Hierarchical dynamics as a macroscopic organizing principle of the human brain

Multimodal evidence suggests that brain regions accumulate information over timescales that vary according to anatomical hierarchy. Thus, these experimentally defined “temporal receptive windows” are longest in cortical regions that are distant from sensory input. Interestingly, spontaneous activity...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2020-08, Vol.117 (34), p.20890-20897
Hauptverfasser: Raut, Ryan V., Snyder, Abraham Z., Raichle, Marcus E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 20897
container_issue 34
container_start_page 20890
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 117
creator Raut, Ryan V.
Snyder, Abraham Z.
Raichle, Marcus E.
description Multimodal evidence suggests that brain regions accumulate information over timescales that vary according to anatomical hierarchy. Thus, these experimentally defined “temporal receptive windows” are longest in cortical regions that are distant from sensory input. Interestingly, spontaneous activity in these regions also plays out over relatively slow timescales (i.e., exhibits slower temporal autocorrelation decay). These findings raise the possibility that hierarchical timescales represent an intrinsic organizing principle of brain function. Here, using resting-state functional MRI, we show that the timescale of ongoing dynamics follows hierarchical spatial gradients throughout human cerebral cortex. These intrinsic timescale gradients give rise to systematic frequency differences among large-scale cortical networks and predict individual-specific features of functional connectivity. Whole-brain coverage permitted us to further investigate the large-scale organization of subcortical dynamics. We show that cortical timescale gradients are topographically mirrored in striatum, thalamus, and cerebellum. Finally, timescales in the hippocampus followed a posterior-to-anterior gradient, corresponding to the longitudinal axis of increasing representational scale. Thus, hierarchical dynamics emerge as a global organizing principle of mammalian brains.
doi_str_mv 10.1073/pnas.2003383117
format Article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7456098</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26969061</jstor_id><sourcerecordid>26969061</sourcerecordid><originalsourceid>FETCH-LOGICAL-c443t-488f216b134f933af681cf7a4c58456abe9c8f3ae0e16cb27d455ae13f0998a73</originalsourceid><addsrcrecordid>eNpdkU1vFDEMhiNERZfCmRMoEpdeps3X5OOChCpKkar2AufIk83sZjWTDMlMpfLryWrLApUs--DHr2y_CL2j5IISxS-nCOWCEcK55pSqF2hFiaGNFIa8RCtCmGq0YOIUvS5lRwgxrSav0Clnmioh1Qrd3QSfIbttcDDg9WOEMbiCoQYeweVUXJqCwylvIIZfIW7wlEN0YRo8Tj2etx5vlxEi7jKE-Aad9DAU__apnqEf11--X900t_dfv119vm2cEHxuhNY9o7KjXPSGc-ilpq5XIFyrRSuh88bpnoMnnkrXMbUWbQue8p4Yo0HxM_TpoDst3ejXzsc5w2DraiPkR5sg2P87MWztJj1YVeWJ0VXg_Ekgp5-LL7MdQ3F-GCD6tBTLBJeCsBoV_fgM3aUlx3rentKqptZU6vJA7X9Wsu-Py1Bi917ZvVf2r1d14sO_Nxz5P-ZU4P0B2JU55WOfSSMNkZT_BulFmlc</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2438724359</pqid></control><display><type>article</type><title>Hierarchical dynamics as a macroscopic organizing principle of the human brain</title><source>MEDLINE</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><source>JSTOR</source><creator>Raut, Ryan V. ; Snyder, Abraham Z. ; Raichle, Marcus E.</creator><creatorcontrib>Raut, Ryan V. ; Snyder, Abraham Z. ; Raichle, Marcus E.</creatorcontrib><description>Multimodal evidence suggests that brain regions accumulate information over timescales that vary according to anatomical hierarchy. Thus, these experimentally defined “temporal receptive windows” are longest in cortical regions that are distant from sensory input. Interestingly, spontaneous activity in these regions also plays out over relatively slow timescales (i.e., exhibits slower temporal autocorrelation decay). These findings raise the possibility that hierarchical timescales represent an intrinsic organizing principle of brain function. Here, using resting-state functional MRI, we show that the timescale of ongoing dynamics follows hierarchical spatial gradients throughout human cerebral cortex. These intrinsic timescale gradients give rise to systematic frequency differences among large-scale cortical networks and predict individual-specific features of functional connectivity. Whole-brain coverage permitted us to further investigate the large-scale organization of subcortical dynamics. We show that cortical timescale gradients are topographically mirrored in striatum, thalamus, and cerebellum. Finally, timescales in the hippocampus followed a posterior-to-anterior gradient, corresponding to the longitudinal axis of increasing representational scale. Thus, hierarchical dynamics emerge as a global organizing principle of mammalian brains.