Hepatitis C virus NS3-4A protease regulates the lipid environment for RNA replication by cleaving host enzyme 24-dehydrocholesterol reductase

Many RNA viruses create specialized membranes for genome replication by manipulating host lipid metabolism and trafficking, but in most cases, we do not know the molecular mechanisms responsible or how specific lipids may impact the associated membrane and viral process. For example, hepatitis C vir...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of biological chemistry 2020-08, Vol.295 (35), p.12426-12436
Hauptverfasser: Tallorin, Lorillee, Villareal, Valerie A., Hsia, Chih-Yun, Rodgers, Mary A., Burri, Dominique J., Pfeil, Marc-Philipp, Llopis, Paula Montero, Lindenbach, Brett D., Yang, Priscilla L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 12436
container_issue 35
container_start_page 12426
container_title The Journal of biological chemistry
container_volume 295
creator Tallorin, Lorillee
Villareal, Valerie A.
Hsia, Chih-Yun
Rodgers, Mary A.
Burri, Dominique J.
Pfeil, Marc-Philipp
Llopis, Paula Montero
Lindenbach, Brett D.
Yang, Priscilla L.
description Many RNA viruses create specialized membranes for genome replication by manipulating host lipid metabolism and trafficking, but in most cases, we do not know the molecular mechanisms responsible or how specific lipids may impact the associated membrane and viral process. For example, hepatitis C virus (HCV) causes a specific, large-fold increase in the steady-state abundance of intracellular desmosterol, an immediate precursor of cholesterol, resulting in increased fluidity of the membrane where HCV RNA replication occurs. Here, we establish the mechanism responsible for HCV's effect on intracellular desmosterol, whereby the HCV NS3-4A protease controls activity of 24-dehydrocholesterol reductase (DHCR24), the enzyme that catalyzes conversion of desmosterol to cholesterol. Our cumulative evidence for the proposed mechanism includes immunofluorescence microscopy experiments showing co-occurrence of DHCR24 and HCV NS3-4A protease; formation of an additional, faster-migrating DHCR24 species (DHCR24*) in cells harboring a HCV subgenomic replicon RNA or ectopically expressing NS3-4A; and biochemical evidence that NS3-4A cleaves DHCR24 to produce DHCR24* in vitro and in vivo. We further demonstrate that NS3-4A cleaves DHCR24 between residues Cys91 and Thr92 and show that this reduces the intracellular conversion of desmosterol to cholesterol. Together, these studies demonstrate that NS3-4A directly cleaves DHCR24 and that this results in the enrichment of desmosterol in the membranes where NS3-4A and DHCR24 co-occur. Overall, this suggests a model in which HCV directly regulates the lipid environment for RNA replication through direct effects on the host lipid metabolism.
doi_str_mv 10.1074/jbc.RA120.013455
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7458815</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S002192581749483X</els_id><sourcerecordid>2422013326</sourcerecordid><originalsourceid>FETCH-LOGICAL-c447t-252dee2005a0bdc6204827da4753f386904216c21923f746511c1695799d80403</originalsourceid><addsrcrecordid>eNp1kT1vFDEQhi0EIpdAT4Vc0uzhz_2gQDqdgCBFQQog0Vk-e_bWkXe92N6Tjv_Af8bhQgQF07iY933HMw9CLyhZU9KI17c7s77ZUEbWhHIh5SO0oqTlFZf022O0IoTRqmOyPUPnKd2SUqKjT9EZZ7WgomMr9PMSZp1ddglv8cHFJeHrz7wSGzzHkEEnwBH2i9cZEs4DYO9mZzFMRRumEaaM-xDxzfWm6GbvTAkLE94dsfGgD27a4yGkXAw_jiNgJioLw9HGYIbgIWWIwRenXUwus56hJ732CZ7fvxfo6_t3X7aX1dWnDx-3m6vKCNHkiklmARghUpOdNTUjomWN1aKRvOdt3RHBaG0Y7RjvG1FLSg2tO9l0nW2JIPwCvT3lzstuBGvKGlF7NUc36nhUQTv1b2dyg9qHg2qEbFsqS8Cr-4AYvi9lDzW6ZMB7PUFYkmKCsYKk3LlIyUlqYkgpQv8whhJ1R1EViuo3RXWiWCwv__7eg-EPtiJ4cxJAOdLBQVTJOJgMWBfBZGWD-3_6L48KrbI</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2422013326</pqid></control><display><type>article</type><title>Hepatitis C virus NS3-4A protease regulates the lipid environment for RNA replication by cleaving host enzyme 24-dehydrocholesterol reductase</title><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Tallorin, Lorillee ; Villareal, Valerie A. ; Hsia, Chih-Yun ; Rodgers, Mary A. ; Burri, Dominique J. ; Pfeil, Marc-Philipp ; Llopis, Paula Montero ; Lindenbach, Brett D. ; Yang, Priscilla L.