TGF-β2 silencing to target biliary-derived liver diseases

ObjectiveTGF-β2 (TGF-β, transforming growth factor beta), the less-investigated sibling of TGF-β1, is deregulated in rodent and human liver diseases. Former data from bile duct ligated and MDR2 knockout (KO) mouse models for human cholestatic liver disease suggested an involvement of TGF-β2 in bilia...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Gut 2020-09, Vol.69 (9), p.1677-1690
Hauptverfasser: Dropmann, Anne, Dooley, Steven, Dewidar, Bedair, Hammad, Seddik, Dediulia, Tatjana, Werle, Julia, Hartwig, Vanessa, Ghafoory, Shahrouz, Woelfl, Stefan, Korhonen, Hanna, Janicot, Michel, Wosikowski, Katja, Itzel, Timo, Teufel, Andreas, Schuppan, Detlef, Stojanovic, Ana, Cerwenka, Adelheid, Nittka, Stefanie, Piiper, Albrecht, Gaiser, Timo, Beraza, Naiara, Milkiewicz, Malgorzata, Milkiewicz, Piotr, Brain, John G, Jones, David E J, Weiss, Thomas S, Zanger, Ulrich M, Ebert, Matthias, Meindl-Beinker, Nadja M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1690
container_issue 9
container_start_page 1677
container_title Gut
container_volume 69
creator Dropmann, Anne
Dooley, Steven
Dewidar, Bedair
Hammad, Seddik
Dediulia, Tatjana
Werle, Julia
Hartwig, Vanessa
Ghafoory, Shahrouz
Woelfl, Stefan
Korhonen, Hanna
Janicot, Michel
Wosikowski, Katja
Itzel, Timo
Teufel, Andreas
Schuppan, Detlef
Stojanovic, Ana
Cerwenka, Adelheid
Nittka, Stefanie
Piiper, Albrecht
Gaiser, Timo
Beraza, Naiara
Milkiewicz, Malgorzata
Milkiewicz, Piotr
Brain, John G
Jones, David E J
Weiss, Thomas S
Zanger, Ulrich M
Ebert, Matthias
Meindl-Beinker, Nadja M
description ObjectiveTGF-β2 (TGF-β, transforming growth factor beta), the less-investigated sibling of TGF-β1, is deregulated in rodent and human liver diseases. Former data from bile duct ligated and MDR2 knockout (KO) mouse models for human cholestatic liver disease suggested an involvement of TGF-β2 in biliary-derived liver diseases.DesignAs we also found upregulated TGFB2 in liver tissue of patients with primary sclerosing cholangitis (PSC) and primary biliary cholangitis (PBC), we now fathomed the positive prospects of targeting TGF-β2 in early stage biliary liver disease using the MDR2-KO mice. Specifically, the influence of TgfB2 silencing on the fibrotic and inflammatory niche was analysed on molecular, cellular and tissue levels.Results TgfB2-induced expression of fibrotic genes in cholangiocytes and hepatic stellate cellswas detected. TgfB2 expression in MDR2-KO mice was blunted using TgfB2-directed antisense oligonucleotides (AON). Upon AON treatment, reduced collagen deposition, hydroxyproline content and αSMA expression as well as induced PparG expression reflected a significant reduction of fibrogenesis without adverse effects on healthy livers. Expression analyses of fibrotic and inflammatory genes revealed AON-specific regulatory effects on Ccl3, Ccl4, Ccl5, Mki67 and Notch3 expression. Further, AON treatment of MDR2-KO mice increased tissue infiltration by F4/80-positive cells including eosinophils, whereas the number of CD45-positive inflammatory cells decreased. In line, TGFB2 and CD45 expression correlated positively in PSC/PBC patients and localised in similar areas of the diseased liver tissue.ConclusionsTaken together, our data suggest a new mechanistic explanation for amelioration of fibrogenesis by TGF-β2 silencing and provide a direct rationale for TGF-β2-directed drug development.