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.2003383117</identifier><identifier>PMID: 32817467</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Adult ; Biological Sciences ; Brain ; Brain - physiology ; Brain Mapping - methods ; Cerebellum ; Cerebral cortex ; Cerebral Cortex - physiology ; Corpus Striatum - physiology ; Cortex (somatosensory) ; Cortex (temporal) ; Databases, Factual ; Decay rate ; Dynamics ; Female ; Functional magnetic resonance imaging ; Gray Matter - physiology ; Hippocampus - physiology ; Humans ; Magnetic Resonance Imaging - methods ; Male ; Neostriatum ; Neural networks ; Neural Pathways - physiology ; Rest - physiology ; Thalamus ; Time ; Time Factors</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2020-08, Vol.117 (34), p.20890-20897</ispartof><rights>Copyright National Academy of Sciences Aug 25, 2020</rights><rights>2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c443t-488f216b134f933af681cf7a4c58456abe9c8f3ae0e16cb27d455ae13f0998a73</citedby><cites>FETCH-LOGICAL-c443t-488f216b134f933af681cf7a4c58456abe9c8f3ae0e16cb27d455ae13f0998a73</cites><orcidid>0000-0002-3379-9627 ; 0000-0002-1847-9588</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26969061$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26969061$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,803,885,27924,27925,53791,53793,58017,58250</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32817467$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Raut, Ryan V.</creatorcontrib><creatorcontrib>Snyder, Abraham Z.</creatorcontrib><creatorcontrib>Raichle, Marcus E.</creatorcontrib><title>Hierarchical dynamics as a macroscopic organizing principle of the human brain</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Multimodal evidence suggests that brain regions accumulate information over timescales that vary according to anatomical hierarchy. Thus, these experimentally defined “temporal receptive windows” are longest in cortical regions that are distant from sensory input. Interestingly, spontaneous activity in these regions also plays out over relatively slow timescales (i.e., exhibits slower temporal autocorrelation decay). These findings raise the possibility that hierarchical timescales represent an intrinsic organizing principle of brain function. Here, using resting-state functional MRI, we show that the timescale of ongoing dynamics follows hierarchical spatial gradients throughout human cerebral cortex. These intrinsic timescale gradients give rise to systematic frequency differences among large-scale cortical networks and predict individual-specific features of functional connectivity. Whole-brain coverage permitted us to further investigate the large-scale organization of subcortical dynamics. We show that cortical timescale gradients are topographically mirrored in striatum, thalamus, and cerebellum. Finally, timescales in the hippocampus followed a posterior-to-anterior gradient, corresponding to the longitudinal axis of increasing representational scale. Thus, hierarchical dynamics emerge as a global organizing principle of mammalian brains.</description><subject>Adult</subject><subject>Biological Sciences</subject><subject>Brain</subject><subject>Brain - physiology</subject><subject>Brain Mapping - methods</subject><subject>Cerebellum</subject><subject>Cerebral cortex</subject><subject>Cerebral Cortex - physiology</subject><subject>Corpus Striatum - physiology</subject><subject>Cortex (somatosensory)</subject><subject>Cortex (temporal)</subject><subject>Databases, Factual</subject><subject>Decay rate</subject><subject>Dynamics</subject><subject>Female</subject><subject>Functional magnetic resonance imaging</subject><subject>Gray Matter - physiology</subject><subject>Hippocampus - physiology</subject><subject>Humans</subject><subject>Magnetic Resonance Imaging - methods</subject><subject>Male</subject><subject>Neostriatum</subject><subject>Neural networks</subject><subject>Neural Pathways - physiology</subject><subject>Rest - physiology</subject><subject>Thalamus</subject><subject>Time</subject><subject>Time Factors</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkU1vFDEMhiNERZfCmRMoEpdeps3X5OOChCpKkar2AufIk83sZjWTDMlMpfLryWrLApUs--DHr2y_CL2j5IISxS-nCOWCEcK55pSqF2hFiaGNFIa8RCtCmGq0YOIUvS5lRwgxrSav0Clnmioh1Qrd3QSfIbttcDDg9WOEMbiCoQYeweVUXJqCwylvIIZfIW7wlEN0YRo8Tj2etx5vlxEi7jKE-Aad9DAU__apnqEf11--X900t_dfv119vm2cEHxuhNY9o7KjXPSGc-ilpq5XIFyrRSuh88bpnoMnnkrXMbUWbQue8p4Yo0HxM_TpoDst3ejXzsc5w2DraiPkR5sg2P87MWztJj1YVeWJ0VXg_Ekgp5-LL7MdQ3F-GCD6tBTLBJeCsBoV_fgM3aUlx3rentKqptZU6vJA7X9Wsu-Py1Bi917ZvVf2r1d14sO_Nxz5P-ZU4P0B2JU55WOfSSMNkZT_BulFmlc</recordid><startdate>20200825</startdate><enddate>20200825</enddate><creator>Raut, Ryan V.</creator><creator>Snyder, Abraham Z.</creator><creator>Raichle, Marcus E.