</creator><creatorcontrib>Tallorin, Lorillee ; Villareal, Valerie A. ; Hsia, Chih-Yun ; Rodgers, Mary A. ; Burri, Dominique J. ; Pfeil, Marc-Philipp ; Llopis, Paula Montero ; Lindenbach, Brett D. ; Yang, Priscilla L.</creatorcontrib><description>Many RNA viruses create specialized membranes for genome replication by manipulating host lipid metabolism and trafficking, but in most cases, we do not know the molecular mechanisms responsible or how specific lipids may impact the associated membrane and viral process. For example, hepatitis C virus (HCV) causes a specific, large-fold increase in the steady-state abundance of intracellular desmosterol, an immediate precursor of cholesterol, resulting in increased fluidity of the membrane where HCV RNA replication occurs. Here, we establish the mechanism responsible for HCV's effect on intracellular desmosterol, whereby the HCV NS3-4A protease controls activity of 24-dehydrocholesterol reductase (DHCR24), the enzyme that catalyzes conversion of desmosterol to cholesterol. Our cumulative evidence for the proposed mechanism includes immunofluorescence microscopy experiments showing co-occurrence of DHCR24 and HCV NS3-4A protease; formation of an additional, faster-migrating DHCR24 species (DHCR24*) in cells harboring a HCV subgenomic replicon RNA or ectopically expressing NS3-4A; and biochemical evidence that NS3-4A cleaves DHCR24 to produce DHCR24* in vitro and in vivo. We further demonstrate that NS3-4A cleaves DHCR24 between residues Cys91 and Thr92 and show that this reduces the intracellular conversion of desmosterol to cholesterol. Together, these studies demonstrate that NS3-4A directly cleaves DHCR24 and that this results in the enrichment of desmosterol in the membranes where NS3-4A and DHCR24 co-occur. Overall, this suggests a model in which HCV directly regulates the lipid environment for RNA replication through direct effects on the host lipid metabolism.</description><identifier>ISSN: 0021-9258</identifier><identifier>EISSN: 1083-351X</identifier><identifier>DOI: 10.1074/jbc.RA120.013455</identifier><identifier>PMID: 32641492</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Cell Line, Tumor ; cholesterol metabolism ; desmosterol ; Hepacivirus - enzymology ; Hepacivirus - genetics ; hepatitis C virus (HCV) ; host–pathogen interaction ; Humans ; lipid environment ; Lipid Metabolism ; membrane lipid ; Membrane Lipids - genetics ; Membrane Lipids - metabolism ; membrane remodeling ; Microbiology ; Nerve Tissue Proteins - genetics ; Nerve Tissue Proteins - metabolism ; Oxidoreductases Acting on CH-CH Group Donors - genetics ; Oxidoreductases Acting on CH-CH Group Donors - metabolism ; post-translational modification (PTM) ; Proteolysis ; RNA replication ; RNA, Viral - biosynthesis ; RNA, Viral - genetics ; Serine Proteases - genetics ; Serine Proteases - metabolism ; Viral Nonstructural Proteins - genetics ; Viral Nonstructural Proteins - metabolism ; viral protease ; viral replication</subject><ispartof>The Journal of biological chemistry, 2020-08, Vol.295 (35), p.12426-12436</ispartof><rights>2020 © 2020 Tallorin et al.</rights><rights>2020 Tallorin et al.</rights><rights>2020 Tallorin et al. 2020 Tallorin et al.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c447t-252dee2005a0bdc6204827da4753f386904216c21923f746511c1695799d80403</citedby><cites>FETCH-LOGICAL-c447t-252dee2005a0bdc6204827da4753f386904216c21923f746511c1695799d80403</cites><orcidid>0000-0001-7456-2557</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7458815/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7458815/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27903,27904,53769,53771</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32641492$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tallorin, Lorillee</creatorcontrib><creatorcontrib>Villareal, Valerie A.