doi_str_mv 10.1136/gutjnl-2019-319091
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7456737</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2432345208</sourcerecordid><originalsourceid>FETCH-LOGICAL-b4221-6141d4311661c61307b4478cc2834159aea8360706ba37eca48eaa466ff841803</originalsourceid><addsrcrecordid>eNqNkMFKwzAcxoMobk5fwIMUPGfmn6RJ6kGQ4aYw8DLPIW2zmdK1M2kFX8sH8Zns6Jx6ES_JIb_vy8cPoXMgYwAmrlZtU1QlpgQSzCAhCRygIXChMKNKHaIhISBxLHkyQCchFIQQpRI4RoOOTmicsCG6Xsym-OOdRsGVtspctYqaOmqMX9kmSl3pjH_DufXu1eZR2Z0-yl2wJthwio6Wpgz2bHeP0NP0bjG5x_PH2cPkdo5TTilgARxyzgCEgEwAIzLlXKoso4pxiBNjjWKCSCJSw6TNDFfWGC7Ecqk4KMJG6Kbv3bTp2uaZrRpvSr3xbt2N07Vx-vdL5Z71qn7VksdCMtkVXO4KfP3S2tDoom591W3WlDPKeEyJ6ijaU5mvQ_B2uf8BiN761r1vvfWte99d6OLntn3kS3AH4B5I18X_Csff_H7mH4FPGxCZlA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2432345208</pqid></control><display><type>article</type><title>TGF-β2 silencing to target biliary-derived liver diseases</title><source>MEDLINE</source><source>PubMed Central</source><creator>Dropmann, Anne ; Dooley, Steven ; Dewidar, Bedair ; Hammad, Seddik ; Dediulia, Tatjana ; Werle, Julia ; Hartwig, Vanessa ; Ghafoory, Shahrouz ; Woelfl, Stefan ; Korhonen, Hanna ; Janicot, Michel ; Wosikowski, Katja ; Itzel, Timo ; Teufel, Andreas ; Schuppan, Detlef ; Stojanovic, Ana ; Cerwenka, Adelheid ; Nittka, Stefanie ; Piiper, Albrecht ; Gaiser, Timo ; Beraza, Naiara ; Milkiewicz, Malgorzata ; Milkiewicz, Piotr ; Brain, John G ; Jones, David E J ; Weiss, Thomas S ; Zanger, Ulrich M ; Ebert, Matthias ; Meindl-Beinker, Nadja M</creator><creatorcontrib>Dropmann, Anne ; Dooley, Steven ; Dewidar, Bedair ; Hammad, Seddik ; Dediulia, Tatjana ; Werle, Julia ; Hartwig, Vanessa ; Ghafoory, Shahrouz ; Woelfl, Stefan ; Korhonen, Hanna ; Janicot, Michel ; Wosikowski, Katja ; Itzel, Timo ; Teufel, Andreas ; Schuppan, Detlef ; Stojanovic, Ana ; Cerwenka, Adelheid ; Nittka, Stefanie ; Piiper, Albrecht ; Gaiser, Timo ; Beraza, Naiara ; Milkiewicz, Malgorzata ; Milkiewicz, Piotr ; Brain, John G ; Jones, David E J ; Weiss, Thomas S ; Zanger, Ulrich M ; Ebert, Matthias ; Meindl-Beinker, Nadja M</creatorcontrib><description>ObjectiveTGF-β2 (TGF-β, transforming growth factor beta), the less-investigated sibling of TGF-β1, is deregulated in rodent and human liver diseases. Former data from bile duct ligated and MDR2 knockout (KO) mouse models for human cholestatic liver disease suggested an involvement of TGF-β2 in biliary-derived liver diseases.DesignAs we also found upregulated TGFB2 in liver tissue of patients with primary sclerosing cholangitis (PSC) and primary biliary cholangitis (PBC), we now fathomed the positive prospects of targeting TGF-β2 in early stage biliary liver disease using the MDR2-KO mice. Specifically, the influence of TgfB2 silencing on the fibrotic and inflammatory niche was analysed on molecular, cellular and tissue levels.Results TgfB2-induced expression of fibrotic genes in cholangiocytes and hepatic stellate cellswas detected. TgfB2 expression in MDR2-KO mice was blunted using TgfB2-directed antisense oligonucleotides (AON). Upon AON treatment, reduced collagen deposition, hydroxyproline content and αSMA expression as well as induced PparG expression reflected a significant reduction of fibrogenesis without adverse effects on healthy livers. Expression analyses of fibrotic and inflammatory genes revealed AON-specific regulatory effects on Ccl3, Ccl4, Ccl5, Mki67 and Notch3 expression. Further, AON treatment of MDR2-KO mice increased tissue infiltration by F4/80-positive cells including eosinophils, whereas the number of CD45-positive inflammatory cells decreased. In line, TGFB2 and CD45 expression correlated positively in PSC/PBC patients and localised in similar areas of the diseased liver tissue.ConclusionsTaken together, our data suggest a new mechanistic explanation for amelioration of fibrogenesis by TGF-β2 silencing and provide a direct rationale for TGF-β2-directed drug development.