Hepatitis C virus NS3-4A protease regulates the lipid environment for RNA replication by cleaving host enzyme 24-dehydrocholesterol reductase
Many RNA viruses create specialized membranes for genome replication by manipulating host lipid metabolism and trafficking, but in most cases, we do not know the molecular mechanisms responsible or how specific lipids may impact the associated membrane and viral process. For example, hepatitis C vir...
Gespeichert in:
Veröffentlicht in: | The Journal of biological chemistry 2020-08, Vol.295 (35), p.12426-12436 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 12436 |
---|---|
container_issue | 35 |
container_start_page | 12426 |
container_title | The Journal of biological chemistry |
container_volume | 295 |
creator | Tallorin, Lorillee Villareal, Valerie A. Hsia, Chih-Yun Rodgers, Mary A. Burri, Dominique J. Pfeil, Marc-Philipp Llopis, Paula Montero Lindenbach, Brett D. Yang, Priscilla L. |
description | Many RNA viruses create specialized membranes for genome replication by manipulating host lipid metabolism and trafficking, but in most cases, we do not know the molecular mechanisms responsible or how specific lipids may impact the associated membrane and viral process. For example, hepatitis C virus (HCV) causes a specific, large-fold increase in the steady-state abundance of intracellular desmosterol, an immediate precursor of cholesterol, resulting in increased fluidity of the membrane where HCV RNA replication occurs. Here, we establish the mechanism responsible for HCV's effect on intracellular desmosterol, whereby the HCV NS3-4A protease controls activity of 24-dehydrocholesterol reductase (DHCR24), the enzyme that catalyzes conversion of desmosterol to cholesterol. Our cumulative evidence for the proposed mechanism includes immunofluorescence microscopy experiments showing co-occurrence of DHCR24 and HCV NS3-4A protease; formation of an additional, faster-migrating DHCR24 species (DHCR24*) in cells harboring a HCV subgenomic replicon RNA or ectopically expressing NS3-4A; and biochemical evidence that NS3-4A cleaves DHCR24 to produce DHCR24* in vitro and in vivo. We further demonstrate that NS3-4A cleaves DHCR24 between residues Cys91 and Thr92 and show that this reduces the intracellular conversion of desmosterol to cholesterol. Together, these studies demonstrate that NS3-4A directly cleaves DHCR24 and that this results in the enrichment of desmosterol in the membranes where NS3-4A and DHCR24 co-occur. Overall, this suggests a model in which HCV directly regulates the lipid environment for RNA replication through direct effects on the host lipid metabolism. |
doi_str_mv | 10.1074/jbc.RA120.013455 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7458815</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S002192581749483X</els_id><sourcerecordid>2422013326</sourcerecordid><originalsourceid>FETCH-LOGICAL-c447t-252dee2005a0bdc6204827da4753f386904216c21923f746511c1695799d80403</originalsourceid><addsrcrecordid>eNp1kT1vFDEQhi0EIpdAT4Vc0uzhz_2gQDqdgCBFQQog0Vk-e_bWkXe92N6Tjv_Af8bhQgQF07iY933HMw9CLyhZU9KI17c7s77ZUEbWhHIh5SO0oqTlFZf022O0IoTRqmOyPUPnKd2SUqKjT9EZZ7WgomMr9PMSZp1ddglv8cHFJeHrz7wSGzzHkEEnwBH2i9cZEs4DYO9mZzFMRRumEaaM-xDxzfWm6GbvTAkLE94dsfGgD27a4yGkXAw_jiNgJioLw9HGYIbgIWWIwRenXUwus56hJ732CZ7fvxfo6_t3X7aX1dWnDx-3m6vKCNHkiklmARghUpOdNTUjomWN1aKRvOdt3RHBaG0Y7RjvG1FLSg2tO9l0nW2JIPwCvT3lzstuBGvKGlF7NUc36nhUQTv1b2dyg9qHg2qEbFsqS8Cr-4AYvi9lDzW6ZMB7PUFYkmKCsYKk3LlIyUlqYkgpQv8whhJ1R1EViuo3RXWiWCwv__7eg-EPtiJ4cxJAOdLBQVTJOJgMWBfBZGWD-3_6L48KrbI</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2422013326</pqid></control><display><type>article</type><title>Hepatitis C virus NS3-4A protease regulates the lipid environment for RNA replication by cleaving host enzyme 24-dehydrocholesterol reductase</title><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Tallorin, Lorillee ; Villareal, Valerie A. ; Hsia, Chih-Yun ; Rodgers, Mary A. ; Burri, Dominique J. ; Pfeil, Marc-Philipp ; Llopis, Paula Montero ; Lindenbach, Brett D. ; Yang, Priscilla L.