</creatorcontrib><creatorcontrib>Hsia, Chih-Yun</creatorcontrib><creatorcontrib>Rodgers, Mary A.</creatorcontrib><creatorcontrib>Burri, Dominique J.</creatorcontrib><creatorcontrib>Pfeil, Marc-Philipp</creatorcontrib><creatorcontrib>Llopis, Paula Montero</creatorcontrib><creatorcontrib>Lindenbach, Brett D.</creatorcontrib><creatorcontrib>Yang, Priscilla L.</creatorcontrib><title>Hepatitis C virus NS3-4A protease regulates the lipid environment for RNA replication by cleaving host enzyme 24-dehydrocholesterol reductase</title><title>The Journal of biological chemistry</title><addtitle>J Biol Chem</addtitle><description>Many RNA viruses create specialized membranes for genome replication by manipulating host lipid metabolism and trafficking, but in most cases, we do not know the molecular mechanisms responsible or how specific lipids may impact the associated membrane and viral process. For example, hepatitis C virus (HCV) causes a specific, large-fold increase in the steady-state abundance of intracellular desmosterol, an immediate precursor of cholesterol, resulting in increased fluidity of the membrane where HCV RNA replication occurs. Here, we establish the mechanism responsible for HCV's effect on intracellular desmosterol, whereby the HCV NS3-4A protease controls activity of 24-dehydrocholesterol reductase (DHCR24), the enzyme that catalyzes conversion of desmosterol to cholesterol. Our cumulative evidence for the proposed mechanism includes immunofluorescence microscopy experiments showing co-occurrence of DHCR24 and HCV NS3-4A protease; formation of an additional, faster-migrating DHCR24 species (DHCR24*) in cells harboring a HCV subgenomic replicon RNA or ectopically expressing NS3-4A; and biochemical evidence that NS3-4A cleaves DHCR24 to produce DHCR24* in vitro and in vivo. We further demonstrate that NS3-4A cleaves DHCR24 between residues Cys91 and Thr92 and show that this reduces the intracellular conversion of desmosterol to cholesterol. Together, these studies demonstrate that NS3-4A directly cleaves DHCR24 and that this results in the enrichment of desmosterol in the membranes where NS3-4A and DHCR24 co-occur. Overall, this suggests a model in which HCV directly regulates the lipid environment for RNA replication through direct effects on the host lipid metabolism.</description><subject>Cell Line, Tumor</subject><subject>cholesterol metabolism</subject><subject>desmosterol</subject><subject>Hepacivirus - enzymology</subject><subject>Hepacivirus - genetics</subject><subject>hepatitis C virus (HCV)</subject><subject>host–pathogen interaction</subject><subject>Humans</subject><subject>lipid environment</subject><subject>Lipid Metabolism</subject><subject>membrane lipid</subject><subject>Membrane Lipids - genetics</subject><subject>Membrane Lipids - metabolism</subject><subject>membrane remodeling</subject><subject>Microbiology</subject><subject>Nerve Tissue Proteins - genetics</subject><subject>Nerve Tissue Proteins - metabolism</subject><subject>Oxidoreductases Acting on CH-CH Group Donors - genetics</subject><subject>Oxidoreductases Acting on CH-CH Group Donors - metabolism</subject><subject>post-translational modification (PTM)</subject><subject>Proteolysis</subject><subject>RNA replication</subject><subject>RNA, Viral - biosynthesis</subject><subject>RNA, Viral - genetics</subject><subject>Serine Proteases - genetics</subject><subject>Serine Proteases - metabolism</subject><subject>Viral Nonstructural Proteins - genetics</subject><subject>Viral Nonstructural Proteins - metabolism</subject><subject>viral protease</subject><subject>viral replication</subject><issn>0021-9258</issn><issn>1083-351X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kT1vFDEQhi0EIpdAT4Vc0uzhz_2gQDqdgCBFQQog0Vk-e_bWkXe92N6Tjv_Af8bhQgQF07iY933HMw9CLyhZU9KI17c7s77ZUEbWhHIh5SO0oqTlFZf022O0IoTRqmOyPUPnKd2SUqKjT9EZZ7WgomMr9PMSZp1ddglv8cHFJeHrz7wSGzzHkEEnwBH2i9cZEs4DYO9mZzFMRRumEaaM-xDxzfWm6GbvTAkLE94dsfGgD27a4yGkXAw_jiNgJioLw9HGYIbgIWWIwRenXUwus56hJ732CZ7fvxfo6_t3X7aX1dWnDx-3m6vKCNHkiklmARghUpOdNTUjomWN1aKRvOdt3RHBaG0Y7RjvG1FLSg2tO9l0nW2JIPwCvT3lzstuBGvKGlF7NUc36nhUQTv1b2dyg9qHg2qEbFsqS8Cr-4AYvi9lDzW6ZMB7PUFYkmKCsYKk3LlIyUlqYkgpQv8whhJ1R1EViuo3RXWiWCwv__7eg-EPtiJ4cxJAOdLBQVTJOJgMWBfBZGWD-3_6L48KrbI</recordid><startdate>20200828</startdate><enddate>20200828</enddate><creator>Tallorin, Lorillee</creator><creator>Villareal, Valerie A.