Channelrhodopsin-mediated optogenetics highlights a central role of depolarization-dependent plant proton pumps
In plants, environmental stressors trigger plasma membrane depolarizations. Being electrically interconnected via plasmodesmata, proper functional dissection of electrical signaling by electrophysiology is basically impossible. The green alga Chlamydomonas reinhardtii evolved blue light-excited chan...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2020-08, Vol.117 (34), p.20920-20925 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 20925 |
---|---|
container_issue | 34 |
container_start_page | 20920 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 117 |
creator | Reyer, Antonella Häßler, Melanie Scherzer, Sönke Huang, Shouguang Pedersen, Jesper Torbøl Al-Rascheid, Khaled A. S. Bamberg, Ernst Palmgren, Michael Dreyer, Ingo Nagel, Georg Hedrich, Rainer Becker, Dirk |
description | In plants, environmental stressors trigger plasma membrane depolarizations. Being electrically interconnected via plasmodesmata, proper functional dissection of electrical signaling by electrophysiology is basically impossible. The green alga Chlamydomonas reinhardtii evolved blue light-excited channelrhodopsins (ChR1, 2) to navigate. When expressed in excitable nerve and muscle cells, ChRs can be used to control the membrane potential via illumination. In Arabidopsis plants, we used the algal ChR2-light switches as tools to stimulate plasmodesmata-interconnected photosynthetic cell networks by blue light and monitor the subsequent plasma membrane electrical responses. Blue-dependent stimulations of ChR2 expressing mesophyll cells, resting around −160 to −180 mV, reproducibly depolarized the membrane potential by 95 mV on average. Following excitation, mesophyll cells recovered their prestimulus potential not without transiently passing a hyperpolarization state. By combining optogenetics with voltage-sensing microelectrodes, we demonstrate that plant plasma membrane AHA-type H⁺-ATPase governs the gross repolarization process. AHA2 protein biochemistry and functional expression analysis in Xenopus oocytes indicates that the capacity of this H⁺ pump to recharge the membrane potential is rooted in its voltageand pH-dependent functional anatomy. Thus, ChR2 optogenetics appears well suited to noninvasively expose plant cells to signal specific depolarization signatures. From the responses we learn about the molecular processes, plants employ to channel stress-associated membrane excitations into physiological responses. |
doi_str_mv | 10.1073/pnas.2005626117 |
format | Article |
fullrecord | <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7456130</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26969064</jstor_id><sourcerecordid>26969064</sourcerecordid><originalsourceid>FETCH-LOGICAL-c486t-1f4bec4f5eec7c0dcad1c80b6789a078b31e6e928fef3465f3522908ab00d1203</originalsourceid><addsrcrecordid>eNpdkc2LFDEQxYMo7uzq2ZPQ4MVL71Y-OklfBBnUFRa86Dmk09XTGXqSNkkL7l9vNzOs6CEVivrVox6PkDcUbikofjcHm28ZQCOZpFQ9IzsKLa2laOE52QEwVWvBxBW5zvkIAG2j4SW54kxpzRXdkbgfbQg4pTH2cc4-1CfsvS3YV3Eu8YABi3e5Gv1hnNZXcmUrh6EkO1UpTljFoepxjpNN_tEWH0O9thj6lanmyW41xRJDNS-nOb8iLwY7ZXx9-W_Ij8-fvu_v64dvX77uPz7UTmhZajqIDp0YGkSnHPTO9tRp6KTSrQWlO05RYsv0gAMXshl4w1gL2nYAPWXAb8iHs-68dKujy8VmTv5k028TrTf_ToIfzSH-Mko0kvJN4P1FIMWfC-ZiTj47nFZHGJdsmOACGq5btqLv_kOPcUlhtbdRWjHWsGal7s6USzHnhMPTMRTMFqbZwjR_w1w33p43jrnE9IQz2coWpOB_AMcPnp8</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2438722525</pqid></control><display><type>article</type><title>Channelrhodopsin-mediated optogenetics highlights a central role of depolarization-dependent plant proton pumps</title><source>JSTOR Archive Collection A-Z Listing</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Reyer, Antonella ; Häßler, Melanie ; Scherzer, Sönke ; Huang, Shouguang ; Pedersen, Jesper Torbøl ; Al-Rascheid, Khaled