Hierarchical dynamics as a macroscopic organizing principle of the human brain
Multimodal evidence suggests that brain regions accumulate information over timescales that vary according to anatomical hierarchy. Thus, these experimentally defined “temporal receptive windows” are longest in cortical regions that are distant from sensory input. Interestingly, spontaneous activity...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2020-08, Vol.117 (34), p.20890-20897 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 20897 |
---|---|
container_issue | 34 |
container_start_page | 20890 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 117 |
creator | Raut, Ryan V. Snyder, Abraham Z. Raichle, Marcus E. |
description | Multimodal evidence suggests that brain regions accumulate information over timescales that vary according to anatomical hierarchy. Thus, these experimentally defined “temporal receptive windows” are longest in cortical regions that are distant from sensory input. Interestingly, spontaneous activity in these regions also plays out over relatively slow timescales (i.e., exhibits slower temporal autocorrelation decay). These findings raise the possibility that hierarchical timescales represent an intrinsic organizing principle of brain function. Here, using resting-state functional MRI, we show that the timescale of ongoing dynamics follows hierarchical spatial gradients throughout human cerebral cortex. These intrinsic timescale gradients give rise to systematic frequency differences among large-scale cortical networks and predict individual-specific features of functional connectivity. Whole-brain coverage permitted us to further investigate the large-scale organization of subcortical dynamics. We show that cortical timescale gradients are topographically mirrored in striatum, thalamus, and cerebellum. Finally, timescales in the hippocampus followed a posterior-to-anterior gradient, corresponding to the longitudinal axis of increasing representational scale. Thus, hierarchical dynamics emerge as a global organizing principle of mammalian brains. |
doi_str_mv | 10.1073/pnas.2003383117 |
format | Article |
fullrecord | <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7456098</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26969061</jstor_id><sourcerecordid>26969061</sourcerecordid><originalsourceid>FETCH-LOGICAL-c443t-488f216b134f933af681cf7a4c58456abe9c8f3ae0e16cb27d455ae13f0998a73</originalsourceid><addsrcrecordid>eNpdkU1vFDEMhiNERZfCmRMoEpdeps3X5OOChCpKkar2AufIk83sZjWTDMlMpfLryWrLApUs--DHr2y_CL2j5IISxS-nCOWCEcK55pSqF2hFiaGNFIa8RCtCmGq0YOIUvS5lRwgxrSav0Clnmioh1Qrd3QSfIbttcDDg9WOEMbiCoQYeweVUXJqCwylvIIZfIW7wlEN0YRo8Tj2etx5vlxEi7jKE-Aad9DAU__apnqEf11--X900t_dfv119vm2cEHxuhNY9o7KjXPSGc-ilpq5XIFyrRSuh88bpnoMnnkrXMbUWbQue8p4Yo0HxM_TpoDst3ejXzsc5w2DraiPkR5sg2P87MWztJj1YVeWJ0VXg_Ekgp5-LL7MdQ3F-GCD6tBTLBJeCsBoV_fgM3aUlx3rentKqptZU6vJA7X9Wsu-Py1Bi917ZvVf2r1d14sO_Nxz5P-ZU4P0B2JU55WOfSSMNkZT_BulFmlc</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2438724359</pqid></control><display><type>article</type><title>Hierarchical dynamics as a macroscopic organizing principle of the human brain</title><source>MEDLINE</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><source>JSTOR</source><creator>Raut, Ryan V. ; Snyder, Abraham Z. ; Raichle, Marcus E.</creator><creatorcontrib>Raut, Ryan V. ; Snyder, Abraham Z. ; Raichle, Marcus E.</creatorcontrib><description>Multimodal evidence suggests that brain regions accumulate information over timescales that vary according to anatomical hierarchy. Thus, these experimentally defined “temporal receptive windows” are longest in cortical regions that are distant from sensory input. Interestingly, spontaneous activity in these regions also plays out over relatively slow timescales (i.e., exhibits slower temporal autocorrelation decay). These findings raise the possibility that hierarchical timescales represent an intrinsic organizing principle of brain function. Here, using resting-state functional MRI, we show that the timescale of ongoing dynamics follows hierarchical spatial gradients throughout human cerebral cortex. These intrinsic timescale gradients give rise to systematic frequency differences among large-scale cortical networks and predict individual-specific features of functional connectivity. Whole-brain coverage permitted us to further investigate the large-scale organization of subcortical dynamics. We show that cortical timescale gradients are topographically mirrored in striatum, thalamus, and cerebellum. Finally, timescales in the hippocampus followed a posterior-to-anterior gradient, corresponding to the longitudinal axis of increasing representational scale. Thus, hierarchical dynamics emerge as a global organizing principle of mammalian brains.