</creator><general>National Academy of Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-3379-9627</orcidid><orcidid>https://orcid.org/0000-0002-1847-9588</orcidid></search><sort><creationdate>20200825</creationdate><title>Hierarchical dynamics as a macroscopic organizing principle of the human brain</title><author>Raut, Ryan V. ; Snyder, Abraham Z. ; Raichle, Marcus E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c443t-488f216b134f933af681cf7a4c58456abe9c8f3ae0e16cb27d455ae13f0998a73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Adult</topic><topic>Biological Sciences</topic><topic>Brain</topic><topic>Brain - physiology</topic><topic>Brain Mapping - methods</topic><topic>Cerebellum</topic><topic>Cerebral cortex</topic><topic>Cerebral Cortex - physiology</topic><topic>Corpus Striatum - physiology</topic><topic>Cortex (somatosensory)</topic><topic>Cortex (temporal)</topic><topic>Databases, Factual</topic><topic>Decay rate</topic><topic>Dynamics</topic><topic>Female</topic><topic>Functional magnetic resonance imaging</topic><topic>Gray Matter - physiology</topic><topic>Hippocampus - physiology</topic><topic>Humans</topic><topic>Magnetic Resonance Imaging - methods</topic><topic>Male</topic><topic>Neostriatum</topic><topic>Neural networks</topic><topic>Neural Pathways - physiology</topic><topic>Rest - physiology</topic><topic>Thalamus</topic><topic>Time</topic><topic>Time Factors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Raut, Ryan V.</creatorcontrib><creatorcontrib>Snyder, Abraham Z.</creatorcontrib><creatorcontrib>Raichle, Marcus E.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Raut, Ryan V.</au><au>Snyder, Abraham Z.</au><au>Raichle, Marcus E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hierarchical dynamics as a macroscopic organizing principle of the human brain</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2020-08-25</date><risdate>2020</risdate><volume>117</volume><issue>34</issue><spage>20890</spage><epage>20897</epage><pages>20890-20897</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Multimodal evidence suggests that brain regions accumulate information over timescales that vary according to anatomical hierarchy. Thus, these experimentally defined “temporal receptive windows” are longest in cortical regions that are distant from sensory input. Interestingly, spontaneous activity in these regions also plays out over relatively slow timescales (i.e., exhibits slower temporal autocorrelation decay). These findings raise the possibility that hierarchical timescales represent an intrinsic organizing principle of brain function. Here, using resting-state functional MRI, we show that the timescale of ongoing dynamics follows hierarchical spatial gradients throughout human cerebral cortex. These intrinsic timescale gradients give rise to systematic frequency differences among large-scale cortical networks and predict individual-specific features of functional connectivity. Whole-brain coverage permitted us to further investigate the large-scale organization of subcortical dynamics. We show that cortical timescale gradients are topographically mirrored in striatum, thalamus, and cerebellum. Finally, timescales in the hippocampus followed a posterior-to-anterior gradient, corresponding to the longitudinal axis of increasing representational scale. Thus, hierarchical dynamics emerge as a global organizing principle of mammalian brains.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>32817467</pmid><doi>10.1073/pnas.2003383117</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-3379-9627</orcidid><orcidid>https://orcid.org/0000-0002-1847-9588</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2020-08, Vol.117 (34), p.20890-20897
issn 0027-8424
1091-6490
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7456098
source MEDLINE; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry; JSTOR
subjects Adult
Biological Sciences
Brain
Brain - physiology
Brain Mapping - methods
Cerebellum
Cerebral cortex
Cerebral Cortex - physiology
Corpus Striatum - physiology
Cortex (somatosensory)
Cortex (temporal)
Databases, Factual
Decay rate
Dynamics
Female
Functional magnetic resonance imaging
Gray Matter - physiology
Hippocampus - physiology
Humans
Magnetic Resonance Imaging - methods
Male
Neostriatum
Neural networks
Neural Pathways - physiology
Rest - physiology
Thalamus
Time
Time Factors
title Hierarchical dynamics as a macroscopic organizing principle of the human brain
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T19%3A35%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hierarchical%20dynamics%20as%20a%20macroscopic%20organizing%20principle%20of%20the%20human%20brain&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Raut,%20Ryan%20V.&rft.date=2020-08-25&rft.volume=117&rft.issue=34&rft.spage=20890&rft.epage=20897&rft.pages=20890-20897&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.2003383117&rft_dat=%3Cjstor_pubme%3E26969061%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2438724359&rft_id=info:pmid/32817467&rft_jstor_id=26969061&rfr_iscdi=true