</creator><creatorcontrib>Tallorin, Lorillee ; Villareal, Valerie A. ; Hsia, Chih-Yun ; Rodgers, Mary A. ; Burri, Dominique J. ; Pfeil, Marc-Philipp ; Llopis, Paula Montero ; Lindenbach, Brett D. ; Yang, Priscilla L.</creatorcontrib><description>Many RNA viruses create specialized membranes for genome replication by manipulating host lipid metabolism and trafficking, but in most cases, we do not know the molecular mechanisms responsible or how specific lipids may impact the associated membrane and viral process. For example, hepatitis C virus (HCV) causes a specific, large-fold increase in the steady-state abundance of intracellular desmosterol, an immediate precursor of cholesterol, resulting in increased fluidity of the membrane where HCV RNA replication occurs. Here, we establish the mechanism responsible for HCV's effect on intracellular desmosterol, whereby the HCV NS3-4A protease controls activity of 24-dehydrocholesterol reductase (DHCR24), the enzyme that catalyzes conversion of desmosterol to cholesterol. Our cumulative evidence for the proposed mechanism includes immunofluorescence microscopy experiments showing co-occurrence of DHCR24 and HCV NS3-4A protease; formation of an additional, faster-migrating DHCR24 species (DHCR24*) in cells harboring a HCV subgenomic replicon RNA or ectopically expressing NS3-4A; and biochemical evidence that NS3-4A cleaves DHCR24 to produce DHCR24* in vitro and in vivo. We further demonstrate that NS3-4A cleaves DHCR24 between residues Cys91 and Thr92 and show that this reduces the intracellular conversion of desmosterol to cholesterol. Together, these studies demonstrate that NS3-4A directly cleaves DHCR24 and that this results in the enrichment of desmosterol in the membranes where NS3-4A and DHCR24 co-occur. Overall, this suggests a model in which HCV directly regulates the lipid environment for RNA replication through direct effects on the host lipid metabolism.</description><identifier>ISSN: 0021-9258</identifier><identifier>EISSN: 1083-351X</identifier><identifier>DOI: 10.1074/jbc.RA120.013455</identifier><identifier>PMID: 32641492</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Cell Line, Tumor ; cholesterol metabolism ; desmosterol ; Hepacivirus - enzymology ; Hepacivirus - genetics ; hepatitis C virus (HCV) ; host–pathogen interaction ; Humans ; lipid environment ; Lipid Metabolism ; membrane lipid ; Membrane Lipids - genetics ; Membrane Lipids - metabolism ; membrane remodeling ; Microbiology ; Nerve Tissue Proteins - genetics ; Nerve Tissue Proteins - metabolism ; Oxidoreductases Acting on CH-CH Group Donors - genetics ; Oxidoreductases Acting on CH-CH Group Donors - metabolism ; post-translational modification (PTM) ; Proteolysis ; RNA replication ; RNA, Viral - biosynthesis ; RNA, Viral - genetics ; Serine Proteases - genetics ; Serine Proteases - metabolism ; Viral Nonstructural Proteins - genetics ; Viral Nonstructural Proteins - metabolism ; viral protease ; viral replication</subject><ispartof>The Journal of biological chemistry, 2020-08, Vol.295 (35), p.12426-12436</ispartof><rights>2020 © 2020 Tallorin et al.</rights><rights>2020 Tallorin et al.</rights><rights>2020 Tallorin et al. 2020 Tallorin et al.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c447t-252dee2005a0bdc6204827da4753f386904216c21923f746511c1695799d80403</citedby><cites>FETCH-LOGICAL-c447t-252dee2005a0bdc6204827da4753f386904216c21923f746511c1695799d80403</cites><orcidid>0000-0001-7456-2557</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7458815/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7458815/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27903,27904,53769,53771</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32641492$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tallorin, Lorillee</creatorcontrib><creatorcontrib>Villareal, Valerie A.