Targeted Manganese doped silica nano GSH-cleaner for treatment of Liver Cancer by destroying the intracellular redox homeostasis
Glutathione (GSH), the primary antioxidant in cells, could fight against oxidative stress. Tumor cells display a higher GSH level than normal cells for coping with the hyperoxidative state, which meets the requirements of enhanced metabolism and vicious proliferation. Therefore, the consumption of G...
Gespeichert in:
Veröffentlicht in: | Theranostics 2020-01, Vol.10 (21), p.9865-9887 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 9887 |
---|---|
container_issue | 21 |
container_start_page | 9865 |
container_title | Theranostics |
container_volume | 10 |
creator | Tang, Hongxia Li, Chaoqun Zhang, Yue Zheng, Hongyue Cheng, Ying Zhu, Jingjing Chen, Xiaojie Zhu, Zhihong Piao, Ji-Gang Li, Fanzhu |
description | Glutathione (GSH), the primary antioxidant in cells, could fight against oxidative stress. Tumor cells display a higher GSH level than normal cells for coping with the hyperoxidative state, which meets the requirements of enhanced metabolism and vicious proliferation. Therefore, the consumption of GSH will lead to cell redox imbalance and impede life activities. Herein, targeted sorafenib (SFB) loaded manganese doped silica nanoparticle (FaPEG-MnMSN@SFB) was constructed, which could destroy the intracellular redox homeostasis by consuming GSH.
In this study, MnMSN was prepared by an optimized one-pot Stober's method for loading SFB, and FaPEG chain was modified on the surface of MnMSN to achieve long circulation and targeted delivery. The anticancer efficacy and mechanism of the designed FaPEG-MnMSN@SFB were assessed both
and
FaPEG-MnMSN@SFB exhibited efficient antitumor activity by dual depleting intracellular GSH (the degradation of MnMSN would consume intracellular GSH and the SFB would inhibit the effect of X
transport system to inhibit GSH synthesis). Moreover, disruption of redox balance would lead to apoptosis and reactive oxygen species (ROS)-dependent ferroptosis of tumor cells.
Such a GSH-starvation therapeutic strategy would cause multi-path programmed cell death and could be a promising strategy for cancer therapy. |
doi_str_mv | 10.7150/thno.46771 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7449918</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2438993233</sourcerecordid><originalsourceid>FETCH-LOGICAL-c406t-f5e09b6c0dcb5211bf3c0bd14ab4ceeef980419015848c5ed9287d6357da5d5c3</originalsourceid><addsrcrecordid>eNpdkcFvFCEUxonR2GbtxT_AkHgxJlNhgBm4mJiNbU3WeLCeCQNvdmlmYAWmcW_-6WVtbapcHvB-efm-9yH0mpLzngryoexCPOdd39Nn6JRKJpu-4-T5k_sJOsv5htTDSauoeolOWCs7pjp-in5fm7SFAg5_NWFrAmTALu7rO_vJW4ODCRFffr9q7AS1nfAYEy4JTJkhFBxHvPG39Xttgq1lOGAHuaR48GGLyw6wDyUZC9O0TCbhBC7-wrs4Q8zFZJ9foRejmTKcPdQV-nHx-Xp91Wy-XX5Zf9o0lpOuNKMAoobOEmcH0VI6jMySwVFuBm4BYFSScKoIFZJLK8CpVvauY6J3Rjhh2Qp9vJ-7X4YZnIWjrEnvk59NOuhovP63E_xOb-Ot7jlXqi5zhd49DEjx51I96tnno6-6lbhk3XImlWItYxV9-x96E5cUqj3dCiVb3gnZV-r9PWVTzDnB-CiGEn3MVh-z1X-yrfCbp_If0b9JsjthG6LH</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2598246587</pqid></control><display><type>article</type><title>Targeted Manganese doped silica nano GSH-cleaner for treatment of Liver Cancer by destroying the intracellular redox homeostasis</title><source>MEDLINE</source><source>PubMed Central Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Tang, Hongxia ; Li, Chaoqun ; Zhang, Yue ; Zheng, Hongyue ; Cheng, Ying ; Zhu, Jingjing ; Chen, Xiaojie ; Zhu, Zhihong ; Piao, Ji-Gang ; Li, Fanzhu</creator><creatorcontrib>Tang, Hongxia ; Li, Chaoqun ; Zhang, Yue ; Zheng, Hongyue ; Cheng, Ying ; Zhu, Jingjing ; Chen, Xiaojie ; Zhu, Zhihong ; Piao, Ji-Gang ; Li, Fanzhu</creatorcontrib><description>Glutathione (GSH), the primary antioxidant in cells, could fight against oxidative stress. Tumor cells display a higher GSH level than normal cells for coping with the hyperoxidative state, which meets the requirements of enhanced metabolism and vicious proliferation. Therefore, the consumption of GSH will lead to cell redox imbalance and impede life activities. Herein, targeted sorafenib (SFB) loaded manganese doped silica nanoparticle (FaPEG-MnMSN@SFB) was constructed, which could destroy the intracellular redox homeostasis by consuming GSH.