A. S. ; Bamberg, Ernst ; Palmgren, Michael ; Dreyer, Ingo ; Nagel, Georg ; Hedrich, Rainer ; Becker, Dirk</creator><creatorcontrib>Reyer, Antonella ; Häßler, Melanie ; Scherzer, Sönke ; Huang, Shouguang ; Pedersen, Jesper Torbøl ; Al-Rascheid, Khaled A. S. ; Bamberg, Ernst ; Palmgren, Michael ; Dreyer, Ingo ; Nagel, Georg ; Hedrich, Rainer ; Becker, Dirk</creatorcontrib><description>In plants, environmental stressors trigger plasma membrane depolarizations. Being electrically interconnected via plasmodesmata, proper functional dissection of electrical signaling by electrophysiology is basically impossible. The green alga Chlamydomonas reinhardtii evolved blue light-excited channelrhodopsins (ChR1, 2) to navigate. When expressed in excitable nerve and muscle cells, ChRs can be used to control the membrane potential via illumination. In Arabidopsis plants, we used the algal ChR2-light switches as tools to stimulate plasmodesmata-interconnected photosynthetic cell networks by blue light and monitor the subsequent plasma membrane electrical responses. Blue-dependent stimulations of ChR2 expressing mesophyll cells, resting around −160 to −180 mV, reproducibly depolarized the membrane potential by 95 mV on average. Following excitation, mesophyll cells recovered their prestimulus potential not without transiently passing a hyperpolarization state. By combining optogenetics with voltage-sensing microelectrodes, we demonstrate that plant plasma membrane AHA-type H⁺-ATPase governs the gross repolarization process. AHA2 protein biochemistry and functional expression analysis in Xenopus oocytes indicates that the capacity of this H⁺ pump to recharge the membrane potential is rooted in its voltageand pH-dependent functional anatomy. Thus, ChR2 optogenetics appears well suited to noninvasively expose plant cells to signal specific depolarization signatures. From the responses we learn about the molecular processes, plants employ to channel stress-associated membrane excitations into physiological responses.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.2005626117</identifier><identifier>PMID: 32788371</identifier><language>eng</language><publisher>Washington: National Academy of Sciences</publisher><subject>Adenosine triphosphatase ; Algae ; Aquatic plants ; Biological Sciences ; Depolarization ; Electric potential ; Electrophysiology ; Environmental stress ; Excitation ; Functional anatomy ; Gametocytes ; Genetics ; H+-transporting ATPase ; Hydrogen ; Hyperpolarization ; Information processing ; Membrane potential ; Membranes ; Mesophyll ; Microelectrodes ; Muscles ; Oocytes ; Optics ; pH effects ; Photosynthesis ; Physiological responses ; Plant cells ; Plasmodesmata ; Switches ; Voltage</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2020-08, Vol.117 (34), p.20920-20925</ispartof><rights>Copyright National Academy of Sciences Aug 25, 2020</rights><rights>Copyright © 2020 the Author(s). Published by PNAS. 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c486t-1f4bec4f5eec7c0dcad1c80b6789a078b31e6e928fef3465f3522908ab00d1203</citedby><cites>FETCH-LOGICAL-c486t-1f4bec4f5eec7c0dcad1c80b6789a078b31e6e928fef3465f3522908ab00d1203</cites><orcidid>0000-0002-9982-6114 ; 0000-0001-9293-0018 ; 0000-0002-2781-0359 ; 0000-0003-3224-1362 ; 0000-0001-7007-0301 ; 0000-0002-7197-2101 ; 0000-0003-0723-4160 ; 0000-0002-3404-3397 ; 0000-0002-4993-8695 ; 0000-0002-5411-6207 ; 0000-0001-8174-8712 ; 0000-0003-3094-1461</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26969064$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26969064$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,803,885,27924,27925,53791,53793,58017,58250</link.rule.ids></links><search><creatorcontrib>Reyer, Antonella</creatorcontrib><creatorcontrib>Häßler, Melanie</creatorcontrib><creatorcontrib>Scherzer, Sönke</creatorcontrib><creatorcontrib>Huang, Shouguang</creatorcontrib><creatorcontrib>Pedersen, Jesper Torbøl</creatorcontrib><creatorcontrib>Al-Rascheid, Khaled A. S.