Chia, a large annotated corpus of clinical trial eligibility criteria

We present Chia, a novel, large annotated corpus of patient eligibility criteria extracted from 1,000 interventional, Phase IV clinical trials registered in ClinicalTrials.gov. This dataset includes 12,409 annotated eligibility criteria, represented by 41,487 distinctive entities of 15 entity types...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific data 2020-08, Vol.7 (1), p.281-281, Article 281
Hauptverfasser: Kury, Fabrício, Butler, Alex, Yuan, Chi, Fu, Li-heng, Sun, Yingcheng, Liu, Hao, Sim, Ida, Carini, Simona, Weng, Chunhua
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 281
container_issue 1
container_start_page 281
container_title Scientific data
container_volume 7
creator Kury, Fabrício
Butler, Alex
Yuan, Chi
Fu, Li-heng
Sun, Yingcheng
Liu, Hao
Sim, Ida
Carini, Simona
Weng, Chunhua
description We present Chia, a novel, large annotated corpus of patient eligibility criteria extracted from 1,000 interventional, Phase IV clinical trials registered in ClinicalTrials.gov. This dataset includes 12,409 annotated eligibility criteria, represented by 41,487 distinctive entities of 15 entity types and 25,017 relationships of 12 relationship types. Each criterion is represented as a directed acyclic graph, which can be easily transformed into Boolean logic to form a database query. Chia can serve as a shared benchmark to develop and test future machine learning, rule-based, or hybrid methods for information extraction from free-text clinical trial eligibility criteria. Measurement(s) Clinical Trial Eligibility Criteria • Analytical Procedure Accuracy Technology Type(s) digital curation • computational modeling technique Sample Characteristic - Organism Homo sapiens Machine-accessible metadata file describing the reported data: https://doi.org/10.6084/m9.figshare.12765602
doi_str_mv 10.1038/s41597-020-00620-0
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7452886</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2437639048</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-b2e05d5d227184fe80435d617d6d5ef6d9dcdedb9ab343a9ba907aefab0179143</originalsourceid><addsrcrecordid>eNp9kU1r3DAQhkVpaUKaP9BDMfTSQ52Mviz5UihLviCQS3sWsjTeKGitrWQX8u-rzSZp2kMuM0Lz6B3NvIR8pHBCgevTIqjsVQsMWoBuF9-QQwaStUJ0_O2L8wE5LuUOACgXIBW8JwecaSkF6ENytroN9mtjm2jzGhs7TWm2M_rGpbxdSpPGxsUwBWdjM-dQI8awDkOIYb5vXA4z1tsP5N1oY8Hjx3xEfp6f_Vhdttc3F1er79etE0rM7cAQpJeeMUW1GFGD4NJ3VPnOSxw733vn0Q-9Hbjgth9sD8riaAegqqeCH5Fve93tMmzQO5zmbKPZ5rCx-d4kG8y_lSncmnX6bZSQTOuuCnx5FMjp14JlNptQHMZoJ0xLMUxw3WlRl1XRz_-hd2nJUx1vR6mO9yB0pdiecjmVknF8_gwFszPK7I0y1SjzYJTZSX96OcbzkydbKsD3QKmlaY35b-9XZP8ArYeeWA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2437639048</pqid></control><display><type>article</type><title>Chia, a large annotated corpus of clinical trial eligibility criteria</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central Open Access</source><source>Springer Nature OA Free Journals</source><source>Nature Free</source><source>PubMed Central</source><creator>Kury, Fabrício ; Butler, Alex ; Yuan, Chi ; Fu, Li-heng ; Sun, Yingcheng ; Liu, Hao ; Sim, Ida ; Carini, Simona ; Weng, Chunhua</creator><creatorcontrib>Kury, Fabrício ; Butler, Alex ; Yuan, Chi ; Fu, Li-heng ; Sun, Yingcheng ; Liu, Hao ; Sim, Ida ; Carini, Simona ; Weng, Chunhua</creatorcontrib><description>We present Chia, a novel, large annotated corpus of patient eligibility criteria extracted from 1,000 interventional, Phase IV clinical trials registered in ClinicalTrials.gov. This dataset includes 12,409 annotated eligibility criteria, represented by 41,487 distinctive entities of 15 entity types and 25,017 relationships of 12 relationship types. Each criterion is represented as a directed acyclic graph, which can be easily transformed into Boolean logic to form a database query. Chia can serve as a shared benchmark to develop and test future machine learning, rule-based, or hybrid methods for information extraction from free-text clinical trial eligibility criteria. Measurement(s) Clinical Trial Eligibility Criteria • Analytical Procedure Accuracy Technology Type(s) digital curation • computational modeling technique Sample Characteristic - Organism Homo sapiens Machine-accessible metadata file describing the reported data: https://doi.org/10.6084/m9.figshare.12765602</description><identifier>ISSN: 2052-4463</identifier><identifier>EISSN: 2052-4463</identifier><identifier>DOI: 10.1038/s41597-020-00620-0</identifier><identifier>PMID: 32855408</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>692/308/2779/109 ; Clinical trials ; Clinical Trials, Phase IV as Topic ; Computer applications ; Data Descriptor ; Digital curation ; Humanities and Social Sciences ; Humans ; Learning algorithms ; Machine learning ; multidisciplinary ; Science ; Science (multidisciplinary)</subject><ispartof>Scientific data, 2020-08, Vol.7 (1), p.281-281, Article 281</ispartof><rights>The Author(s) 2020</rights><rights>The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c474t-b2e05d5d227184fe80435d617d6d5ef6d9dcdedb9ab343a9ba907aefab0179143</citedby><cites>FETCH-LOGICAL-c474t-b2e05d5d227184fe80435d617d6d5ef6d9dcdedb9ab343a9ba907aefab0179143</cites><orcidid>0000-0002-1045-8459</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7452886/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7452886/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,27923,27924,41119,42188,51575,53790,53792</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32855408$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kury, Fabrício</creatorcontrib><creatorcontrib>Butler, Alex</creatorcontrib><creatorcontrib>Yuan, Chi</creatorcontrib><creatorcontrib>Fu, Li-heng</creatorcontrib><creatorcontrib>Sun, Yingcheng</creatorcontrib><creatorcontrib>Liu, Hao</creatorcontrib><creatorcontrib>Sim, Ida</creatorcontrib><creatorcontrib>Carini, Simona</creatorcontrib><creatorcontrib>Weng, Chunhua</creatorcontrib><title>Chia, a large annotated corpus of clinical trial eligibility criteria</title><title>Scientific data</title><addtitle>Sci Data</addtitle><addtitle>Sci Data</addtitle><description>We present Chia, a novel, large annotated corpus of patient eligibility criteria extracted from 1,000 interventional, Phase IV clinical trials registered in ClinicalTrials.gov. This dataset includes 12,409 annotated eligibility criteria, represented by 41,487 distinctive entities of 15 entity types and 25,017 relationships of 12 relationship types. Each criterion is represented as a directed acyclic graph, which can be easily transformed into Boolean logic to form a database query. Chia can serve as a shared benchmark to develop and test future machine learning, rule-based, or hybrid methods for information extraction from free-text clinical trial eligibility criteria. Measurement(s) Clinical Trial Eligibility Criteria • Analytical Procedure Accuracy Technology Type(s) digital curation • computational modeling technique Sample Characteristic - Organism Homo sapiens Machine-accessible metadata file describing the reported data: https://doi.org/10.6084/m9.figshare.12765602</description><subject>692/308/2779/109</subject><subject>Clinical trials</subject><subject>Clinical Trials, Phase IV as Topic</subject><subject>Computer applications</subject><subject>Data Descriptor</subject><subject>Digital curation</subject><subject>Humanities and Social Sciences</subject><subject>Humans</subject><subject>Learning algorithms</subject><subject>Machine learning</subject><subject>multidisciplinary</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><issn>2052-4463</issn><issn>2052-4463</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kU1r3DAQhkVpaUKaP9BDMfTSQ52Mviz5UihLviCQS3sWsjTeKGitrWQX8u-rzSZp2kMuM0Lz6B3NvIR8pHBCgevTIqjsVQsMWoBuF9-QQwaStUJ0_O2L8wE5LuUOACgXIBW8JwecaSkF6ENytroN9mtjm2jzGhs7TWm2M_rGpbxdSpPGxsUwBWdjM-dQI8awDkOIYb5vXA4z1tsP5N1oY8Hjx3xEfp6f_Vhdttc3F1er79etE0rM7cAQpJeeMUW1GFGD4NJ3VPnOSxw733vn0Q-9Hbjgth9sD8riaAegqqeCH5Fve93tMmzQO5zmbKPZ5rCx-d4kG8y_lSncmnX6bZSQTOuuCnx5FMjp14JlNptQHMZoJ0xLMUxw3WlRl1XRz_-hd2nJUx1vR6mO9yB0pdiecjmVknF8_gwFszPK7I0y1SjzYJTZSX96OcbzkydbKsD3QKmlaY35b-9XZP8ArYeeWA</recordid><startdate>20200827</startdate><enddate>20200827</enddate><creator>Kury, Fabrício</creator><creator>Butler, Alex</creator><creator>Yuan, Chi</creator><creator>Fu, Li-heng</creator><creator>Sun, Yingcheng</creator><creator>Liu, Hao</creator><creator>Sim, Ida</creator><creator>Carini, Simona</creator><creator>Weng, Chunhua</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-1045-8459</orcidid></search><sort><creationdate>20200827</creationdate><title>Chia, a