</description><identifier>ISSN: 0017-5749</identifier><identifier>EISSN: 1468-3288</identifier><identifier>DOI: 10.1136/gutjnl-2019-319091</identifier><identifier>PMID: 31992593</identifier><language>eng</language><publisher>England: BMJ Publishing Group Ltd and British Society of Gastroenterology</publisher><subject>Animal models ; Animals ; Antisense oligonucleotides ; ATP Binding Cassette Transporter, Subfamily B - genetics ; ATP-Binding Cassette Sub-Family B Member 4 ; Bile ; Bile ducts ; CCL3 protein ; CD45 antigen ; Cholangitis ; Cholangitis, Sclerosing - metabolism ; Cholangitis, Sclerosing - pathology ; cholestasis ; Clinical trials ; Collagen ; Disease Models, Animal ; Drug development ; Drug Discovery ; fibrosis ; Gene Expression Regulation ; Gene Silencing ; Growth factors ; Hepatic Stellate Cells - metabolism ; Hepatology ; Humans ; Hydroxyproline ; Inflammation ; Leukocytes (eosinophilic) ; Liver cancer ; Liver Cirrhosis - metabolism ; Liver Cirrhosis - pathology ; Liver Cirrhosis - prevention &amp; control ; Liver Cirrhosis, Biliary - metabolism ; Liver Cirrhosis, Biliary - pathology ; Liver diseases ; Mice ; Mice, Knockout ; Oligonucleotides, Antisense ; Patients ; Peroxisome proliferator-activated receptors ; primary biliary cirrhosis ; primary sclerosing cholangitis ; TGF-beta ; Transforming Growth Factor beta2 - genetics ; Transforming Growth Factor beta2 - metabolism ; Transforming growth factor-b ; Transforming growth factor-b1 ; Up-Regulation</subject><ispartof>Gut, 2020-09, Vol.69 (9), p.1677-1690</ispartof><rights>Author(s) (or their employer(s)) 2020. Re-use permitted under CC BY-NC. No commercial re-use. See rights and permissions. Published by BMJ.</rights><rights>2020 Author(s) (or their employer(s)) 2020. Re-use permitted under CC BY-NC. No commercial re-use. See rights and permissions. Published by BMJ. This is an open access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited, appropriate credit is given, any changes made indicated, and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/ . Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Author(s) (or their employer(s)) 2020. Re-use permitted under CC BY-NC. No commercial re-use. See rights and permissions. Published by BMJ. 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-b4221-6141d4311661c61307b4478cc2834159aea8360706ba37eca48eaa466ff841803</citedby><cites>FETCH-LOGICAL-b4221-6141d4311661c61307b4478cc2834159aea8360706ba37eca48eaa466ff841803</cites><orcidid>0000-0002-6022-073X ; 0000-0003-0211-352X ; 0000-0003-3135-1359 ; 0000-0002-4840-6240 ; 0000-0003-0336-0581 ; 