12(S)-HETE mediates diabetes-induced endothelial dysfunction by activating intracellular endothelial cell TRPV1
Patients with diabetes develop endothelial dysfunction shortly after diabetes onset that progresses to vascular disease underlying the majority of diabetes-associated comorbidities. Increased lipid peroxidation, mitochondrial calcium overload, and mitochondrial dysfunction are characteristics of dys...
Gespeichert in:
Veröffentlicht in: | The Journal of clinical investigation 2020-09, Vol.130 (9), p.4999-5010 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5010 |
---|---|
container_issue | 9 |
container_start_page | 4999 |
container_title | The Journal of clinical investigation |
container_volume | 130 |
creator | Otto, Mandy Bucher, Clarissa Liu, Wantao Müller, Melanie Schmidt, Tobias Kardell, Marina Driessen, Marvin Noel Rossaint, Jan Gross, Eric R Wagner, Nana-Maria |
description | Patients with diabetes develop endothelial dysfunction shortly after diabetes onset that progresses to vascular disease underlying the majority of diabetes-associated comorbidities. Increased lipid peroxidation, mitochondrial calcium overload, and mitochondrial dysfunction are characteristics of dysfunctional endothelial cells in diabetic patients. We here identified that targeting the lipid peroxidation product 12(S)-hydroxyeicosatetraenoic acid-induced [12(S)-HETE-induced] activation of the intracellularly located cation channel transient receptor potential vanilloid 1 (TRPV1) in endothelial cells is a means to causally control early-stage vascular disease in type I diabetic mice. Mice with an inducible, endothelium-specific 12/15-lipoxygenase (12/15Lo) knockout were protected similarly to TRPV1-knockout mice from type 1 diabetes-induced endothelial dysfunction and impaired vascular regeneration following arterial injury. Both 12(S)-HETE in concentrations found in diabetic patients and TRPV1 agonists triggered mitochondrial calcium influx and mitochondrial dysfunction in endothelial cells, and 12(S)-HETE effects were absent in endothelial cells from TRPV1-knockout mice. As a therapeutic consequence, we found that a peptide targeting 12(S)-HETE-induced TRPV1 interaction at the TRPV1 TRP box ameliorated diabetes-induced endothelial dysfunction and augmented vascular regeneration in diabetic mice. Our findings suggest that pharmacological targeting of increased endothelial lipid peroxidation can attenuate diabetes-induced comorbidities related to vascular disease. |
doi_str_mv | 10.1172/JCI136621 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7456227</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2441314263</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3181-b5aa56292d04a87920918873c887ec577ad5809fe1ebe557e01dcc5347700f153</originalsourceid><addsrcrecordid>eNpdkU1P3DAQhi1EBQvlwB-oInGBQ4rHH2vnUgmtlo8Kiard9mo5zgSMsjbECdL-exxBV6UXz8h-_M77agg5BvoVQLHz74sb4PM5gx0yAyl1qRnXu2RGKYOyUlzvk4OUHikFIaTYI_ucSS1UxWckAjv9dVZeL1fLYo2NtwOmIpcac1P60IwOmwJDE4cH7LztimaT2jG4wcdQ1JvC5u7FDj7cFz4MvXXYdWNn-w9_psti9fPHH_hMPrW2S3j0Xg_J78vlanFd3t5d3SwubkvHQUNZS2vlnFWsocJqVTFagdaKu3ygk0rZRmpatQhYo5QKKTTOSS6UorQFyQ_Jtzfdp7HOuRxO3jrz1Pu17TcmWm8-vgT_YO7ji1Eiz2UqC5y-C_TxecQ0mLVPUw4bMI7JMJF9MqoYz-jJf-hjHPuQ42VKAAfB5hN19ka5PqbUY7s1A9RMazTbNWb2y7_ut-TfvfFXlQiXNw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2441314263</pqid></control><display><type>article</type><title>12(S)-HETE mediates diabetes-induced endothelial dysfunction by activating intracellular endothelial cell TRPV1</title><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Otto, Mandy ; Bucher, Clarissa ; Liu, Wantao ; Müller, Melanie ; Schmidt, Tobias ; Kardell, Marina ; Driessen, Marvin Noel ; Rossaint, Jan ; Gross, Eric R ; Wagner, Nana-Maria</creator><creatorcontrib>Otto, Mandy ; Bucher, Clarissa ; Liu, Wantao ; Müller, Melanie ; Schmidt, Tobias ; Kardell, Marina ; Driessen, Marvin Noel ; Rossaint, Jan ; Gross, Eric R ; Wagner, Nana-Maria</creatorcontrib><description>Patients with diabetes develop endothelial dysfunction shortly after diabetes onset that progresses to vascular disease underlying the majority of diabetes-associated comorbidities. Increased lipid peroxidation, mitochondrial calcium overload, and mitochondrial dysfunction are characteristics of dysfunctional endothelial cells in diabetic patients. We here identified that targeting the lipid peroxidation product 12(S)-hydroxyeicosatetraenoic acid-induced [12(S)-HETE-induced] activation of the intracellularly located cation channel transient receptor potential vanilloid 1 (TRPV1) in endothelial cells is a means to causally control early-stage vascular disease in type I diabetic mice. Mice with an inducible, endothelium-specific 12/15-lipoxygenase (12/15Lo) knockout were protected similarly to TRPV1-knockout mice from type 1 diabetes-induced endothelial dysfunction and impaired vascular regeneration following arterial injury. Both 12(S)-HETE in concentrations found in diabetic patients and TRPV1 agonists triggered mitochondrial calcium influx and mitochondrial dysfunction in endothelial cells, and 12(S)-HETE effects were absent in endothelial cells from TRPV1-knockout mice. As a therapeutic consequence, we found that a peptide targeting 12(S)-HETE-induced TRPV1 interaction at the TRPV1 TRP box ameliorated diabetes-induced endothelial dysfunction and augmented vascular regeneration in diabetic mice. Our findings suggest that pharmacological targeting of increased endothelial lipid peroxidation can attenuate diabetes-induced comorbidities related to vascular disease.</description><identifier>ISSN: 0021-9738</identifier><identifier>EISSN: 1558-8238</identifier><identifier>DOI: 10.1172/JCI136621</identifier><identifier>PMID: 32584793</identifier><language>eng</language><publisher>United States: American Society for Clinical Investigation</publisher><subject>Animals ; Arachidonate 12-lipoxygenase ; Biomedical research ; Calcium (mitochondrial) ; Calcium influx ; Calcium Signaling ; Capsaicin receptors ; Cardiovascular disease ; Diabetes ; Diabetes mellitus (insulin dependent) ; Diabetes Mellitus, Experimental - genetics ; Diabetes Mellitus, Experimental - metabolism ; Diabetes Mellitus, Experimental - pathology ; Diabetes Mellitus, Type 1 - genetics ; Diabetes Mellitus, Type 1 - metabolism ; Diabetes Mellitus, Type 1 - pathology ; Diabetic Angiopathies - genetics ; Diabetic Angiopathies - metabolism ; Diabetic Angiopathies - pathology ; Endothelial cells ; Endothelial Cells - metabolism ; Endothelial Cells - pathology ; Endothelium ; Endothelium, Vascular - metabolism ; Endothelium, Vascular - pathology ; Female ; Glucose ; Homeostasis ; Hydroxyeicosatetraenoic Acids - metabolism ; Hyperglycemia ; Lipid peroxidation ; Lipids ; Male ; Mice ; Mice, Knockout ; Mitochondria ; Molecular weight ; Nitric oxide ; Peptides ; Plasma ; Proteins ; Respiration ; Rodents ; Transient receptor potential proteins ; TRPV Cation Channels - genetics ; TRPV Cation Channels - metabolism ; Vascular diseases</subject><ispartof>The Journal of clinical investigation, 2020-09, Vol.130 (9), p.4999-5010</ispartof><rights>Copyright