</creatorcontrib><creatorcontrib>Hsia, Chih-Yun</creatorcontrib><creatorcontrib>Rodgers, Mary A.</creatorcontrib><creatorcontrib>Burri, Dominique J.</creatorcontrib><creatorcontrib>Pfeil, Marc-Philipp</creatorcontrib><creatorcontrib>Llopis, Paula Montero</creatorcontrib><creatorcontrib>Lindenbach, Brett D.</creatorcontrib><creatorcontrib>Yang, Priscilla L.</creatorcontrib><title>Hepatitis C virus NS3-4A protease regulates the lipid environment for RNA replication by cleaving host enzyme 24-dehydrocholesterol reductase</title><title>The Journal of biological chemistry</title><addtitle>J Biol Chem</addtitle><description>Many RNA viruses create specialized membranes for genome replication by manipulating host lipid metabolism and trafficking, but in most cases, we do not know the molecular mechanisms responsible or how specific lipids may impact the associated membrane and viral process. For example, hepatitis C virus (HCV) causes a specific, large-fold increase in the steady-state abundance of intracellular desmosterol, an immediate precursor of cholesterol, resulting in increased fluidity of the membrane where HCV RNA replication occurs. Here, we establish the mechanism responsible for HCV's effect on intracellular desmosterol, whereby the HCV NS3-4A protease controls activity of 24-dehydrocholesterol reductase (DHCR24), the enzyme that catalyzes conversion of desmosterol to cholesterol. Our cumulative evidence for the proposed mechanism includes immunofluorescence microscopy experiments showing co-occurrence of DHCR24 and HCV NS3-4A protease; formation of an additional, faster-migrating DHCR24 species (DHCR24*) in cells harboring a HCV subgenomic replicon RNA or ectopically expressing NS3-4A; and biochemical evidence that NS3-4A cleaves DHCR24 to produce DHCR24* in vitro and in vivo. We further demonstrate that NS3-4A cleaves DHCR24 between residues Cys91 and Thr92 and show that this reduces the intracellular conversion of desmosterol to cholesterol. Together, these studies demonstrate that NS3-4A directly cleaves DHCR24 and that this results in the enrichment of desmosterol in the membranes where NS3-4A and DHCR24 co-occur. Overall, this suggests a model in which HCV directly regulates the lipid environment for RNA replication through direct effects on the host lipid metabolism.</description><subject>Cell Line, Tumor</subject><subject>cholesterol metabolism</subject><subject>desmosterol</subject><subject>Hepacivirus - enzymology</subject><subject>Hepacivirus - genetics</subject><subject>hepatitis C virus (HCV)</subject><subject>host–pathogen interaction</subject><subject>Humans</subject><subject>lipid environment</subject><subject>Lipid Metabolism</subject><subject>membrane lipid</subject><subject>Membrane Lipids - genetics</subject><subject>Membrane Lipids - metabolism</subject><subject>membrane remodeling</subject><subject>Microbiology</subject><subject>Nerve Tissue Proteins - genetics</subject><subject>Nerve Tissue Proteins - metabolism</subject><subject>Oxidoreductases Acting on CH-CH Group Donors - genetics</subject><subject>Oxidoreductases Acting on CH-CH Group Donors - metabolism</subject><subject>post-translational modification (PTM)</subject><subject>Proteolysis</subject><subject>RNA replication</subject><subject>RNA, Viral - biosynthesis</subject><subject>RNA, Viral - genetics</subject><subject>Serine Proteases - genetics</subject><subject>Serine Proteases - metabolism</subject><subject>Viral Nonstructural Proteins - genetics</subject><subject>Viral Nonstructural Proteins - metabolism</subject><subject>viral protease</subject><subject>viral replication</subject><issn>0021-9258</issn><issn>1083-351X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kT1vFDEQhi0EIpdAT4Vc0uzhz_2gQDqdgCBFQQog0Vk-e_bWkXe92N6Tjv_Af8bhQgQF07iY933HMw9CLyhZU9KI17c7s77ZUEbWhHIh5SO0oqTlFZf022O0IoTRqmOyPUPnKd2SUqKjT9EZZ7WgomMr9PMSZp1ddglv8cHFJeHrz7wSGzzHkEEnwBH2i9cZEs4DYO9mZzFMRRumEaaM-xDxzfWm6GbvTAkLE94dsfGgD27a4yGkXAw_jiNgJioLw9HGYIbgIWWIwRenXUwus56hJ732CZ7fvxfo6_t3X7aX1dWnDx-3m6vKCNHkiklmARghUpOdNTUjomWN1aKRvOdt3RHBaG0Y7RjvG1FLSg2tO9l0nW2JIPwCvT3lzstuBGvKGlF7NUc36nhUQTv1b2dyg9qHg2qEbFsqS8Cr-4AYvi9lDzW6ZMB7PUFYkmKCsYKk3LlIyUlqYkgpQv8whhJ1R1EViuo3RXWiWCwv__7eg-EPtiJ4cxJAOdLBQVTJOJgMWBfBZGWD-3_6L48KrbI</recordid><startdate>20200828</startdate><enddate>20200828</enddate><creator>Tallorin, Lorillee</creator><creator>Villareal, Valerie A.