</creator><creator>Hsia, Chih-Yun</creator><creator>Rodgers, Mary A.</creator><creator>Burri, Dominique J.</creator><creator>Pfeil, Marc-Philipp</creator><creator>Llopis, Paula Montero</creator><creator>Lindenbach, Brett D.</creator><creator>Yang, Priscilla L.</creator><general>Elsevier Inc</general><general>American Society for Biochemistry and Molecular Biology</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-7456-2557</orcidid></search><sort><creationdate>20200828</creationdate><title>Hepatitis C virus NS3-4A protease regulates the lipid environment for RNA replication by cleaving host enzyme 24-dehydrocholesterol reductase</title><author>Tallorin, Lorillee ; Villareal, Valerie A. ; Hsia, Chih-Yun ; Rodgers, Mary A. ; Burri, Dominique J. ; Pfeil, Marc-Philipp ; Llopis, Paula Montero ; Lindenbach, Brett D. ; Yang, Priscilla L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c447t-252dee2005a0bdc6204827da4753f386904216c21923f746511c1695799d80403</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Cell Line, Tumor</topic><topic>cholesterol metabolism</topic><topic>desmosterol</topic><topic>Hepacivirus - enzymology</topic><topic>Hepacivirus - genetics</topic><topic>hepatitis C virus (HCV)</topic><topic>host–pathogen interaction</topic><topic>Humans</topic><topic>lipid environment</topic><topic>Lipid Metabolism</topic><topic>membrane lipid</topic><topic>Membrane Lipids - genetics</topic><topic>Membrane Lipids - metabolism</topic><topic>membrane remodeling</topic><topic>Microbiology</topic><topic>Nerve Tissue Proteins - genetics</topic><topic>Nerve Tissue Proteins - metabolism</topic><topic>Oxidoreductases Acting on CH-CH Group Donors - genetics</topic><topic>Oxidoreductases Acting on CH-CH Group Donors - metabolism</topic><topic>post-translational modification (PTM)</topic><topic>Proteolysis</topic><topic>RNA replication</topic><topic>RNA, Viral - biosynthesis</topic><topic>RNA, Viral - genetics</topic><topic>Serine Proteases - genetics</topic><topic>Serine Proteases - metabolism</topic><topic>Viral Nonstructural Proteins - genetics</topic><topic>Viral Nonstructural Proteins - metabolism</topic><topic>viral protease</topic><topic>viral replication</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tallorin, Lorillee</creatorcontrib><creatorcontrib>Villareal, Valerie A.</creatorcontrib><creatorcontrib>Hsia, Chih-Yun</creatorcontrib><creatorcontrib>Rodgers, Mary A.</creatorcontrib><creatorcontrib>Burri, Dominique J.</creatorcontrib><creatorcontrib>Pfeil, Marc-Philipp</creatorcontrib><creatorcontrib>Llopis, Paula Montero</creatorcontrib><creatorcontrib>Lindenbach, Brett D.</creatorcontrib><creatorcontrib>Yang, Priscilla L.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of biological chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tallorin, Lorillee</au><au>Villareal, Valerie A.</au><au>Hsia, Chih-Yun</au><au>Rodgers, Mary A.</au><au>Burri, Dominique J.</au><au>Pfeil, Marc-Philipp</au><au>Llopis, Paula Montero</au><au>Lindenbach, Brett D.