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.2003383117</identifier><identifier>PMID: 32817467</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Adult ; Biological Sciences ; Brain ; Brain - physiology ; Brain Mapping - methods ; Cerebellum ; Cerebral cortex ; Cerebral Cortex - physiology ; Corpus Striatum - physiology ; Cortex (somatosensory) ; Cortex (temporal) ; Databases, Factual ; Decay rate ; Dynamics ; Female ; Functional magnetic resonance imaging ; Gray Matter - physiology ; Hippocampus - physiology ; Humans ; Magnetic Resonance Imaging - methods ; Male ; Neostriatum ; Neural networks ; Neural Pathways - physiology ; Rest - physiology ; Thalamus ; Time ; Time Factors</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2020-08, Vol.117 (34), p.20890-20897</ispartof><rights>Copyright National Academy of Sciences Aug 25, 2020</rights><rights>2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c443t-488f216b134f933af681cf7a4c58456abe9c8f3ae0e16cb27d455ae13f0998a73</citedby><cites>FETCH-LOGICAL-c443t-488f216b134f933af681cf7a4c58456abe9c8f3ae0e16cb27d455ae13f0998a73</cites><orcidid>0000-0002-3379-9627 ; 0000-0002-1847-9588</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26969061$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26969061$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,803,885,27924,27925,53791,53793,58017,58250</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32817467$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Raut, Ryan V.</creatorcontrib><creatorcontrib>Snyder, Abraham Z.</creatorcontrib><creatorcontrib>Raichle, Marcus E.</creatorcontrib><title>Hierarchical dynamics as a macroscopic organizing principle of the human brain</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Multimodal evidence suggests that brain regions accumulate information over timescales that vary according to anatomical hierarchy. Thus, these experimentally defined “temporal receptive windows” are longest in cortical regions that are distant from sensory input. Interestingly, spontaneous activity in these regions also plays out over relatively slow timescales (i.e., exhibits slower temporal autocorrelation decay). These findings raise the possibility that hierarchical timescales represent an intrinsic organizing principle of brain function. Here, using resting-state functional MRI, we show that the timescale of ongoing dynamics follows hierarchical spatial gradients throughout human cerebral cortex. These intrinsic timescale gradients give rise to systematic frequency differences among large-scale cortical networks and predict individual-specific features of functional connectivity. Whole-brain coverage permitted us to further investigate the large-scale organization of subcortical dynamics. We show that cortical timescale gradients are topographically mirrored in striatum, thalamus, and cerebellum. Finally, timescales in the hippocampus followed a posterior-to-anterior gradient, corresponding to the longitudinal axis of increasing representational scale. Thus, hierarchical dynamics emerge as a global organizing principle of mammalian brains.</description><subject>Adult</subject><subject>Biological Sciences</subject><subject>Brain</subject><subject>Brain - physiology</subject><subject>Brain Mapping - methods</subject><subject>Cerebellum</subject><subject>Cerebral cortex</subject><subject>Cerebral Cortex - physiology</subject><subject>Corpus Striatum - physiology</subject><subject>Cortex (somatosensory)</subject><subject>Cortex (temporal)</subject><subject>Databases, Factual</subject><subject>Decay rate</subject><subject>Dynamics</subject><subject>Female</subject><subject>Functional magnetic resonance imaging</subject><subject>Gray Matter - physiology</subject><subject>Hippocampus - physiology</subject><subject>Humans</subject><subject>Magnetic Resonance Imaging - methods</subject><subject>Male</subject><subject>Neostriatum</subject><subject>Neural networks</subject><subject>Neural Pathways - physiology</subject><subject>Rest - physiology</subject><subject>Thalamus</subject><subject>Time</subject><subject>Time Factors</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkU1vFDEMhiNERZfCmRMoEpdeps3X5OOChCpKkar2AufIk83sZjWTDMlMpfLryWrLApUs--DHr2y_CL2j5IISxS-nCOWCEcK55pSqF2hFiaGNFIa8RCtCmGq0YOIUvS5lRwgxrSav0Clnmioh1Qrd3QSfIbttcDDg9WOEMbiCoQYeweVUXJqCwylvIIZfIW7wlEN0YRo8Tj2etx5vlxEi7jKE-Aad9DAU__apnqEf11--X900t_dfv119vm2cEHxuhNY9o7KjXPSGc-ilpq5XIFyrRSuh88bpnoMnnkrXMbUWbQue8p4Yo0HxM_TpoDst3ejXzsc5w2DraiPkR5sg2P87MWztJj1YVeWJ0VXg_Ekgp5-LL7MdQ3F-GCD6tBTLBJeCsBoV_fgM3aUlx3rentKqptZU6vJA7X9Wsu-Py1Bi917ZvVf2r1d14sO_Nxz5P-ZU4P0B2JU55WOfSSMNkZT_BulFmlc</recordid><startdate>20200825</startdate><enddate>20200825</enddate><creator>Raut, Ryan V.</creator><creator>Snyder, Abraham Z.</creator><creator>Raichle, Marcus E.