American Society for Clinical Investigation Sep 2020</rights><rights>2020 American Society for Clinical Investigation 2020 American Society for Clinical Investigation</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3181-b5aa56292d04a87920918873c887ec577ad5809fe1ebe557e01dcc5347700f153</citedby><cites>FETCH-LOGICAL-c3181-b5aa56292d04a87920918873c887ec577ad5809fe1ebe557e01dcc5347700f153</cites><orcidid>0000-0001-5899-5045 ; 0000-0002-4610-6666 ; 0000-0003-1738-8710</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7456227/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7456227/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32584793$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Otto, Mandy</creatorcontrib><creatorcontrib>Bucher, Clarissa</creatorcontrib><creatorcontrib>Liu, Wantao</creatorcontrib><creatorcontrib>Müller, Melanie</creatorcontrib><creatorcontrib>Schmidt, Tobias</creatorcontrib><creatorcontrib>Kardell, Marina</creatorcontrib><creatorcontrib>Driessen, Marvin Noel</creatorcontrib><creatorcontrib>Rossaint, Jan</creatorcontrib><creatorcontrib>Gross, Eric R</creatorcontrib><creatorcontrib>Wagner, Nana-Maria</creatorcontrib><title>12(S)-HETE mediates diabetes-induced endothelial dysfunction by activating intracellular endothelial cell TRPV1</title><title>The Journal of clinical investigation</title><addtitle>J Clin Invest</addtitle><description>Patients with diabetes develop endothelial dysfunction shortly after diabetes onset that progresses to vascular disease underlying the majority of diabetes-associated comorbidities. Increased lipid peroxidation, mitochondrial calcium overload, and mitochondrial dysfunction are characteristics of dysfunctional endothelial cells in diabetic patients. We here identified that targeting the lipid peroxidation product 12(S)-hydroxyeicosatetraenoic acid-induced [12(S)-HETE-induced] activation of the intracellularly located cation channel transient receptor potential vanilloid 1 (TRPV1) in endothelial cells is a means to causally control early-stage vascular disease in type I diabetic mice. Mice with an inducible, endothelium-specific 12/15-lipoxygenase (12/15Lo) knockout were protected similarly to TRPV1-knockout mice from type 1 diabetes-induced endothelial dysfunction and impaired vascular regeneration following arterial injury. Both 12(S)-HETE in concentrations found in diabetic patients and TRPV1 agonists triggered mitochondrial calcium influx and mitochondrial dysfunction in endothelial cells, and 12(S)-HETE effects were absent in endothelial cells from TRPV1-knockout mice. As a therapeutic consequence, we found that a peptide targeting 12(S)-HETE-induced TRPV1 interaction at the TRPV1 TRP box ameliorated diabetes-induced endothelial dysfunction and augmented vascular regeneration in diabetic mice. Our findings suggest that pharmacological targeting of increased endothelial lipid peroxidation can attenuate diabetes-induced comorbidities related to vascular disease.</description><subject>Animals</subject><subject>Arachidonate 12-lipoxygenase</subject><subject>Biomedical research</subject><subject>Calcium (mitochondrial)</subject><subject>Calcium influx</subject><subject>Calcium Signaling</subject><subject>Capsaicin receptors</subject><subject>Cardiovascular disease</subject><subject>Diabetes</subject><subject>Diabetes mellitus (insulin dependent)</subject><subject>Diabetes Mellitus, Experimental - genetics</subject><subject>Diabetes Mellitus, Experimental - metabolism</subject><subject>Diabetes Mellitus, Experimental - pathology</subject><subject>Diabetes Mellitus, Type 1 - genetics</subject><subject>Diabetes Mellitus, Type 1 - metabolism</subject><subject>Diabetes Mellitus, Type 1 - pathology</subject><subject>Diabetic Angiopathies - genetics</subject><subject>Diabetic Angiopathies - metabolism</subject><subject>Diabetic Angiopathies - pathology</subject><subject>Endothelial cells</subject><subject>Endothelial Cells - metabolism</subject><subject>Endothelial Cells - pathology</subject><subject>Endothelium</subject><subject>Endothelium, Vascular - metabolism</subject><subject>Endothelium, Vascular - pathology</subject><subject>Female</subject><subject>Glucose</subject><subject>Homeostasis</subject><subject>Hydroxyeicosatetraenoic Acids - metabolism</subject><subject>Hyperglycemia</subject><subject>Lipid peroxidation</subject><subject>Lipids</subject><subject>Male</subject><subject>Mice</subject><subject>Mice, Knockout</subject><subject>Mitochondria</subject><subject>Molecular weight</subject><subject>Nitric oxide</subject><subject>Peptides</subject><subject>Plasma</subject><subject>Proteins</subject><subject>Respiration</subject><subject>Rodents</subject><subject>Transient receptor potential proteins</subject><subject>TRPV Cation Channels - genetics</subject><subject>TRPV Cation Channels - metabolism</subject><subject>Vascular diseases</subject><issn>0021-9738</issn><issn>1558-8238</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><recordid>eNpdkU1P3DAQhi1EBQvlwB-oInGBQ4rHH2vnUgmtlo8Kiard9mo5zgSMsjbECdL-exxBV6UXz8h-_M77agg5BvoVQLHz74sb4PM5gx0yAyl1qRnXu2RGKYOyUlzvk4OUHikFIaTYI_ucSS1UxWckAjv9dVZeL1fLYo2NtwOmIpcac1P60IwOmwJDE4cH7LztimaT2jG4wcdQ1JvC5u7FDj7cFz4MvXXYdWNn-w9_psti9fPHH_hMPrW2S3j0Xg_J78vlanFd3t5d3SwubkvHQUNZS2vlnFWsocJqVTFagdaKu3ygk0rZRmpatQhYo5QKKTTOSS6UorQFyQ_Jtzfdp7HOuRxO3jrz1Pu17TcmWm8-vgT_YO7ji1Eiz2UqC5y-C_TxecQ0mLVPUw4bMI7JMJF9MqoYz-jJf-hjHPuQ42VKAAfB5hN19ka5PqbUY7s1A9RMazTbNWb2y7_ut-TfvfFXlQiXNw</recordid><startdate>20200901</startdate><enddate>20200901</enddate><creator>Otto, Mandy</creator><creator>Bucher, Clarissa</creator><creator>Liu, Wantao</creator><creator>Müller, Melanie</creator><creator>Schmidt, Tobias</creator><creator>Kardell, Marina</creator><creator>Driessen, Marvin Noel</creator><creator>Rossaint, Jan</creator><creator>Gross, Eric R</creator><creator>Wagner, Nana-Maria</creator><general>American Society for Clinical Investigation</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RV</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB0</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>NAPCQ</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>S0X</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-5899-5045</orcidid><orcidid>https://orcid.org/0000-0002-4610-6666</orcidid><orcidid>https://orcid.org/0000-0003-1738-8710</orcidid></search><sort><creationdate>20200901</creationdate><title>12(S)-HETE mediates diabetes-induced endothelial dysfunction by activating intracellular endothelial cell TRPV1</title><author>Otto, Mandy ; Bucher, Clarissa ; Liu, Wantao ; Müller, Melanie ; Schmidt, Tobias ; Kardell, Marina ; Driessen, Marvin Noel ; Rossaint, Jan ; Gross, Eric R ; Wagner, Nana-Maria</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3181-b5aa56292d04a87920918873c887ec577ad5809fe1ebe557e01dcc5347700f153</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Animals</topic><topic>Arachidonate 12-lipoxygenase</topic><topic>Biomedical research</topic><topic>Calcium (mitochondrial)</topic><topic>Calcium influx</topic><topic>Calcium Signaling</topic><topic>Capsaicin