In this study, MnMSN was prepared by an optimized one-pot Stober's method for loading SFB, and FaPEG chain was modified on the surface of MnMSN to achieve long circulation and targeted delivery. The anticancer efficacy and mechanism of the designed FaPEG-MnMSN@SFB were assessed both
and
FaPEG-MnMSN@SFB exhibited efficient antitumor activity by dual depleting intracellular GSH (the degradation of MnMSN would consume intracellular GSH and the SFB would inhibit the effect of X
transport system to inhibit GSH synthesis). Moreover, disruption of redox balance would lead to apoptosis and reactive oxygen species (ROS)-dependent ferroptosis of tumor cells.
Such a GSH-starvation therapeutic strategy would cause multi-path programmed cell death and could be a promising strategy for cancer therapy.</description><identifier>ISSN: 1838-7640</identifier><identifier>EISSN: 1838-7640</identifier><identifier>DOI: 10.7150/thno.46771</identifier><identifier>PMID: 32863964</identifier><language>eng</language><publisher>Australia: Ivyspring International Publisher Pty Ltd</publisher><subject>A549 Cells ; Animals ; Antineoplastic Agents - chemistry ; Antineoplastic Agents - pharmacology ; Apoptosis - drug effects ; Biosynthesis ; Cancer therapies ; Cell division ; Cell growth ; Cell Line ; Cell Line, Tumor ; Cell Proliferation - drug effects ; Ethanol ; Glutathione - metabolism ; Hep G2 Cells ; Homeostasis - drug effects ; Human Umbilical Vein Endothelial Cells ; Humans ; Laboratory animals ; Liver cancer ; Liver Neoplasms - drug therapy ; Liver Neoplasms - metabolism ; Male ; Manganese - chemistry ; Metabolism ; Mice, Nude ; Nanomaterials ; Nanoparticles ; Nanoparticles - chemistry ; Oxidation-Reduction - drug effects ; Oxidative Stress - drug effects ; Rats ; Rats, Sprague-Dawley ; Reactive Oxygen Species - metabolism ; Research Paper ; Signal transduction ; Silicon Dioxide - chemistry ; Sorafenib - chemistry ; Sorafenib - pharmacology</subject><ispartof>Theranostics, 2020-01, Vol.10 (21), p.9865-9887</ispartof><rights>The author(s).</rights><rights>2020. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>The author(s) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c406t-f5e09b6c0dcb5211bf3c0bd14ab4ceeef980419015848c5ed9287d6357da5d5c3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7449918/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7449918/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32863964$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tang, Hongxia</creatorcontrib><creatorcontrib>Li, Chaoqun</creatorcontrib><creatorcontrib>Zhang, Yue</creatorcontrib><creatorcontrib>Zheng, Hongyue</creatorcontrib><creatorcontrib>Cheng, Ying</creatorcontrib><creatorcontrib>Zhu, Jingjing</creatorcontrib><creatorcontrib>Chen, Xiaojie</creatorcontrib><creatorcontrib>Zhu, Zhihong</creatorcontrib><creatorcontrib>Piao, Ji-Gang</creatorcontrib><creatorcontrib>Li, Fanzhu</creatorcontrib><title>Targeted Manganese doped silica nano GSH-cleaner for treatment of Liver Cancer by destroying the intracellular redox homeostasis</title><title>Theranostics</title><addtitle>Theranostics</addtitle><description>Glutathione (GSH), the primary antioxidant in cells, could fight against oxidative stress. Tumor cells display a higher GSH level than normal cells for coping with the hyperoxidative state, which meets the requirements of enhanced metabolism and vicious proliferation. Therefore, the consumption of GSH will lead to cell redox imbalance and impede life activities. Herein, targeted sorafenib (SFB) loaded manganese doped silica nanoparticle (FaPEG-MnMSN@SFB) was constructed, which could destroy the intracellular redox homeostasis by consuming GSH.
