUbULVh2CVSlYtQ9W8SR68WdvR8mvGBMgD8A3bFwfWoMpqyOWoi-rumCi2H0CuTJx_-YrN9uYpK_-X5pofqBDIuyA_vcl_9H_T0yB03o</recordid><startdate>20200901</startdate><enddate>20200901</enddate><creator>Tu, Mingxing</creator><creator>Wang, Xianhang</creator><creator>Yin, Wuchen</creator><creator>Wang, Ya</creator><creator>Li, Yajuan</creator><creator>Zhang, Guofeng</creator><creator>Li, Zhi</creator><creator>Song, Junyang</creator><creator>Wang, Xiping</creator><general>Nature Publishing Group UK</general><general>Nanjing Agricultural Univ</general><general>Oxford University Press</general><scope>C6C</scope><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-3529-8113</orcidid><orcidid>https://orcid.org/0000-0003-4144-0099</orcidid></search><sort><creationdate>20200901</creationdate><title>Grapevine VlbZIP30 improves drought resistance by directly activating VvNAC17 and promoting lignin biosynthesis through the regulation of three peroxidase genes</title><author>Tu, Mingxing ; Wang, Xianhang ; Yin, Wuchen ; Wang, Ya ; Li, Yajuan ; Zhang, Guofeng ; Li, Zhi ; Song, Junyang ; Wang, Xiping</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c572t-eaa3081428c531fe80c7bd2128386f86aea74f279acfacf629a2419249dedf573</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>631/449/1659</topic><topic>631/449/2661/2665</topic><topic>Agriculture</topic><topic>Assaying</topic><topic>Biomedical and Life Sciences</topic><topic>Biosynthesis</topic><topic>Chromatin</topic><topic>Deposition</topic><topic>Drought</topic><topic>Drought resistance</topic><topic>Ecology</topic><topic>Electrophoretic mobility</topic><topic>Fruit crops</topic><topic>Gene expression</topic><topic>Gene regulation</topic><topic>Genes</topic><topic>Genetics &amp; Heredity</topic><topic>Horticulture</topic><topic>Immunoprecipitation</topic><topic>Leaves</topic><topic>Life Sciences</topic><topic>Life Sciences &amp; Biomedicine</topic><topic>Lignin</topic><topic>Monomers</topic><topic>Peroxidase</topic><topic>Photosynthesis</topic><topic>Plant breeding</topic><topic>Plant Breeding/Biotechnology</topic><topic>Plant Genetics and Genomics</topic><topic>Plant Sciences</topic><topic>Science &amp; Technology</topic><topic>Transgenic plants</topic><topic>Water loss</topic><topic>Xylem</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tu, Mingxing</creatorcontrib><creatorcontrib>Wang, Xianhang</creatorcontrib><creatorcontrib>Yin, Wuchen</creatorcontrib><creatorcontrib>Wang, Ya</creatorcontrib><creatorcontrib>Li, Yajuan</creatorcontrib><creatorcontrib>Zhang, Guofeng</creatorcontrib><creatorcontrib>Li, Zhi</creatorcontrib><creatorcontrib>Song, Junyang</creatorcontrib><creatorcontrib>Wang, Xiping</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Horticulture research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tu, Mingxing</au><au>Wang, Xianhang</au><au>Yin, Wuchen</au><au>Wang, Ya</au><au>Li, Yajuan</au><au>Zhang, Guofeng</au><au>Li, Zhi</au><au>Song, Junyang</au><au>Wang, Xiping</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Grapevine VlbZIP30 improves drought resistance by directly activating VvNAC17 and promoting lignin biosynthesis through the regulation of three peroxidase genes</atitle><jtitle>Horticulture research</jtitle><stitle>Hortic Res</stitle><stitle>HORTIC RES-ENGLAND</stitle><addtitle>Hortic Res</addtitle><date>2020-09-01</date><risdate>2020</risdate><volume>7</volume><issue>1</issue><spage>150</spage><pages>150-</pages><artnum>150</artnum><issn>2662-6810</issn><eissn>2052-7276</eissn><abstract>Drought stress severely affects grapevine quality and yield, and recent reports have revealed that lignin plays an important role in protection from drought stress. Since little is known about lignin-mediated drought resistance in grapevine, we investigated its significance. Herein, we show that VlbZIP30 mediates drought resistance by activating the expression of lignin biosynthetic genes and increasing lignin deposition. Transgenic grapevine plants overexpressing VlbZIP30 exhibited lignin deposition (mainly G and S monomers) in the stem secondary xylem under control conditions, which resulted from the upregulated expression of VvPRX4 and VvPRX72 . Overexpression of VlbZIP30 improves drought tolerance, characterized by a reduction in the water loss rate, maintenance of an effective photosynthesis rate, and increased lignin content (mainly G monomer) in leaves under drought conditions. Electrophoretic mobility shift assay, luciferase reporter assays, and chromatin immunoprecipitation-qPCR assays indicated that VlbZIP30 directly binds to the G-box cis -element in the promoters of lignin biosynthetic ( VvPRX N1 ) and drought-responsive ( VvNAC17 ) genes to regulate their expression. In summary, we report a novel VlbZIP30 -mediated mechanism linking lignification and drought tolerance in grapevine. The results of this study may be of value for the development of molecular breeding strategies to produce drought-resistant fruit crops.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>32922822</pmid><doi>10.1038/s41438-020-00372-3</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-3529-8113</orcidid><orcidid>https://orcid.org/0000-0003-4144-0099</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2662-6810
ispartof Horticulture research, 2020-09, Vol.7 (1), p.150, Article 150
issn 2662-6810
2052-7276
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7458916
source DOAJ Directory of Open Access Journals; Springer Nature OA Free Journals; Oxford Journals Open Access Collection; Nature Free; EZB-FREE-00999 freely available EZB journals; PubMed Central
subjects 631/449/1659
631/449/2661/2665
Agriculture
Assaying
Biomedical and Life Sciences
Biosynthesis
Chromatin
Deposition
Drought
Drought resistance
Ecology
Electrophoretic mobility
Fruit crops
Gene expression
Gene regulation
Genes
Genetics & Heredity
Horticulture
Immunoprecipitation
Leaves
Life Sciences
Life Sciences & Biomedicine
Lignin
Monomers
Peroxidase
Photosynthesis
Plant breeding
Plant Breeding/Biotechnology
Plant Genetics and Genomics
Plant Sciences
Science & Technology
Transgenic plants
Water loss
Xylem
title Grapevine VlbZIP30 improves drought resistance by directly activating VvNAC17 and promoting lignin biosynthesis through the regulation of three peroxidase genes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T18%3A08%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Grapevine%20VlbZIP30%20improves%20drought%20resistance%20by%20directly%20activating%20VvNAC17%20and%20promoting%20lignin%20biosynthesis%20through%20the%20regulation%20of%20three%20peroxidase%20genes&rft.jtitle=Horticulture%20research&rft.au=Tu,%20Mingxing&rft.date=2020-09-01&rft.volume=7&rft.issue=1&rft.spage=150&rft.pages=150-&rft.artnum=150&rft.issn=2662-6810&rft.eissn=2052-7276&rft_id=info:doi/10.1038/s41438-020-00372-3&rft_dat=%3Cproquest_pubme%3E2438796006%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2438796006&rft_id=info:pmid/32922822&rfr_iscdi=true