</creatorcontrib><creatorcontrib>Bamberg, Ernst</creatorcontrib><creatorcontrib>Palmgren, Michael</creatorcontrib><creatorcontrib>Dreyer, Ingo</creatorcontrib><creatorcontrib>Nagel, Georg</creatorcontrib><creatorcontrib>Hedrich, Rainer</creatorcontrib><creatorcontrib>Becker, Dirk</creatorcontrib><title>Channelrhodopsin-mediated optogenetics highlights a central role of depolarization-dependent plant proton pumps</title><title>Proceedings of the National Academy of Sciences - PNAS</title><description>In plants, environmental stressors trigger plasma membrane depolarizations. Being electrically interconnected via plasmodesmata, proper functional dissection of electrical signaling by electrophysiology is basically impossible. The green alga Chlamydomonas reinhardtii evolved blue light-excited channelrhodopsins (ChR1, 2) to navigate. When expressed in excitable nerve and muscle cells, ChRs can be used to control the membrane potential via illumination. In Arabidopsis plants, we used the algal ChR2-light switches as tools to stimulate plasmodesmata-interconnected photosynthetic cell networks by blue light and monitor the subsequent plasma membrane electrical responses. Blue-dependent stimulations of ChR2 expressing mesophyll cells, resting around −160 to −180 mV, reproducibly depolarized the membrane potential by 95 mV on average. Following excitation, mesophyll cells recovered their prestimulus potential not without transiently passing a hyperpolarization state. By combining optogenetics with voltage-sensing microelectrodes, we demonstrate that plant plasma membrane AHA-type H⁺-ATPase governs the gross repolarization process. AHA2 protein biochemistry and functional expression analysis in Xenopus oocytes indicates that the capacity of this H⁺ pump to recharge the membrane potential is rooted in its voltageand pH-dependent functional anatomy. Thus, ChR2 optogenetics appears well suited to noninvasively expose plant cells to signal specific depolarization signatures. From the responses we learn about the molecular processes, plants employ to channel stress-associated membrane excitations into physiological responses.</description><subject>Adenosine triphosphatase</subject><subject>Algae</subject><subject>Aquatic plants</subject><subject>Biological Sciences</subject><subject>Depolarization</subject><subject>Electric potential</subject><subject>Electrophysiology</subject><subject>Environmental stress</subject><subject>Excitation</subject><subject>Functional anatomy</subject><subject>Gametocytes</subject><subject>Genetics</subject><subject>H+-transporting ATPase</subject><subject>Hydrogen</subject><subject>Hyperpolarization</subject><subject>Information processing</subject><subject>Membrane potential</subject><subject>Membranes</subject><subject>Mesophyll</subject><subject>Microelectrodes</subject><subject>Muscles</subject><subject>Oocytes</subject><subject>Optics</subject><subject>pH effects</subject><subject>Photosynthesis</subject><subject>Physiological responses</subject><subject>Plant cells</subject><subject>Plasmodesmata</subject><subject>Switches</subject><subject>Voltage</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNpdkc2LFDEQxYMo7uzq2ZPQ4MVL71Y-OklfBBnUFRa86Dmk09XTGXqSNkkL7l9vNzOs6CEVivrVox6PkDcUbikofjcHm28ZQCOZpFQ9IzsKLa2laOE52QEwVWvBxBW5zvkIAG2j4SW54kxpzRXdkbgfbQg4pTH2cc4-1CfsvS3YV3Eu8YABi3e5Gv1hnNZXcmUrh6EkO1UpTljFoepxjpNN_tEWH0O9thj6lanmyW41xRJDNS-nOb8iLwY7ZXx9-W_Ij8-fvu_v64dvX77uPz7UTmhZajqIDp0YGkSnHPTO9tRp6KTSrQWlO05RYsv0gAMXshl4w1gL2nYAPWXAb8iHs-68dKujy8VmTv5k028TrTf_ToIfzSH-Mko0kvJN4P1FIMWfC-ZiTj47nFZHGJdsmOACGq5btqLv_kOPcUlhtbdRWjHWsGal7s6USzHnhMPTMRTMFqbZwjR_w1w33p43jrnE9IQz2coWpOB_AMcPnp8</recordid><startdate>20200825</startdate><enddate>20200825</enddate><creator>Reyer, Antonella</creator><creator>Häßler, Melanie</creator><creator>Scherzer, Sönke</creator><creator>Huang, Shouguang</creator><creator>Pedersen, Jesper Torbøl</creator><creator>Al-Rascheid, Khaled A. S.