0000-0001-7953-8927</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7456737/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7456737/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31992593$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Dropmann, Anne</creatorcontrib><creatorcontrib>Dooley, Steven</creatorcontrib><creatorcontrib>Dewidar, Bedair</creatorcontrib><creatorcontrib>Hammad, Seddik</creatorcontrib><creatorcontrib>Dediulia, Tatjana</creatorcontrib><creatorcontrib>Werle, Julia</creatorcontrib><creatorcontrib>Hartwig, Vanessa</creatorcontrib><creatorcontrib>Ghafoory, Shahrouz</creatorcontrib><creatorcontrib>Woelfl, Stefan</creatorcontrib><creatorcontrib>Korhonen, Hanna</creatorcontrib><creatorcontrib>Janicot, Michel</creatorcontrib><creatorcontrib>Wosikowski, Katja</creatorcontrib><creatorcontrib>Itzel, Timo</creatorcontrib><creatorcontrib>Teufel, Andreas</creatorcontrib><creatorcontrib>Schuppan, Detlef</creatorcontrib><creatorcontrib>Stojanovic, Ana</creatorcontrib><creatorcontrib>Cerwenka, Adelheid</creatorcontrib><creatorcontrib>Nittka, Stefanie</creatorcontrib><creatorcontrib>Piiper, Albrecht</creatorcontrib><creatorcontrib>Gaiser, Timo</creatorcontrib><creatorcontrib>Beraza, Naiara</creatorcontrib><creatorcontrib>Milkiewicz, Malgorzata</creatorcontrib><creatorcontrib>Milkiewicz, Piotr</creatorcontrib><creatorcontrib>Brain, John G</creatorcontrib><creatorcontrib>Jones, David E J</creatorcontrib><creatorcontrib>Weiss, Thomas S</creatorcontrib><creatorcontrib>Zanger, Ulrich M</creatorcontrib><creatorcontrib>Ebert, Matthias</creatorcontrib><creatorcontrib>Meindl-Beinker, Nadja M</creatorcontrib><title>TGF-β2 silencing to target biliary-derived liver diseases</title><title>Gut</title><addtitle>Gut</addtitle><addtitle>Gut</addtitle><description>ObjectiveTGF-β2 (TGF-β, transforming growth factor beta), the less-investigated sibling of TGF-β1, is deregulated in rodent and human liver diseases. Former data from bile duct ligated and MDR2 knockout (KO) mouse models for human cholestatic liver disease suggested an involvement of TGF-β2 in biliary-derived liver diseases.DesignAs we also found upregulated TGFB2 in liver tissue of patients with primary sclerosing cholangitis (PSC) and primary biliary cholangitis (PBC), we now fathomed the positive prospects of targeting TGF-β2 in early stage biliary liver disease using the MDR2-KO mice. Specifically, the influence of TgfB2 silencing on the fibrotic and inflammatory niche was analysed on molecular, cellular and tissue levels.Results TgfB2-induced expression of fibrotic genes in cholangiocytes and hepatic stellate cellswas detected. TgfB2 expression in MDR2-KO mice was blunted using TgfB2-directed antisense oligonucleotides (AON). Upon AON treatment, reduced collagen deposition, hydroxyproline content and αSMA expression as well as induced PparG expression reflected a significant reduction of fibrogenesis without adverse effects on healthy livers. Expression analyses of fibrotic and inflammatory genes revealed AON-specific regulatory effects on Ccl3, Ccl4, Ccl5, Mki67 and Notch3 expression. Further, AON treatment of MDR2-KO mice increased tissue infiltration by F4/80-positive cells including eosinophils, whereas the number of CD45-positive inflammatory cells decreased. In line, TGFB2 and CD45 expression correlated positively in PSC/PBC patients and localised in similar areas of the diseased liver tissue.ConclusionsTaken together, our data suggest a new mechanistic explanation for amelioration of fibrogenesis by TGF-β2 silencing and provide a direct rationale for TGF-β2-directed drug development.