</creator><creator>Hsia, Chih-Yun</creator><creator>Rodgers, Mary A.</creator><creator>Burri, Dominique J.</creator><creator>Pfeil, Marc-Philipp</creator><creator>Llopis, Paula Montero</creator><creator>Lindenbach, Brett D.</creator><creator>Yang, Priscilla L.</creator><general>Elsevier Inc</general><general>American Society for Biochemistry and Molecular Biology</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-7456-2557</orcidid></search><sort><creationdate>20200828</creationdate><title>Hepatitis C virus NS3-4A protease regulates the lipid environment for RNA replication by cleaving host enzyme 24-dehydrocholesterol reductase</title><author>Tallorin, Lorillee ; Villareal, Valerie A. ; Hsia, Chih-Yun ; Rodgers, Mary A. ; Burri, Dominique J. ; Pfeil, Marc-Philipp ; Llopis, Paula Montero ; Lindenbach, Brett D. ; Yang, Priscilla L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c447t-252dee2005a0bdc6204827da4753f386904216c21923f746511c1695799d80403</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Cell Line, Tumor</topic><topic>cholesterol metabolism</topic><topic>desmosterol</topic><topic>Hepacivirus - enzymology</topic><topic>Hepacivirus - genetics</topic><topic>hepatitis C virus (HCV)</topic><topic>host–pathogen interaction</topic><topic>Humans</topic><topic>lipid environment</topic><topic>Lipid Metabolism</topic><topic>membrane lipid</topic><topic>Membrane Lipids - genetics</topic><topic>Membrane Lipids - metabolism</topic><topic>membrane remodeling</topic><topic>Microbiology</topic><topic>Nerve Tissue Proteins - genetics</topic><topic>Nerve Tissue Proteins - metabolism</topic><topic>Oxidoreductases Acting on CH-CH Group Donors - genetics</topic><topic>Oxidoreductases Acting on CH-CH Group Donors - metabolism</topic><topic>post-translational modification (PTM)</topic><topic>Proteolysis</topic><topic>RNA replication</topic><topic>RNA, Viral - biosynthesis</topic><topic>RNA, Viral - genetics</topic><topic>Serine Proteases - genetics</topic><topic>Serine Proteases - metabolism</topic><topic>Viral Nonstructural Proteins - genetics</topic><topic>Viral Nonstructural Proteins - metabolism</topic><topic>viral protease</topic><topic>viral replication</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tallorin, Lorillee</creatorcontrib><creatorcontrib>Villareal, Valerie A.</creatorcontrib><creatorcontrib>Hsia, Chih-Yun</creatorcontrib><creatorcontrib>Rodgers, Mary A.</creatorcontrib><creatorcontrib>Burri, Dominique J.</creatorcontrib><creatorcontrib>Pfeil, Marc-Philipp</creatorcontrib><creatorcontrib>Llopis, Paula Montero</creatorcontrib><creatorcontrib>Lindenbach, Brett D.</creatorcontrib><creatorcontrib>Yang, Priscilla L.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of biological chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tallorin, Lorillee</au><au>Villareal, Valerie A.</au><au>Hsia, Chih-Yun</au><au>Rodgers, Mary A.</au><au>Burri, Dominique J.</au><au>Pfeil, Marc-Philipp</au><au>Llopis, Paula Montero</au><au>Lindenbach, Brett D.