</creator><creator>Bamberg, Ernst</creator><creator>Palmgren, Michael</creator><creator>Dreyer, Ingo</creator><creator>Nagel, Georg</creator><creator>Hedrich, Rainer</creator><creator>Becker, Dirk</creator><general>National Academy of Sciences</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-9982-6114</orcidid><orcidid>https://orcid.org/0000-0001-9293-0018</orcidid><orcidid>https://orcid.org/0000-0002-2781-0359</orcidid><orcidid>https://orcid.org/0000-0003-3224-1362</orcidid><orcidid>https://orcid.org/0000-0001-7007-0301</orcidid><orcidid>https://orcid.org/0000-0002-7197-2101</orcidid><orcidid>https://orcid.org/0000-0003-0723-4160</orcidid><orcidid>https://orcid.org/0000-0002-3404-3397</orcidid><orcidid>https://orcid.org/0000-0002-4993-8695</orcidid><orcidid>https://orcid.org/0000-0002-5411-6207</orcidid><orcidid>https://orcid.org/0000-0001-8174-8712</orcidid><orcidid>https://orcid.org/0000-0003-3094-1461</orcidid></search><sort><creationdate>20200825</creationdate><title>Channelrhodopsin-mediated optogenetics highlights a central role of depolarization-dependent plant proton pumps</title><author>Reyer, Antonella ; Häßler, Melanie ; Scherzer, Sönke ; Huang, Shouguang ; Pedersen, Jesper Torbøl ; Al-Rascheid, Khaled A. S. ; Bamberg, Ernst ; Palmgren, Michael ; Dreyer, Ingo ; Nagel, Georg ; Hedrich, Rainer ; Becker, Dirk</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c486t-1f4bec4f5eec7c0dcad1c80b6789a078b31e6e928fef3465f3522908ab00d1203</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Adenosine triphosphatase</topic><topic>Algae</topic><topic>Aquatic plants</topic><topic>Biological Sciences</topic><topic>Depolarization</topic><topic>Electric potential</topic><topic>Electrophysiology</topic><topic>Environmental stress</topic><topic>Excitation</topic><topic>Functional anatomy</topic><topic>Gametocytes</topic><topic>Genetics</topic><topic>H+-transporting ATPase</topic><topic>Hydrogen</topic><topic>Hyperpolarization</topic><topic>Information processing</topic><topic>Membrane potential</topic><topic>Membranes</topic><topic>Mesophyll</topic><topic>Microelectrodes</topic><topic>Muscles</topic><topic>Oocytes</topic><topic>Optics</topic><topic>pH effects</topic><topic>Photosynthesis</topic><topic>Physiological responses</topic><topic>Plant cells</topic><topic>Plasmodesmata</topic><topic>Switches</topic><topic>Voltage</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Reyer, Antonella</creatorcontrib><creatorcontrib>Häßler, Melanie</creatorcontrib><creatorcontrib>Scherzer, Sönke</creatorcontrib><creatorcontrib>Huang, Shouguang</creatorcontrib><creatorcontrib>Pedersen, Jesper Torbøl</creatorcontrib><creatorcontrib>Al-Rascheid, Khaled A. S.</creatorcontrib><creatorcontrib>Bamberg, Ernst</creatorcontrib><creatorcontrib>Palmgren, Michael</creatorcontrib><creatorcontrib>Dreyer, Ingo</creatorcontrib><creatorcontrib>Nagel, Georg</creatorcontrib><creatorcontrib>Hedrich, Rainer</creatorcontrib><creatorcontrib>Becker, Dirk</creatorcontrib><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Reyer, Antonella</au><au>Häßler, Melanie</au><au>Scherzer, Sönke</au><au>Huang, Shouguang</au><au>Pedersen, Jesper Torbøl</au><au>Al-Rascheid, Khaled A. S.