Cumulative deamidations of the major lens protein γS‐crystallin increase its aggregation during unfolding and oxidation
Age‐related lens cataract is the major cause of blindness worldwide. The mechanisms whereby crystallins, the predominant lens proteins, assemble into large aggregates that scatter light within the lens, and cause cataract, are poorly understood. Due to the lack of protein turnover in the lens, cryst...
Gespeichert in:
Veröffentlicht in: | Protein science 2020-09, Vol.29 (9), p.1945-1963 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1963 |
---|---|
container_issue | 9 |
container_start_page | 1945 |
container_title | Protein science |
container_volume | 29 |
creator | Vetter, Calvin J. Thorn, David C. Wheeler, Samuel G. Mundorff, Charlie C. Halverson, Kate A. Wales, Thomas E. Shinde, Ujwal P. Engen, John R. David, Larry L. Carver, John A. Lampi, Kirsten J. |
description | Age‐related lens cataract is the major cause of blindness worldwide. The mechanisms whereby crystallins, the predominant lens proteins, assemble into large aggregates that scatter light within the lens, and cause cataract, are poorly understood. Due to the lack of protein turnover in the lens, crystallins are long‐lived. A major crystallin, γS, is heavily modified by deamidation, in particular at surface‐exposed N14, N76, and N143 to introduce negative charges. In this present study, deamidated γS was mimicked by mutation with aspartate at these sites and the effect on biophysical properties of γS was assessed via dynamic light scattering, chemical and thermal denaturation, hydrogen‐deuterium exchange, and susceptibility to disulfide cross‐linking. Compared with wild type γS, a small population of each deamidated mutant aggregated rapidly into large, light‐scattering species that contributed significantly to the total scattering. Under partially denaturing conditions in guanidine hydrochloride or elevated temperature, deamidation led to more rapid unfolding and aggregation and increased susceptibility to oxidation. The triple mutant was further destabilized, suggesting that the effects of deamidation were cumulative. Molecular dynamics simulations predicted that deamidation augments the conformational dynamics of γS. We suggest that these perturbations disrupt the native disulfide arrangement of γS and promote the formation of disulfide‐linked aggregates. The lens‐specific chaperone αA‐crystallin was poor at preventing the aggregation of the triple mutant. It is concluded that surface deamidations cause minimal structural disruption individually, but cumulatively they progressively destabilize γS‐crystallin leading to unfolding and aggregation, as occurs in aged and cataractous lenses. |
doi_str_mv | 10.1002/pro.3915 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7454558</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2437984770</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4385-4ec6e1d5f47cd1ddd750f6f5552f65bf756c8580456f2bd55d5ad86143956d9e3</originalsourceid><addsrcrecordid>eNp1kd1qFDEUx4Modq2CTyABb7yZmszkZDI3giy1CoWKH-BdyE6SaZZMsiYz1e2Vj-C7-B4-hE9itl3rB3iVk5Mfv3PCH6GHlBxRQuqnmxSPmo7CLbSgjHeV6PiH22hBOk4r0XBxgO7lvCaEMFo3d9FBU_OuZQQW6HI5j7NXk7swWBs1Ol3qGDKOFk_nBo9qHRP2pnTKkMm4gL9_e_vjy9c-bfOkvC8NF_pkVDbYTRmrYUhmuJJgPScXBjwHG73eVSpoHD_vZ9xHd6zy2TzYn4fo_Yvjd8uX1enZyavl89OqZ42AipmeG6rBsrbXVGvdArHcAkBtOaxsC7wXIAgDbuuVBtCgtOCUNR1w3ZnmED279m7m1Wh0b8KUlJeb5EaVtjIqJ_9-Ce5cDvFCtgwYgCiCJ3tBih9nkyc5utwb71Uwcc6yZjWnLaeiK-jjf9B1nFMo3ytU03aCtS35LexTzDkZe7MMJXIXaLlHuQu0oI_-XP4G_JVgAapr4JPzZvtfkXz95uxK-BO2Ha8x</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2437984770</pqid></control><display><type>article</type><title>Cumulative deamidations of the major lens protein γS‐crystallin increase its aggregation during unfolding and oxidation</title><source>Wiley Free Content</source><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Vetter, Calvin J. ; Thorn, David C. ; Wheeler, Samuel G. ; Mundorff, Charlie C. ; Halverson, Kate A. ; Wales, Thomas E. ; Shinde, Ujwal P. ; Engen, John R. ; David, Larry L. ; Carver, John A. ; Lampi, Kirsten J.