</description><subject>Animal models</subject><subject>Animals</subject><subject>Antisense oligonucleotides</subject><subject>ATP Binding Cassette Transporter, Subfamily B - genetics</subject><subject>ATP-Binding Cassette Sub-Family B Member 4</subject><subject>Bile</subject><subject>Bile ducts</subject><subject>CCL3 protein</subject><subject>CD45 antigen</subject><subject>Cholangitis</subject><subject>Cholangitis, Sclerosing - metabolism</subject><subject>Cholangitis, Sclerosing - pathology</subject><subject>cholestasis</subject><subject>Clinical trials</subject><subject>Collagen</subject><subject>Disease Models, Animal</subject><subject>Drug development</subject><subject>Drug Discovery</subject><subject>fibrosis</subject><subject>Gene Expression Regulation</subject><subject>Gene Silencing</subject><subject>Growth factors</subject><subject>Hepatic Stellate Cells - metabolism</subject><subject>Hepatology</subject><subject>Humans</subject><subject>Hydroxyproline</subject><subject>Inflammation</subject><subject>Leukocytes (eosinophilic)</subject><subject>Liver cancer</subject><subject>Liver Cirrhosis - metabolism</subject><subject>Liver Cirrhosis - pathology</subject><subject>Liver Cirrhosis - prevention &amp; control</subject><subject>Liver Cirrhosis, Biliary - metabolism</subject><subject>Liver Cirrhosis, Biliary - pathology</subject><subject>Liver diseases</subject><subject>Mice</subject><subject>Mice, Knockout</subject><subject>Oligonucleotides, Antisense</subject><subject>Patients</subject><subject>Peroxisome proliferator-activated receptors</subject><subject>primary biliary cirrhosis</subject><subject>primary sclerosing cholangitis</subject><subject>TGF-beta</subject><subject>Transforming Growth Factor beta2 - genetics</subject><subject>Transforming Growth Factor beta2 - metabolism</subject><subject>Transforming growth factor-b</subject><subject>Transforming growth factor-b1</subject><subject>Up-Regulation</subject><issn>0017-5749</issn><issn>1468-3288</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>9YT</sourceid><sourceid>ACMMV</sourceid><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNqNkMFKwzAcxoMobk5fwIMUPGfmn6RJ6kGQ4aYw8DLPIW2zmdK1M2kFX8sH8Zns6Jx6ES_JIb_vy8cPoXMgYwAmrlZtU1QlpgQSzCAhCRygIXChMKNKHaIhISBxLHkyQCchFIQQpRI4RoOOTmicsCG6Xsym-OOdRsGVtspctYqaOmqMX9kmSl3pjH_DufXu1eZR2Z0-yl2wJthwio6Wpgz2bHeP0NP0bjG5x_PH2cPkdo5TTilgARxyzgCEgEwAIzLlXKoso4pxiBNjjWKCSCJSw6TNDFfWGC7Ecqk4KMJG6Kbv3bTp2uaZrRpvSr3xbt2N07Vx-vdL5Z71qn7VksdCMtkVXO4KfP3S2tDoom591W3WlDPKeEyJ6ijaU5mvQ_B2uf8BiN761r1vvfWte99d6OLntn3kS3AH4B5I18X_Csff_H7mH4FPGxCZlA</recordid><startdate>20200901</startdate><enddate>20200901</enddate><creator>Dropmann, Anne</creator><creator>Dooley, Steven</creator><creator>Dewidar, Bedair</creator><creator>Hammad, Seddik</creator><creator>Dediulia, Tatjana</creator><creator>Werle, Julia</creator><creator>Hartwig, Vanessa</creator><creator>Ghafoory, Shahrouz</creator><creator>Woelfl, Stefan</creator><creator>Korhonen, Hanna</creator><creator>Janicot, Michel</creator><creator>Wosikowski, Katja</creator><creator>Itzel, Timo</creator><creator>Teufel, Andreas</creator><creator>Schuppan, Detlef</creator><creator>Stojanovic, Ana</creator><creator>Cerwenka, Adelheid</creator><creator>Nittka, Stefanie</creator><creator>Piiper, Albrecht</creator><creator>Gaiser, Timo</creator><creator>Beraza, Naiara</creator><creator>Milkiewicz, Malgorzata</creator><creator>Milkiewicz, Piotr</creator><creator>Brain, John G</creator><creator>Jones, David E J</creator><creator>Weiss, Thomas S</creator><creator>Zanger, Ulrich