</au><au>Bamberg, Ernst</au><au>Palmgren, Michael</au><au>Dreyer, Ingo</au><au>Nagel, Georg</au><au>Hedrich, Rainer</au><au>Becker, Dirk</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Channelrhodopsin-mediated optogenetics highlights a central role of depolarization-dependent plant proton pumps</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><date>2020-08-25</date><risdate>2020</risdate><volume>117</volume><issue>34</issue><spage>20920</spage><epage>20925</epage><pages>20920-20925</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>In plants, environmental stressors trigger plasma membrane depolarizations. Being electrically interconnected via plasmodesmata, proper functional dissection of electrical signaling by electrophysiology is basically impossible. The green alga Chlamydomonas reinhardtii evolved blue light-excited channelrhodopsins (ChR1, 2) to navigate. When expressed in excitable nerve and muscle cells, ChRs can be used to control the membrane potential via illumination. In Arabidopsis plants, we used the algal ChR2-light switches as tools to stimulate plasmodesmata-interconnected photosynthetic cell networks by blue light and monitor the subsequent plasma membrane electrical responses. Blue-dependent stimulations of ChR2 expressing mesophyll cells, resting around −160 to −180 mV, reproducibly depolarized the membrane potential by 95 mV on average. Following excitation, mesophyll cells recovered their prestimulus potential not without transiently passing a hyperpolarization state. By combining optogenetics with voltage-sensing microelectrodes, we demonstrate that plant plasma membrane AHA-type H⁺-ATPase governs the gross repolarization process. AHA2 protein biochemistry and functional expression analysis in Xenopus oocytes indicates that the capacity of this H⁺ pump to recharge the membrane potential is rooted in its voltageand pH-dependent functional anatomy. Thus, ChR2 optogenetics appears well suited to noninvasively expose plant cells to signal specific depolarization signatures. From the responses we learn about the molecular processes, plants employ to channel stress-associated membrane excitations into physiological responses.</abstract><cop>Washington</cop><pub>National Academy of Sciences</pub><pmid>32788371</pmid><doi>10.1073/pnas.2005626117</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-9982-6114</orcidid><orcidid>https://orcid.org/0000-0001-9293-0018</orcidid><orcidid>https://orcid.org/0000-0002-2781-0359</orcidid><orcidid>https://orcid.org/0000-0003-3224-1362</orcidid><orcidid>https://orcid.org/0000-0001-7007-0301</orcidid><orcidid>https://orcid.org/0000-0002-7197-2101</orcidid><orcidid>https://orcid.org/0000-0003-0723-4160</orcidid><orcidid>https://orcid.org/0000-0002-3404-3397</orcidid><orcidid>https://orcid.org/0000-0002-4993-8695</orcidid><orcidid>https://orcid.org/0000-0002-5411-6207</orcidid><orcidid>https://orcid.org/0000-0001-8174-8712</orcidid><orcidid>https://orcid.org/0000-0003-3094-1461</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2020-08, Vol.117 (34), p.20920-20925 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7456130 |
source | JSTOR Archive Collection A-Z Listing; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Adenosine triphosphatase Algae Aquatic plants Biological Sciences Depolarization Electric potential Electrophysiology Environmental stress Excitation Functional anatomy Gametocytes Genetics H+-transporting ATPase Hydrogen Hyperpolarization Information processing Membrane potential Membranes Mesophyll Microelectrodes Muscles Oocytes Optics pH effects Photosynthesis Physiological responses Plant cells Plasmodesmata Switches Voltage |
title | Channelrhodopsin-mediated optogenetics highlights a central role of depolarization-dependent plant proton pumps |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T13%3A28%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Channelrhodopsin-mediated%20optogenetics%20highlights%20a%20central%20role%20of%20depolarization-dependent%20plant%20proton%20pumps&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Reyer,%20Antonella&rft.date=2020-08-25&rft.volume=117&rft.issue=34&rft.spage=20920&rft.epage=20925&rft.pages=20920-20925&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.2005626117&rft_dat=%3Cjstor_pubme%3E26969064%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2438722525&rft_id=info:pmid/32788371&rft_jstor_id=26969064&rfr_iscdi=true |