</creator><creatorcontrib>Vetter, Calvin J. ; Thorn, David C. ; Wheeler, Samuel G. ; Mundorff, Charlie C. ; Halverson, Kate A. ; Wales, Thomas E. ; Shinde, Ujwal P. ; Engen, John R. ; David, Larry L. ; Carver, John A. ; Lampi, Kirsten J.</creatorcontrib><description>Age‐related lens cataract is the major cause of blindness worldwide. The mechanisms whereby crystallins, the predominant lens proteins, assemble into large aggregates that scatter light within the lens, and cause cataract, are poorly understood. Due to the lack of protein turnover in the lens, crystallins are long‐lived. A major crystallin, γS, is heavily modified by deamidation, in particular at surface‐exposed N14, N76, and N143 to introduce negative charges. In this present study, deamidated γS was mimicked by mutation with aspartate at these sites and the effect on biophysical properties of γS was assessed via dynamic light scattering, chemical and thermal denaturation, hydrogen‐deuterium exchange, and susceptibility to disulfide cross‐linking. Compared with wild type γS, a small population of each deamidated mutant aggregated rapidly into large, light‐scattering species that contributed significantly to the total scattering. Under partially denaturing conditions in guanidine hydrochloride or elevated temperature, deamidation led to more rapid unfolding and aggregation and increased susceptibility to oxidation. The triple mutant was further destabilized, suggesting that the effects of deamidation were cumulative. Molecular dynamics simulations predicted that deamidation augments the conformational dynamics of γS. We suggest that these perturbations disrupt the native disulfide arrangement of γS and promote the formation of disulfide‐linked aggregates. The lens‐specific chaperone αA‐crystallin was poor at preventing the aggregation of the triple mutant. It is concluded that surface deamidations cause minimal structural disruption individually, but cumulatively they progressively destabilize γS‐crystallin leading to unfolding and aggregation, as occurs in aged and cataractous lenses.</description><identifier>ISSN: 0961-8368</identifier><identifier>EISSN: 1469-896X</identifier><identifier>DOI: 10.1002/pro.3915</identifier><identifier>PMID: 32697405</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley & Sons, Inc</publisher><subject>Agglomeration ; Aggregates ; Blindness ; Cataracts ; Crystal structure ; Crystallin ; Crystallinity ; crystallins ; deamidation ; Deamination ; Deuterium ; dynamic and static light scattering ; Full‐Length Papers ; gamma-Crystallins - chemistry ; Guanidine hydrochloride ; High temperature ; Humans ; Hydrogen-deuterium exchange ; Lens, Crystalline - chemistry ; Lenses ; Light scattering ; mass spectrometry ; Molecular dynamics ; Mutants ; Mutation ; Oxidation ; Photon correlation spectroscopy ; Protein Aggregates ; protein aggregation ; Protein turnover ; Protein Unfolding ; Proteins ; Scattering ; Thermal denaturation</subject><ispartof>Protein science, 2020-09, Vol.29 (9), p.1945-1963</ispartof><rights>2020 The Protein Society</rights><rights>2020 The Protein Society.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4385-4ec6e1d5f47cd1ddd750f6f5552f65bf756c8580456f2bd55d5ad86143956d9e3</citedby><cites>FETCH-LOGICAL-c4385-4ec6e1d5f47cd1ddd750f6f5552f65bf756c8580456f2bd55d5ad86143956d9e3</cites><orcidid>0000-0002-7906-6699</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7454558/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7454558/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,1411,1427,27901,27902,45550,45551,46384,46808,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32697405$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Vetter, Calvin J.