M</creator><creator>Ebert, Matthias</creator><creator>Meindl-Beinker, Nadja M</creator><general>BMJ Publishing Group Ltd and British Society of Gastroenterology</general><general>BMJ Publishing Group LTD</general><general>BMJ Publishing Group</general><scope>9YT</scope><scope>ACMMV</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88I</scope><scope>8AF</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BTHHO</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-6022-073X</orcidid><orcidid>https://orcid.org/0000-0003-0211-352X</orcidid><orcidid>https://orcid.org/0000-0003-3135-1359</orcidid><orcidid>https://orcid.org/0000-0002-4840-6240</orcidid><orcidid>https://orcid.org/0000-0003-0336-0581</orcidid><orcidid>https://orcid.org/0000-0001-7953-8927</orcidid></search><sort><creationdate>20200901</creationdate><title>TGF-β2 silencing to target biliary-derived liver diseases</title><author>Dropmann, Anne ; Dooley, Steven ; Dewidar, Bedair ; Hammad, Seddik ; Dediulia, Tatjana ; Werle, Julia ; Hartwig, Vanessa ; Ghafoory, Shahrouz ; Woelfl, Stefan ; Korhonen, Hanna ; Janicot, Michel ; Wosikowski, Katja ; Itzel, Timo ; Teufel, Andreas ; Schuppan, Detlef ; Stojanovic, Ana ; Cerwenka, Adelheid ; Nittka, Stefanie ; Piiper, Albrecht ; Gaiser, Timo ; Beraza, Naiara ; Milkiewicz, Malgorzata ; Milkiewicz, Piotr ; Brain, John G ; Jones, David E J ; Weiss, Thomas S ; Zanger, Ulrich M ; Ebert, Matthias ; Meindl-Beinker, Nadja M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-b4221-6141d4311661c61307b4478cc2834159aea8360706ba37eca48eaa466ff841803</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Animal models</topic><topic>Animals</topic><topic>Antisense oligonucleotides</topic><topic>ATP Binding Cassette Transporter, Subfamily B - genetics</topic><topic>ATP-Binding Cassette Sub-Family B Member 4</topic><topic>Bile</topic><topic>Bile ducts</topic><topic>CCL3 protein</topic><topic>CD45 antigen</topic><topic>Cholangitis</topic><topic>Cholangitis, Sclerosing - metabolism</topic><topic>Cholangitis, Sclerosing - pathology</topic><topic>cholestasis</topic><topic>Clinical trials</topic><topic>Collagen</topic><topic>Disease Models, Animal</topic><topic>Drug development</topic><topic>Drug Discovery</topic><topic>fibrosis</topic><topic>Gene Expression Regulation</topic><topic>Gene Silencing</topic><topic>Growth factors</topic><topic>Hepatic Stellate Cells - metabolism</topic><topic>Hepatology</topic><topic>Humans</topic><topic>Hydroxyproline</topic><topic>Inflammation</topic><topic>Leukocytes (eosinophilic)</topic><topic>Liver cancer</topic><topic>Liver Cirrhosis - metabolism</topic><topic>Liver Cirrhosis - pathology</topic><topic>Liver Cirrhosis - prevention &amp; control</topic><topic>Liver Cirrhosis, Biliary - metabolism</topic><topic>Liver Cirrhosis, Biliary - pathology</topic><topic>Liver diseases</topic><topic>Mice</topic><topic>Mice, Knockout</topic><topic>Oligonucleotides, Antisense</topic><topic>Patients</topic><topic>Peroxisome proliferator-activated receptors</topic><topic>primary biliary cirrhosis</topic><topic>primary sclerosing cholangitis</topic><topic>TGF-beta</topic><topic>Transforming Growth Factor beta2 - genetics</topic><topic>Transforming Growth Factor beta2 - metabolism</topic><topic>Transforming growth factor-b</topic><topic>Transforming growth