receptors</topic><topic>Cardiovascular disease</topic><topic>Diabetes</topic><topic>Diabetes mellitus (insulin dependent)</topic><topic>Diabetes Mellitus, Experimental - genetics</topic><topic>Diabetes Mellitus, Experimental - metabolism</topic><topic>Diabetes Mellitus, Experimental - pathology</topic><topic>Diabetes Mellitus, Type 1 - genetics</topic><topic>Diabetes Mellitus, Type 1 - metabolism</topic><topic>Diabetes Mellitus, Type 1 - pathology</topic><topic>Diabetic Angiopathies - genetics</topic><topic>Diabetic Angiopathies - metabolism</topic><topic>Diabetic Angiopathies - pathology</topic><topic>Endothelial cells</topic><topic>Endothelial Cells - metabolism</topic><topic>Endothelial Cells - pathology</topic><topic>Endothelium</topic><topic>Endothelium, Vascular - metabolism</topic><topic>Endothelium, Vascular - pathology</topic><topic>Female</topic><topic>Glucose</topic><topic>Homeostasis</topic><topic>Hydroxyeicosatetraenoic Acids - metabolism</topic><topic>Hyperglycemia</topic><topic>Lipid peroxidation</topic><topic>Lipids</topic><topic>Male</topic><topic>Mice</topic><topic>Mice, Knockout</topic><topic>Mitochondria</topic><topic>Molecular weight</topic><topic>Nitric oxide</topic><topic>Peptides</topic><topic>Plasma</topic><topic>Proteins</topic><topic>Respiration</topic><topic>Rodents</topic><topic>Transient receptor potential proteins</topic><topic>TRPV Cation Channels - genetics</topic><topic>TRPV Cation Channels - metabolism</topic><topic>Vascular diseases</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Otto, Mandy</creatorcontrib><creatorcontrib>Bucher, Clarissa</creatorcontrib><creatorcontrib>Liu, Wantao</creatorcontrib><creatorcontrib>Müller, Melanie</creatorcontrib><creatorcontrib>Schmidt, Tobias</creatorcontrib><creatorcontrib>Kardell, Marina</creatorcontrib><creatorcontrib>Driessen, Marvin Noel</creatorcontrib><creatorcontrib>Rossaint, Jan</creatorcontrib><creatorcontrib>Gross, Eric R</creatorcontrib><creatorcontrib>Wagner, Nana-Maria</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Nursing & Allied Health Database</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Nursing & Allied Health Premium</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>SIRS Editorial</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of clinical investigation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Otto, Mandy</au><au>Bucher, Clarissa</au><au>Liu, Wantao</au><au>Müller, Melanie</au><au>Schmidt, Tobias</au><au>Kardell, Marina</au><au>Driessen, Marvin Noel</au><au>Rossaint, Jan</au><au>Gross, Eric R</au><au>Wagner, Nana-Maria</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>12(S)-HETE mediates diabetes-induced endothelial dysfunction by activating intracellular endothelial cell TRPV1</atitle><jtitle>The Journal of clinical investigation</jtitle><addtitle>J Clin Invest</addtitle><date>2020-09-01</date><risdate>2020</risdate><volume>130</volume><issue>9</issue><spage>4999</spage><epage>5010</epage><pages>4999-5010</pages><issn>0021-9738</issn><eissn>1558-8238</eissn><abstract>Patients with diabetes develop endothelial dysfunction shortly after diabetes onset that progresses to vascular disease underlying the majority of diabetes-associated comorbidities. Increased lipid peroxidation, mitochondrial calcium overload, and mitochondrial dysfunction are characteristics of dysfunctional endothelial cells in diabetic patients. We here identified that targeting the lipid peroxidation product 12(S)-hydroxyeicosatetraenoic acid-induced [12(S)-HETE-induced] activation of the intracellularly