</creatorcontrib><creatorcontrib>Thorn, David C.</creatorcontrib><creatorcontrib>Wheeler, Samuel G.</creatorcontrib><creatorcontrib>Mundorff, Charlie C.</creatorcontrib><creatorcontrib>Halverson, Kate A.</creatorcontrib><creatorcontrib>Wales, Thomas E.</creatorcontrib><creatorcontrib>Shinde, Ujwal P.</creatorcontrib><creatorcontrib>Engen, John R.</creatorcontrib><creatorcontrib>David, Larry L.</creatorcontrib><creatorcontrib>Carver, John A.</creatorcontrib><creatorcontrib>Lampi, Kirsten J.</creatorcontrib><title>Cumulative deamidations of the major lens protein γS‐crystallin increase its aggregation during unfolding and oxidation</title><title>Protein science</title><addtitle>Protein Sci</addtitle><description>Age‐related lens cataract is the major cause of blindness worldwide. The mechanisms whereby crystallins, the predominant lens proteins, assemble into large aggregates that scatter light within the lens, and cause cataract, are poorly understood. Due to the lack of protein turnover in the lens, crystallins are long‐lived. A major crystallin, γS, is heavily modified by deamidation, in particular at surface‐exposed N14, N76, and N143 to introduce negative charges. In this present study, deamidated γS was mimicked by mutation with aspartate at these sites and the effect on biophysical properties of γS was assessed via dynamic light scattering, chemical and thermal denaturation, hydrogen‐deuterium exchange, and susceptibility to disulfide cross‐linking. Compared with wild type γS, a small population of each deamidated mutant aggregated rapidly into large, light‐scattering species that contributed significantly to the total scattering. Under partially denaturing conditions in guanidine hydrochloride or elevated temperature, deamidation led to more rapid unfolding and aggregation and increased susceptibility to oxidation. The triple mutant was further destabilized, suggesting that the effects of deamidation were cumulative. Molecular dynamics simulations predicted that deamidation augments the conformational dynamics of γS. We suggest that these perturbations disrupt the native disulfide arrangement of γS and promote the formation of disulfide‐linked aggregates. The lens‐specific chaperone αA‐crystallin was poor at preventing the aggregation of the triple mutant. It is concluded that surface deamidations cause minimal structural disruption individually, but cumulatively they progressively destabilize γS‐crystallin leading to unfolding and aggregation, as occurs in aged and cataractous lenses.</description><subject>Agglomeration</subject><subject>Aggregates</subject><subject>Blindness</subject><subject>Cataracts</subject><subject>Crystal structure</subject><subject>Crystallin</subject><subject>Crystallinity</subject><subject>crystallins</subject><subject>deamidation</subject><subject>Deamination</subject><subject>Deuterium</subject><subject>dynamic and static light scattering</subject><subject>Full‐Length Papers</subject><subject>gamma-Crystallins - chemistry</subject><subject>Guanidine hydrochloride</subject><subject>High temperature</subject><subject>Humans</subject><subject>Hydrogen-deuterium exchange</subject><subject>Lens, Crystalline - chemistry</subject><subject>Lenses</subject><subject>Light scattering</subject><subject>mass spectrometry</subject><subject>Molecular dynamics</subject><subject>Mutants</subject><subject>Mutation</subject><subject>Oxidation</subject><subject>Photon correlation spectroscopy</subject><subject>Protein Aggregates</subject><subject>protein aggregation</subject><subject>Protein turnover</subject><subject>Protein Unfolding</subject><subject>Proteins</subject><subject>Scattering</subject><subject>Thermal denaturation</subject><issn>0961-8368</issn><issn>1469-896X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kd1qFDEUx4Modq2CTyABb7yZmszkZDI3giy1CoWKH-BdyE6SaZZMsiYz1e2Vj-C7-B4-hE9itl3rB3iVk5Mfv3PCH6GHlBxRQuqnmxSPmo7CLbSgjHeV6PiH22hBOk4r0XBxgO7lvCaEMFo3d9FBU_OuZQQW6HI5j7NXk7swWBs1Ol3qGDKOFk_nBo9qHRP2pnTKkMm4gL9_e_vjy9c-bfOkvC8NF_pkVDbYTRmrYUhmuJJgPScXBjwHG73eVSpoHD_vZ9xHd6zy2TzYn4fo_Yvjd8uX1enZyavl89OqZ42AipmeG6rBsrbXVGvdArHcAkBtOaxsC7wXIAgDbuuVBtCgtOCUNR1w3ZnmED279m7m1Wh0b8KUlJeb5EaVtjIqJ_9-Ce5cDvFCtgwYgCiCJ3tBih9nkyc5utwb71Uwcc6yZjWnLaeiK-jjf9B1nFMo3ytU03aCtS35LexTzDkZe7MMJXIXaLlHuQu0oI_-XP4G_JVgAapr4JPzZvtfkXz95uxK-BO2Ha8x</recordid><startdate>202009</startdate><enddate>202009</enddate><creator>Vetter, Calvin J.