</au><au>Yang, Priscilla L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hepatitis C virus NS3-4A protease regulates the lipid environment for RNA replication by cleaving host enzyme 24-dehydrocholesterol reductase</atitle><jtitle>The Journal of biological chemistry</jtitle><addtitle>J Biol Chem</addtitle><date>2020-08-28</date><risdate>2020</risdate><volume>295</volume><issue>35</issue><spage>12426</spage><epage>12436</epage><pages>12426-12436</pages><issn>0021-9258</issn><eissn>1083-351X</eissn><abstract>Many RNA viruses create specialized membranes for genome replication by manipulating host lipid metabolism and trafficking, but in most cases, we do not know the molecular mechanisms responsible or how specific lipids may impact the associated membrane and viral process. For example, hepatitis C virus (HCV) causes a specific, large-fold increase in the steady-state abundance of intracellular desmosterol, an immediate precursor of cholesterol, resulting in increased fluidity of the membrane where HCV RNA replication occurs. Here, we establish the mechanism responsible for HCV's effect on intracellular desmosterol, whereby the HCV NS3-4A protease controls activity of 24-dehydrocholesterol reductase (DHCR24), the enzyme that catalyzes conversion of desmosterol to cholesterol. Our cumulative evidence for the proposed mechanism includes immunofluorescence microscopy experiments showing co-occurrence of DHCR24 and HCV NS3-4A protease; formation of an additional, faster-migrating DHCR24 species (DHCR24*) in cells harboring a HCV subgenomic replicon RNA or ectopically expressing NS3-4A; and biochemical evidence that NS3-4A cleaves DHCR24 to produce DHCR24* in vitro and in vivo. We further demonstrate that NS3-4A cleaves DHCR24 between residues Cys91 and Thr92 and show that this reduces the intracellular conversion of desmosterol to cholesterol. Together, these studies demonstrate that NS3-4A directly cleaves DHCR24 and that this results in the enrichment of desmosterol in the membranes where NS3-4A and DHCR24 co-occur. Overall, this suggests a model in which HCV directly regulates the lipid environment for RNA replication through direct effects on the host lipid metabolism.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>32641492</pmid><doi>10.1074/jbc.RA120.013455</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-7456-2557</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9258
ispartof The Journal of biological chemistry, 2020-08, Vol.295 (35), p.12426-12436
issn 0021-9258
1083-351X
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7458815
source MEDLINE; EZB-FREE-00999 freely available EZB journals; PubMed Central; Alma/SFX Local Collection
subjects Cell Line, Tumor
cholesterol metabolism
desmosterol
Hepacivirus - enzymology
Hepacivirus - genetics
hepatitis C virus (HCV)
host–pathogen interaction
Humans
lipid environment
Lipid Metabolism
membrane lipid
Membrane Lipids - genetics
Membrane Lipids - metabolism
membrane remodeling
Microbiology
Nerve Tissue Proteins - genetics
Nerve Tissue Proteins - metabolism
Oxidoreductases Acting on CH-CH Group Donors - genetics
Oxidoreductases Acting on CH-CH Group Donors - metabolism
post-translational modification (PTM)
Proteolysis
RNA replication
RNA, Viral - biosynthesis
RNA, Viral - genetics
Serine Proteases - genetics
Serine Proteases - metabolism
Viral Nonstructural Proteins - genetics
Viral Nonstructural Proteins - metabolism
viral protease
viral replication
title Hepatitis C virus NS3-4A protease regulates the lipid environment for RNA replication by cleaving host enzyme 24-dehydrocholesterol reductase
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T12%3A03%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hepatitis%20C%20virus%20NS3-4A%20protease%20regulates%20the%20lipid%20environment%20for%20RNA%20replication%20by%20cleaving%20host%20enzyme%2024-dehydrocholesterol%20reductase&rft.jtitle=The%20Journal%20of%20biological%20chemistry&rft.au=Tallorin,%20Lorillee&rft.date=2020-08-28&rft.volume=295&rft.issue=35&rft.spage=12426&rft.epage=12436&rft.pages=12426-12436&rft.issn=0021-9258&rft.eissn=1083-351X&rft_id=info:doi/10.1074/jbc.RA120.013455&rft_dat=%3Cproquest_pubme%3E2422013326%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2422013326&rft_id=info:pmid/32641492&rft_els_id=S002192581749483X&rfr_iscdi=true