located cation channel transient receptor potential vanilloid 1 (TRPV1) in endothelial cells is a means to causally control early-stage vascular disease in type I diabetic mice. Mice with an inducible, endothelium-specific 12/15-lipoxygenase (12/15Lo) knockout were protected similarly to TRPV1-knockout mice from type 1 diabetes-induced endothelial dysfunction and impaired vascular regeneration following arterial injury. Both 12(S)-HETE in concentrations found in diabetic patients and TRPV1 agonists triggered mitochondrial calcium influx and mitochondrial dysfunction in endothelial cells, and 12(S)-HETE effects were absent in endothelial cells from TRPV1-knockout mice. As a therapeutic consequence, we found that a peptide targeting 12(S)-HETE-induced TRPV1 interaction at the TRPV1 TRP box ameliorated diabetes-induced endothelial dysfunction and augmented vascular regeneration in diabetic mice. Our findings suggest that pharmacological targeting of increased endothelial lipid peroxidation can attenuate diabetes-induced comorbidities related to vascular disease.</abstract><cop>United States</cop><pub>American Society for Clinical Investigation</pub><pmid>32584793</pmid><doi>10.1172/JCI136621</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-5899-5045</orcidid><orcidid>https://orcid.org/0000-0002-4610-6666</orcidid><orcidid>https://orcid.org/0000-0003-1738-8710</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9738 |
ispartof | The Journal of clinical investigation, 2020-09, Vol.130 (9), p.4999-5010 |
issn | 0021-9738 1558-8238 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7456227 |
source | MEDLINE; EZB-FREE-00999 freely available EZB journals; PubMed Central; Alma/SFX Local Collection |
subjects | Animals Arachidonate 12-lipoxygenase Biomedical research Calcium (mitochondrial) Calcium influx Calcium Signaling Capsaicin receptors Cardiovascular disease Diabetes Diabetes mellitus (insulin dependent) Diabetes Mellitus, Experimental - genetics Diabetes Mellitus, Experimental - metabolism Diabetes Mellitus, Experimental - pathology Diabetes Mellitus, Type 1 - genetics Diabetes Mellitus, Type 1 - metabolism Diabetes Mellitus, Type 1 - pathology Diabetic Angiopathies - genetics Diabetic Angiopathies - metabolism Diabetic Angiopathies - pathology Endothelial cells Endothelial Cells - metabolism Endothelial Cells - pathology Endothelium Endothelium, Vascular - metabolism Endothelium, Vascular - pathology Female Glucose Homeostasis Hydroxyeicosatetraenoic Acids - metabolism Hyperglycemia Lipid peroxidation Lipids Male Mice Mice, Knockout Mitochondria Molecular weight Nitric oxide Peptides Plasma Proteins Respiration Rodents Transient receptor potential proteins TRPV Cation Channels - genetics TRPV Cation Channels - metabolism Vascular diseases |
title | 12(S)-HETE mediates diabetes-induced endothelial dysfunction by activating intracellular endothelial cell TRPV1 |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T16%3A01%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=12(S)-HETE%20mediates%20diabetes-induced%20endothelial%20dysfunction%20by%20activating%20intracellular%20endothelial%20cell%20TRPV1&rft.jtitle=The%20Journal%20of%20clinical%20investigation&rft.au=Otto,%20Mandy&rft.date=2020-09-01&rft.volume=130&rft.issue=9&rft.spage=4999&rft.epage=5010&rft.pages=4999-5010&rft.issn=0021-9738&rft.eissn=1558-8238&rft_id=info:doi/10.1172/JCI136621&rft_dat=%3Cproquest_pubme%3E2441314263%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2441314263&rft_id=info:pmid/32584793&rfr_iscdi=true |