</creator><creator>Thorn, David C.</creator><creator>Wheeler, Samuel G.</creator><creator>Mundorff, Charlie C.</creator><creator>Halverson, Kate A.</creator><creator>Wales, Thomas E.</creator><creator>Shinde, Ujwal P.</creator><creator>Engen, John R.</creator><creator>David, Larry L.</creator><creator>Carver, John A.</creator><creator>Lampi, Kirsten J.</creator><general>John Wiley & Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7T5</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-7906-6699</orcidid></search><sort><creationdate>202009</creationdate><title>Cumulative deamidations of the major lens protein γS‐crystallin increase its aggregation during unfolding and oxidation</title><author>Vetter, Calvin J. ; Thorn, David C. ; Wheeler, Samuel G. ; Mundorff, Charlie C. ; Halverson, Kate A. ; Wales, Thomas E. ; Shinde, Ujwal P. ; Engen, John R. ; David, Larry L. ; Carver, John A. ; Lampi, Kirsten J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4385-4ec6e1d5f47cd1ddd750f6f5552f65bf756c8580456f2bd55d5ad86143956d9e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Agglomeration</topic><topic>Aggregates</topic><topic>Blindness</topic><topic>Cataracts</topic><topic>Crystal structure</topic><topic>Crystallin</topic><topic>Crystallinity</topic><topic>crystallins</topic><topic>deamidation</topic><topic>Deamination</topic><topic>Deuterium</topic><topic>dynamic and static light scattering</topic><topic>Full‐Length Papers</topic><topic>gamma-Crystallins - chemistry</topic><topic>Guanidine hydrochloride</topic><topic>High temperature</topic><topic>Humans</topic><topic>Hydrogen-deuterium exchange</topic><topic>Lens, Crystalline - chemistry</topic><topic>Lenses</topic><topic>Light scattering</topic><topic>mass spectrometry</topic><topic>Molecular dynamics</topic><topic>Mutants</topic><topic>Mutation</topic><topic>Oxidation</topic><topic>Photon correlation spectroscopy</topic><topic>Protein Aggregates</topic><topic>protein aggregation</topic><topic>Protein turnover</topic><topic>Protein Unfolding</topic><topic>Proteins</topic><topic>Scattering</topic><topic>Thermal denaturation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vetter, Calvin J.</creatorcontrib><creatorcontrib>Thorn, David C.</creatorcontrib><creatorcontrib>Wheeler, Samuel G.</creatorcontrib><creatorcontrib>Mundorff, Charlie C.</creatorcontrib><creatorcontrib>Halverson, Kate A.</creatorcontrib><creatorcontrib>Wales, Thomas E.</creatorcontrib><creatorcontrib>Shinde, Ujwal P.</creatorcontrib><creatorcontrib>Engen, John R.</creatorcontrib><creatorcontrib>David, Larry L.</creatorcontrib><creatorcontrib>Carver, John A.</creatorcontrib><creatorcontrib>Lampi, Kirsten J.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Immunology Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Protein science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vetter, Calvin J.</au><au>Thorn, David C.</au><au>Wheeler, Samuel G.</au><au>Mundorff, Charlie C.</au><au>Halverson, Kate A.</au><au>Wales, Thomas E.</au><au>Shinde, Ujwal P.</au><au>Engen, John R.</au><au>David, Larry L.</au><au>Carver, John A.