factor-b1</topic><topic>Up-Regulation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dropmann, Anne</creatorcontrib><creatorcontrib>Dooley, Steven</creatorcontrib><creatorcontrib>Dewidar, Bedair</creatorcontrib><creatorcontrib>Hammad, Seddik</creatorcontrib><creatorcontrib>Dediulia, Tatjana</creatorcontrib><creatorcontrib>Werle, Julia</creatorcontrib><creatorcontrib>Hartwig, Vanessa</creatorcontrib><creatorcontrib>Ghafoory, Shahrouz</creatorcontrib><creatorcontrib>Woelfl, Stefan</creatorcontrib><creatorcontrib>Korhonen, Hanna</creatorcontrib><creatorcontrib>Janicot, Michel</creatorcontrib><creatorcontrib>Wosikowski, Katja</creatorcontrib><creatorcontrib>Itzel, Timo</creatorcontrib><creatorcontrib>Teufel, Andreas</creatorcontrib><creatorcontrib>Schuppan, Detlef</creatorcontrib><creatorcontrib>Stojanovic, Ana</creatorcontrib><creatorcontrib>Cerwenka, Adelheid</creatorcontrib><creatorcontrib>Nittka, Stefanie</creatorcontrib><creatorcontrib>Piiper, Albrecht</creatorcontrib><creatorcontrib>Gaiser, Timo</creatorcontrib><creatorcontrib>Beraza, Naiara</creatorcontrib><creatorcontrib>Milkiewicz, Malgorzata</creatorcontrib><creatorcontrib>Milkiewicz, Piotr</creatorcontrib><creatorcontrib>Brain, John G</creatorcontrib><creatorcontrib>Jones, David E J</creatorcontrib><creatorcontrib>Weiss, Thomas S</creatorcontrib><creatorcontrib>Zanger, Ulrich M</creatorcontrib><creatorcontrib>Ebert, Matthias</creatorcontrib><creatorcontrib>Meindl-Beinker, Nadja M</creatorcontrib><collection>BMJ Open Access Journals</collection><collection>BMJ Journals:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>BMJ Journals</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Gut</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dropmann, Anne</au><au>Dooley, Steven</au><au>Dewidar, Bedair</au><au>Hammad, Seddik</au><au>Dediulia, Tatjana</au><au>Werle, Julia</au><au>Hartwig, Vanessa</au><au>Ghafoory, Shahrouz</au><au>Woelfl, Stefan</au><au>Korhonen, Hanna</au><au>Janicot, Michel</au><au>Wosikowski, Katja</au><au>Itzel, Timo</au><au>Teufel, Andreas</au><au>Schuppan, Detlef</au><au>Stojanovic, Ana</au><au>Cerwenka, Adelheid</au><au>Nittka, Stefanie</au><au>Piiper, Albrecht</au><au>Gaiser, Timo</au><au>Beraza, Naiara</au><au>Milkiewicz, Malgorzata</au><au>Milkiewicz, Piotr</au><au>Brain, John G</au><au>Jones, David E J</au><au>Weiss, Thomas S</au><au>Zanger, Ulrich M</au><au>Ebert, Matthias</au><au>Meindl-Beinker, Nadja M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>TGF-β2 silencing to target biliary-derived liver diseases</atitle><jtitle>Gut</jtitle><stitle>Gut</stitle><addtitle>Gut</addtitle><date>2020-09-01</date><risdate>2020</risdate><volume>69</volume><issue>9</issue><spage>1677</spage><epage>1690</epage><pages>1677-1690</pages><issn>0017-5749</issn><eissn>1468-3288</eissn><abstract>ObjectiveTGF-β2 (TGF-β, transforming growth factor beta), the less-investigated sibling of TGF-β1, is deregulated in rodent and human liver diseases. Former data from bile duct ligated and MDR2 knockout (KO) mouse models for human cholestatic liver disease suggested an involvement of TGF-β2 in biliary-derived liver diseases.DesignAs we also found upregulated TGFB2 in liver tissue of patients with primary sclerosing cholangitis (PSC) and primary biliary cholangitis (PBC), we now fathomed the positive prospects of targeting TGF-β2 in early stage biliary liver disease using the MDR2-KO mice. Specifically, the influence of TgfB2 silencing on the fibrotic and inflammatory niche was analysed on molecular, cellular and tissue levels.Results TgfB2-induced expression of fibrotic genes in cholangiocytes