</au><au>Yang, Priscilla L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hepatitis C virus NS3-4A protease regulates the lipid environment for RNA replication by cleaving host enzyme 24-dehydrocholesterol reductase</atitle><jtitle>The Journal of biological chemistry</jtitle><addtitle>J Biol Chem</addtitle><date>2020-08-28</date><risdate>2020</risdate><volume>295</volume><issue>35</issue><spage>12426</spage><epage>12436</epage><pages>12426-12436</pages><issn>0021-9258</issn><eissn>1083-351X</eissn><abstract>Many RNA viruses create specialized membranes for genome replication by manipulating host lipid metabolism and trafficking, but in most cases, we do not know the molecular mechanisms responsible or how specific lipids may impact the associated membrane and viral process. For example, hepatitis C virus (HCV) causes a specific, large-fold increase in the steady-state abundance of intracellular desmosterol, an immediate precursor of cholesterol, resulting in increased fluidity of the membrane where HCV RNA replication occurs. Here, we establish the mechanism responsible for HCV's effect on intracellular desmosterol, whereby the HCV NS3-4A protease controls activity of 24-dehydrocholesterol reductase (DHCR24), the enzyme that catalyzes conversion of desmosterol to cholesterol. Our cumulative evidence for the proposed mechanism includes immunofluorescence microscopy experiments showing co-occurrence of DHCR24 and HCV NS3-4A protease; formation of an additional, faster-migrating DHCR24 species (DHCR24*) in cells harboring a HCV subgenomic replicon RNA or ectopically expressing NS3-4A; and biochemical evidence that NS3-4A cleaves DHCR24 to produce DHCR24* in vitro and in vivo. We further demonstrate that NS3-4A cleaves DHCR24 between residues Cys91 and Thr92 and show that this reduces the intracellular conversion of desmosterol to cholesterol. Together, these studies demonstrate that NS3-4A directly cleaves DHCR24 and that this results in the enrichment of desmosterol in the membranes where NS3-4A and DHCR24 co-occur. Overall, this suggests a model in which HCV directly regulates the lipid environment for RNA replication through direct effects on the host lipid metabolism.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>32641492</pmid><doi>10.1074/jbc.RA120.013455</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-7456-2557</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9258 |
ispartof | The Journal of biological chemistry, 2020-08, Vol.295 (35), p.12426-12436 |
issn | 0021-9258 1083-351X |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7458815 |
source | MEDLINE; EZB-FREE-00999 freely available EZB journals; PubMed Central; Alma/SFX Local Collection |
subjects | Cell Line, Tumor cholesterol metabolism desmosterol Hepacivirus - enzymology Hepacivirus - genetics hepatitis C virus (HCV) host–pathogen interaction Humans lipid environment Lipid Metabolism membrane lipid Membrane Lipids - genetics Membrane Lipids - metabolism membrane remodeling Microbiology Nerve Tissue Proteins - genetics Nerve Tissue Proteins - metabolism Oxidoreductases Acting on CH-CH Group Donors - genetics Oxidoreductases Acting on CH-CH Group Donors - metabolism post-translational modification (PTM) Proteolysis RNA replication RNA, Viral - biosynthesis RNA, Viral - genetics Serine Proteases - genetics Serine Proteases - metabolism Viral Nonstructural Proteins - genetics Viral Nonstructural Proteins - metabolism viral protease viral replication |
title | Hepatitis C virus NS3-4A protease regulates the lipid environment for RNA replication by cleaving host enzyme 24-dehydrocholesterol reductase |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T12%3A03%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hepatitis%20C%20virus%20NS3-4A%20protease%20regulates%20the%20lipid%20environment%20for%20RNA%20replication%20by%20cleaving%20host%20enzyme%2024-dehydrocholesterol%20reductase&rft.jtitle=The%20Journal%20of%20biological%20chemistry&rft.au=Tallorin,%20Lorillee&rft.date=2020-08-28&rft.volume=295&rft.issue=35&rft.spage=12426&rft.epage=12436&rft.pages=12426-12436&rft.issn=0021-9258&rft.eissn=1083-351X&rft_id=info:doi/10.1074/jbc.RA120.013455&rft_dat=%3Cproquest_pubme%3E2422013326%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2422013326&rft_id=info:pmid/32641492&rft_els_id=S002192581749483X&rfr_iscdi=true |