large annotated corpus of clinical trial eligibility criteria</title><author>Kury, Fabrício ; Butler, Alex ; Yuan, Chi ; Fu, Li-heng ; Sun, Yingcheng ; Liu, Hao ; Sim, Ida ; Carini, Simona ; Weng, Chunhua</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-b2e05d5d227184fe80435d617d6d5ef6d9dcdedb9ab343a9ba907aefab0179143</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>692/308/2779/109</topic><topic>Clinical trials</topic><topic>Clinical Trials, Phase IV as Topic</topic><topic>Computer applications</topic><topic>Data Descriptor</topic><topic>Digital curation</topic><topic>Humanities and Social Sciences</topic><topic>Humans</topic><topic>Learning algorithms</topic><topic>Machine learning</topic><topic>multidisciplinary</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kury, Fabrício</creatorcontrib><creatorcontrib>Butler, Alex</creatorcontrib><creatorcontrib>Yuan, Chi</creatorcontrib><creatorcontrib>Fu, Li-heng</creatorcontrib><creatorcontrib>Sun, Yingcheng</creatorcontrib><creatorcontrib>Liu, Hao</creatorcontrib><creatorcontrib>Sim, Ida</creatorcontrib><creatorcontrib>Carini, Simona</creatorcontrib><creatorcontrib>Weng, Chunhua</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific data</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kury, Fabrício</au><au>Butler, Alex</au><au>Yuan, Chi</au><au>Fu, Li-heng</au><au>Sun, Yingcheng</au><au>Liu, Hao</au><au>Sim, Ida</au><au>Carini, Simona</au><au>Weng, Chunhua</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Chia, a large annotated corpus of clinical trial eligibility criteria</atitle><jtitle>Scientific data</jtitle><stitle>Sci Data</stitle><addtitle>Sci Data</addtitle><date>2020-08-27</date><risdate>2020</risdate><volume>7</volume><issue>1</issue><spage>281</spage><epage>281</epage><pages>281-281</pages><artnum>281</artnum><issn>2052-4463</issn><eissn>2052-4463</eissn><abstract>We present Chia, a novel, large annotated corpus of patient eligibility criteria extracted from 1,000 interventional, Phase IV clinical trials registered in ClinicalTrials.gov. This dataset includes 12,409 annotated eligibility criteria, represented by 41,487 distinctive entities of 15 entity types and 25,017 relationships of 12 relationship types. Each criterion is represented as a directed acyclic graph, which can be easily transformed into Boolean logic to form a database query. Chia can serve as a shared benchmark to develop and test future machine learning, rule-based, or hybrid methods for information extraction from free-text clinical trial eligibility criteria. Measurement(s) Clinical Trial Eligibility Criteria • Analytical Procedure Accuracy Technology Type(s) digital curation • computational modeling technique Sample Characteristic - Organism Homo sapiens Machine-accessible metadata file describing the reported data: https://doi.org/10.6084/m9.figshare.12765602</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>32855408</pmid><doi>10.1038/s41597-020-00620-0</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-1045-8459</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2052-4463
ispartof Scientific data, 2020-08, Vol.7 (1), p.281-281, Article 281
issn 2052-4463
2052-4463
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7452886
source MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central Open Access; Springer Nature OA Free Journals; Nature Free; PubMed Central
subjects 692/308/2779/109
Clinical trials
Clinical Trials, Phase IV as Topic
Computer applications
Data Descriptor
Digital curation
Humanities and Social Sciences
Humans
Learning algorithms
Machine learning
multidisciplinary
Science
Science (multidisciplinary)
title Chia, a large annotated corpus of clinical trial eligibility criteria
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T04%3A57%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Chia,%20a%20large%20annotated%20corpus%20of%20clinical%20trial%20eligibility%20criteria&rft.jtitle=Scientific%20data&rft.au=Kury,%20Fabr%C3%ADcio&rft.date=2020-08-27&rft.volume=7&rft.issue=1&rft.spage=281&rft.epage=281&rft.pages=281-281&rft.artnum=281&rft.issn=2052-4463&rft.eissn=2052-4463&rft_id=info:doi/10.1038/s41597-020-00620-0&rft_dat=%3Cproquest_pubme%3E2437639048%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2437639048&rft_id=info:pmid/32855408&rfr_iscdi=true