and hepatic stellate cellswas detected. TgfB2 expression in MDR2-KO mice was blunted using TgfB2-directed antisense oligonucleotides (AON). Upon AON treatment, reduced collagen deposition, hydroxyproline content and αSMA expression as well as induced PparG expression reflected a significant reduction of fibrogenesis without adverse effects on healthy livers. Expression analyses of fibrotic and inflammatory genes revealed AON-specific regulatory effects on Ccl3, Ccl4, Ccl5, Mki67 and Notch3 expression. Further, AON treatment of MDR2-KO mice increased tissue infiltration by F4/80-positive cells including eosinophils, whereas the number of CD45-positive inflammatory cells decreased. In line, TGFB2 and CD45 expression correlated positively in PSC/PBC patients and localised in similar areas of the diseased liver tissue.ConclusionsTaken together, our data suggest a new mechanistic explanation for amelioration of fibrogenesis by TGF-β2 silencing and provide a direct rationale for TGF-β2-directed drug development.</abstract><cop>England</cop><pub>BMJ Publishing Group Ltd and British Society of Gastroenterology</pub><pmid>31992593</pmid><doi>10.1136/gutjnl-2019-319091</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-6022-073X</orcidid><orcidid>https://orcid.org/0000-0003-0211-352X</orcidid><orcidid>https://orcid.org/0000-0003-3135-1359</orcidid><orcidid>https://orcid.org/0000-0002-4840-6240</orcidid><orcidid>https://orcid.org/0000-0003-0336-0581</orcidid><orcidid>https://orcid.org/0000-0001-7953-8927</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0017-5749
ispartof Gut, 2020-09, Vol.69 (9), p.1677-1690
issn 0017-5749
1468-3288
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7456737
source MEDLINE; PubMed Central
subjects Animal models
Animals
Antisense oligonucleotides
ATP Binding Cassette Transporter, Subfamily B - genetics
ATP-Binding Cassette Sub-Family B Member 4
Bile
Bile ducts
CCL3 protein
CD45 antigen
Cholangitis
Cholangitis, Sclerosing - metabolism
Cholangitis, Sclerosing - pathology
cholestasis
Clinical trials
Collagen
Disease Models, Animal
Drug development
Drug Discovery
fibrosis
Gene Expression Regulation
Gene Silencing
Growth factors
Hepatic Stellate Cells - metabolism
Hepatology
Humans
Hydroxyproline
Inflammation
Leukocytes (eosinophilic)
Liver cancer
Liver Cirrhosis - metabolism
Liver Cirrhosis - pathology
Liver Cirrhosis - prevention & control
Liver Cirrhosis, Biliary - metabolism
Liver Cirrhosis, Biliary - pathology
Liver diseases
Mice
Mice, Knockout
Oligonucleotides, Antisense
Patients
Peroxisome proliferator-activated receptors
primary biliary cirrhosis
primary sclerosing cholangitis
TGF-beta
Transforming Growth Factor beta2 - genetics
Transforming Growth Factor beta2 - metabolism
Transforming growth factor-b
Transforming growth factor-b1
Up-Regulation
title TGF-β2 silencing to target biliary-derived liver diseases
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T02%3A42%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=TGF-%CE%B22%20silencing%20to%20target%20biliary-derived%20liver%20diseases&rft.jtitle=Gut&rft.au=Dropmann,%20Anne&rft.date=2020-09-01&rft.volume=69&rft.issue=9&rft.spage=1677&rft.epage=1690&rft.pages=1677-1690&rft.issn=0017-5749&rft.eissn=1468-3288&rft_id=info:doi/10.1136/gutjnl-2019-319091&rft_dat=%3Cproquest_pubme%3E2432345208%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2432345208&rft_id=info:pmid/31992593&rfr_iscdi=true