</creator><general>National Academy of Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-3379-9627</orcidid><orcidid>https://orcid.org/0000-0002-1847-9588</orcidid></search><sort><creationdate>20200825</creationdate><title>Hierarchical dynamics as a macroscopic organizing principle of the human brain</title><author>Raut, Ryan V. ; Snyder, Abraham Z. ; Raichle, Marcus E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c443t-488f216b134f933af681cf7a4c58456abe9c8f3ae0e16cb27d455ae13f0998a73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Adult</topic><topic>Biological Sciences</topic><topic>Brain</topic><topic>Brain - physiology</topic><topic>Brain Mapping - methods</topic><topic>Cerebellum</topic><topic>Cerebral cortex</topic><topic>Cerebral Cortex - physiology</topic><topic>Corpus Striatum - physiology</topic><topic>Cortex (somatosensory)</topic><topic>Cortex (temporal)</topic><topic>Databases, Factual</topic><topic>Decay rate</topic><topic>Dynamics</topic><topic>Female</topic><topic>Functional magnetic resonance imaging</topic><topic>Gray Matter - physiology</topic><topic>Hippocampus - physiology</topic><topic>Humans</topic><topic>Magnetic Resonance Imaging - methods</topic><topic>Male</topic><topic>Neostriatum</topic><topic>Neural networks</topic><topic>Neural Pathways - physiology</topic><topic>Rest - physiology</topic><topic>Thalamus</topic><topic>Time</topic><topic>Time Factors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Raut, Ryan V.</creatorcontrib><creatorcontrib>Snyder, Abraham Z.</creatorcontrib><creatorcontrib>Raichle, Marcus E.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Raut, Ryan V.</au><au>Snyder, Abraham Z.</au><au>Raichle, Marcus E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hierarchical dynamics as a macroscopic organizing principle of the human brain</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2020-08-25</date><risdate>2020</risdate><volume>117</volume><issue>34</issue><spage>20890</spage><epage>20897</epage><pages>20890-20897</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Multimodal evidence suggests that brain regions accumulate information over timescales that vary according to anatomical hierarchy. Thus, these experimentally defined “temporal receptive windows” are longest in cortical regions that are distant from sensory input. Interestingly, spontaneous activity in these regions also plays out over relatively slow timescales (i.e., exhibits slower temporal autocorrelation decay). These findings raise the possibility that hierarchical timescales represent an intrinsic organizing principle of brain function. Here, using resting-state functional MRI, we show that the timescale of ongoing dynamics follows hierarchical spatial gradients throughout human cerebral cortex. These intrinsic timescale gradients give rise to systematic frequency differences among large-scale cortical networks and predict individual-specific features of functional connectivity. Whole-brain coverage permitted us to further investigate the large-scale organization of subcortical dynamics. We show that cortical timescale gradients are topographically mirrored in striatum, thalamus, and cerebellum. Finally, timescales in the hippocampus followed a posterior-to-anterior gradient, corresponding to the longitudinal axis of increasing representational scale. Thus, hierarchical dynamics emerge as a global organizing principle of mammalian brains.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>32817467</pmid><doi>10.1073/pnas.2003383117</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-3379-9627</orcidid><orcidid>https://orcid.org/0000-0002-1847-9588</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2020-08, Vol.117 (34), p.20890-20897 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7456098 |
source | MEDLINE; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry; JSTOR |
subjects | Adult Biological Sciences Brain Brain - physiology Brain Mapping - methods Cerebellum Cerebral cortex Cerebral Cortex - physiology Corpus Striatum - physiology Cortex (somatosensory) Cortex (temporal) Databases, Factual Decay rate Dynamics Female Functional magnetic resonance imaging Gray Matter - physiology Hippocampus - physiology Humans Magnetic Resonance Imaging - methods Male Neostriatum Neural networks Neural Pathways - physiology Rest - physiology Thalamus Time Time Factors |
title | Hierarchical dynamics as a macroscopic organizing principle of the human brain |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T19%3A35%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hierarchical%20dynamics%20as%20a%20macroscopic%20organizing%20principle%20of%20the%20human%20brain&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Raut,%20Ryan%20V.&rft.date=2020-08-25&rft.volume=117&rft.issue=34&rft.spage=20890&rft.epage=20897&rft.pages=20890-20897&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.2003383117&rft_dat=%3Cjstor_pubme%3E26969061%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2438724359&rft_id=info:pmid/32817467&rft_jstor_id=26969061&rfr_iscdi=true |