Detection of SARS-CoV-2 RNA in commercial passenger aircraft and cruise ship wastewater: a surveillance tool for assessing the presence of COVID-19 infected travellers

Abstract Background Wastewater-based epidemiology (WBE) for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) can be an important source of information for coronavirus disease 2019 (COVID-19) management during and after the pandemic. Currently, governments and transportation industries ar...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of travel medicine 2020-08, Vol.27 (5), Article 116
Hauptverfasser: Ahmed, Warish, Bertsch, Paul M, Angel, Nicola, Bibby, Kyle, Bivins, Aaron, Dierens, Leanne, Edson, Janette, Ehret, John, Gyawali, Pradip, Hamilton, Kerry A, Hosegood, Ian, Hugenholtz, Philip, Jiang, Guangming, Kitajima, Masaaki, Sichani, Homa T, Shi, Jiahua, Shimko, Katja M, Simpson, Stuart L, Smith, Wendy J M, Symonds, Erin M, Thomas, Kevin V, Verhagen, Rory, Zaugg, Julian, Mueller, Jochen F
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Abstract Background Wastewater-based epidemiology (WBE) for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) can be an important source of information for coronavirus disease 2019 (COVID-19) management during and after the pandemic. Currently, governments and transportation industries around the world are developing strategies to minimize SARS-CoV-2 transmission associated with resuming activity. This study investigated the possible use of SARS-CoV-2 RNA wastewater surveillance from airline and cruise ship sanitation systems and its potential use as a COVID-19 public health management tool. Methods Aircraft and cruise ship wastewater samples (n = 21) were tested for SARS-CoV-2 using two virus concentration methods, adsorption–extraction by electronegative membrane (n = 13) and ultrafiltration by Amicon (n = 8), and five assays using reverse-transcription quantitative polymerase chain reaction (RT-qPCR) and RT-droplet digital PCR (RT-ddPCR). Representative qPCR amplicons from positive samples were sequenced to confirm assay specificity. Results SARS-CoV-2 RNA was detected in samples from both aircraft and cruise ship wastewater; however concentrations were near the assay limit of detection. The analysis of multiple replicate samples and use of multiple RT-qPCR and/or RT-ddPCR assays increased detection sensitivity and minimized false-negative results. Representative qPCR amplicons were confirmed for the correct PCR product by sequencing. However, differences in sensitivity were observed among molecular assays and concentration methods. Conclusions The study indicates that surveillance of wastewater from large transport vessels with their own sanitation systems has potential as a complementary data source to prioritize clinical testing and contact tracing among disembarking passengers. Importantly, sampling methods and molecular assays must be further optimized to maximize detection sensitivity. The potential for false negatives by both wastewater testing and clinical swab testing suggests that the two strategies could be employed together to maximize the probability of detecting SARS-CoV-2 infections amongst passengers.
ISSN:1195-1982
1708-8305
DOI:10.1093/jtm/taaa116