</au><au>Lampi, Kirsten J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cumulative deamidations of the major lens protein γS‐crystallin increase its aggregation during unfolding and oxidation</atitle><jtitle>Protein science</jtitle><addtitle>Protein Sci</addtitle><date>2020-09</date><risdate>2020</risdate><volume>29</volume><issue>9</issue><spage>1945</spage><epage>1963</epage><pages>1945-1963</pages><issn>0961-8368</issn><eissn>1469-896X</eissn><abstract>Age‐related lens cataract is the major cause of blindness worldwide. The mechanisms whereby crystallins, the predominant lens proteins, assemble into large aggregates that scatter light within the lens, and cause cataract, are poorly understood. Due to the lack of protein turnover in the lens, crystallins are long‐lived. A major crystallin, γS, is heavily modified by deamidation, in particular at surface‐exposed N14, N76, and N143 to introduce negative charges. In this present study, deamidated γS was mimicked by mutation with aspartate at these sites and the effect on biophysical properties of γS was assessed via dynamic light scattering, chemical and thermal denaturation, hydrogen‐deuterium exchange, and susceptibility to disulfide cross‐linking. Compared with wild type γS, a small population of each deamidated mutant aggregated rapidly into large, light‐scattering species that contributed significantly to the total scattering. Under partially denaturing conditions in guanidine hydrochloride or elevated temperature, deamidation led to more rapid unfolding and aggregation and increased susceptibility to oxidation. The triple mutant was further destabilized, suggesting that the effects of deamidation were cumulative. Molecular dynamics simulations predicted that deamidation augments the conformational dynamics of γS. We suggest that these perturbations disrupt the native disulfide arrangement of γS and promote the formation of disulfide‐linked aggregates. The lens‐specific chaperone αA‐crystallin was poor at preventing the aggregation of the triple mutant. It is concluded that surface deamidations cause minimal structural disruption individually, but cumulatively they progressively destabilize γS‐crystallin leading to unfolding and aggregation, as occurs in aged and cataractous lenses.</abstract><cop>Hoboken, USA</cop><pub>John Wiley & Sons, Inc</pub><pmid>32697405</pmid><doi>10.1002/pro.3915</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0002-7906-6699</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0961-8368 |
ispartof | Protein science, 2020-09, Vol.29 (9), p.1945-1963 |
issn | 0961-8368 1469-896X |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7454558 |
source | Wiley Free Content; MEDLINE; Wiley Online Library Journals Frontfile Complete; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Agglomeration Aggregates Blindness Cataracts Crystal structure Crystallin Crystallinity crystallins deamidation Deamination Deuterium dynamic and static light scattering Full‐Length Papers gamma-Crystallins - chemistry Guanidine hydrochloride High temperature Humans Hydrogen-deuterium exchange Lens, Crystalline - chemistry Lenses Light scattering mass spectrometry Molecular dynamics Mutants Mutation Oxidation Photon correlation spectroscopy Protein Aggregates protein aggregation Protein turnover Protein Unfolding Proteins Scattering Thermal denaturation |
title | Cumulative deamidations of the major lens protein γS‐crystallin increase its aggregation during unfolding and oxidation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T13%3A00%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cumulative%20deamidations%20of%20the%20major%20lens%20protein%20%CE%B3S%E2%80%90crystallin%20increase%20its%20aggregation%20during%20unfolding%20and%20oxidation&rft.jtitle=Protein%20science&rft.au=Vetter,%20Calvin%20J.&rft.date=2020-09&rft.volume=29&rft.issue=9&rft.spage=1945&rft.epage=1963&rft.pages=1945-1963&rft.issn=0961-8368&rft.eissn=1469-896X&rft_id=info:doi/10.1002/pro.3915&rft_dat=%3Cproquest_pubme%3E2437984770%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2437984770&rft_id=info:pmid/32697405&rfr_iscdi=true |