In this study, MnMSN was prepared by an optimized one-pot Stober's method for loading SFB, and FaPEG chain was modified on the surface of MnMSN to achieve long circulation and targeted delivery. The anticancer efficacy and mechanism of the designed FaPEG-MnMSN@SFB were assessed both
and
FaPEG-MnMSN@SFB exhibited efficient antitumor activity by dual depleting intracellular GSH (the degradation of MnMSN would consume intracellular GSH and the SFB would inhibit the effect of X
transport system to inhibit GSH synthesis). Moreover, disruption of redox balance would lead to apoptosis and reactive oxygen species (ROS)-dependent ferroptosis of tumor cells.
Such a GSH-starvation therapeutic strategy would cause multi-path programmed cell death and could be a promising strategy for cancer therapy.</description><subject>A549 Cells</subject><subject>Animals</subject><subject>Antineoplastic Agents - chemistry</subject><subject>Antineoplastic Agents - pharmacology</subject><subject>Apoptosis - drug effects</subject><subject>Biosynthesis</subject><subject>Cancer therapies</subject><subject>Cell division</subject><subject>Cell growth</subject><subject>Cell Line</subject><subject>Cell Line, Tumor</subject><subject>Cell Proliferation - drug effects</subject><subject>Ethanol</subject><subject>Glutathione - metabolism</subject><subject>Hep G2 Cells</subject><subject>Homeostasis - drug effects</subject><subject>Human Umbilical Vein Endothelial Cells</subject><subject>Humans</subject><subject>Laboratory animals</subject><subject>Liver cancer</subject><subject>Liver Neoplasms - drug therapy</subject><subject>Liver Neoplasms - metabolism</subject><subject>Male</subject><subject>Manganese - chemistry</subject><subject>Metabolism</subject><subject>Mice, Nude</subject><subject>Nanomaterials</subject><subject>Nanoparticles</subject><subject>Nanoparticles - chemistry</subject><subject>Oxidation-Reduction - drug effects</subject><subject>Oxidative Stress - drug effects</subject><subject>Rats</subject><subject>Rats, Sprague-Dawley</subject><subject>Reactive Oxygen Species - metabolism</subject><subject>Research Paper</subject><subject>Signal transduction</subject><subject>Silicon Dioxide - chemistry</subject><subject>Sorafenib - chemistry</subject><subject>Sorafenib - pharmacology</subject><issn>1838-7640</issn><issn>1838-7640</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpdkcFvFCEUxonR2GbtxT_AkHgxJlNhgBm4mJiNbU3WeLCeCQNvdmlmYAWmcW_-6WVtbapcHvB-efm-9yH0mpLzngryoexCPOdd39Nn6JRKJpu-4-T5k_sJOsv5htTDSauoeolOWCs7pjp-in5fm7SFAg5_NWFrAmTALu7rO_vJW4ODCRFffr9q7AS1nfAYEy4JTJkhFBxHvPG39Xttgq1lOGAHuaR48GGLyw6wDyUZC9O0TCbhBC7-wrs4Q8zFZJ9foRejmTKcPdQV-nHx-Xp91Wy-XX5Zf9o0lpOuNKMAoobOEmcH0VI6jMySwVFuBm4BYFSScKoIFZJLK8CpVvauY6J3Rjhh2Qp9vJ-7X4YZnIWjrEnvk59NOuhovP63E_xOb-Ot7jlXqi5zhd49DEjx51I96tnno6-6lbhk3XImlWItYxV9-x96E5cUqj3dCiVb3gnZV-r9PWVTzDnB-CiGEn3MVh-z1X-yrfCbp_If0b9JsjthG6LH</recordid><startdate>20200101</startdate><enddate>20200101</enddate><creator>Tang, Hongxia</creator><creator>Li, Chaoqun</creator><creator>Zhang, Yue</creator><creator>Zheng, Hongyue</creator><creator>Cheng, Ying</creator><creator>Zhu, Jingjing</creator><creator>Chen, Xiaojie</creator><creator>Zhu, Zhihong</creator><creator>Piao, Ji-Gang</creator><creator>Li, Fanzhu</creator><general>Ivyspring International Publisher Pty Ltd</general><general>Ivyspring International Publisher</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20200101</creationdate><title>Targeted Manganese doped silica nano GSH-cleaner for treatment of Liver Cancer by destroying the intracellular redox homeostasis</title><author>Tang, Hongxia ; Li, Chaoqun ; Zhang, Yue ; Zheng, Hongyue ; Cheng, Ying ; Zhu, Jingjing ; Chen, Xiaojie ; Zhu, Zhihong ; Piao, Ji-Gang ; Li, Fanzhu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c406t-f5e09b6c0dcb5211bf3c0bd14ab4ceeef980419015848c5ed9287d6357da5d5c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>A549 Cells</topic><topic>Animals</topic><topic>Antineoplastic Agents - chemistry</topic><topic>Antineoplastic Agents - pharmacology</topic><topic>Apoptosis - drug effects</topic><topic>Biosynthesis</topic><topic>Cancer therapies</topic><topic>Cell division</topic><topic>Cell growth</topic><topic>Cell Line</topic><topic>Cell Line, Tumor</topic><topic>Cell Proliferation - drug effects</topic><topic>Ethanol</topic><topic>Glutathione - metabolism</topic><topic>Hep G2 Cells</topic><topic>Homeostasis - drug effects</topic><topic>Human Umbilical Vein Endothelial Cells</topic><topic>Humans</topic><topic>Laboratory animals</topic><topic>Liver cancer</topic><topic>Liver Neoplasms - drug therapy</topic><topic>Liver Neoplasms - metabolism</topic><topic>Male</topic><topic>Manganese - chemistry</topic><topic>Metabolism</topic><topic>Mice, Nude</topic><topic>Nanomaterials</topic><topic>Nanoparticles</topic><topic>Nanoparticles - chemistry</topic><topic>Oxidation-Reduction - drug effects</topic><topic>Oxidative Stress - drug effects</topic><topic>Rats</topic><topic>Rats, Sprague-Dawley</topic><topic>Reactive Oxygen Species - metabolism</topic><topic>Research Paper</topic><topic>Signal transduction</topic><topic>Silicon Dioxide - chemistry</topic><topic>Sorafenib - chemistry</topic><topic>Sorafenib - pharmacology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tang, Hongxia</creatorcontrib><creatorcontrib>Li, Chaoqun</creatorcontrib><creatorcontrib>Zhang, Yue</creatorcontrib><creatorcontrib>Zheng, Hongyue</creatorcontrib><creatorcontrib>Cheng, Ying</creatorcontrib><creatorcontrib>Zhu, Jingjing</creatorcontrib><creatorcontrib>Chen, Xiaojie</creatorcontrib><creatorcontrib>Zhu, Zhihong</creatorcontrib><creatorcontrib>Piao, Ji-Gang</creatorcontrib><creatorcontrib>Li, Fanzhu</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Theranostics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tang, Hongxia</au><au>Li, Chaoqun</au><au>Zhang, Yue</au><au>Zheng, Hongyue</au><au>Cheng, Ying</au><au>Zhu, Jingjing</au><au>Chen, Xiaojie</au><au>Zhu, Zhihong</au><au>Piao, Ji-Gang</au><au>Li, Fanzhu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Targeted Manganese doped silica nano GSH-cleaner for treatment of Liver Cancer by destroying the intracellular redox homeostasis</atitle><jtitle>Theranostics</jtitle><addtitle>Theranostics</addtitle><date>2020-01-01</date><risdate>2020</risdate><volume>10</volume><issue>21</issue><spage>9865</spage><epage>9887</epage><pages>9865-9887</pages><issn>1838-7640</issn><eissn>1838-7640</eissn><abstract>Glutathione (GSH), the primary antioxidant in cells, could fight against oxidative stress. Tumor cells display a higher GSH level than normal cells for coping with the hyperoxidative state, which meets the requirements of enhanced metabolism and vicious proliferation. Therefore, the consumption of GSH will lead to cell redox imbalance and impede life activities. Herein, targeted sorafenib (SFB) loaded manganese doped silica nanoparticle (FaPEG-MnMSN@SFB) was constructed, which could destroy the intracellular redox homeostasis by consuming GSH.
In this study, MnMSN was prepared by an optimized one-pot Stober's method for loading SFB, and FaPEG chain was modified on the surface of MnMSN to achieve long circulation and targeted delivery. The anticancer efficacy and mechanism of the designed FaPEG-MnMSN@SFB were assessed both
and
FaPEG-MnMSN@SFB exhibited efficient antitumor activity by dual depleting intracellular GSH (the degradation of MnMSN would consume intracellular GSH and the SFB would inhibit the effect of X
transport system to inhibit GSH synthesis). Moreover, disruption of redox balance would lead to apoptosis and reactive oxygen species (ROS)-dependent ferroptosis of tumor cells.
Such a GSH-starvation therapeutic strategy would cause multi-path programmed cell death and could be a promising strategy for cancer therapy.</abstract><cop>Australia</cop><pub>Ivyspring International Publisher Pty Ltd</pub><pmid>32863964</pmid><doi>10.7150/thno.46771</doi><tpages>23</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1838-7640 |
ispartof | Theranostics, 2020-01, Vol.10 (21), p.9865-9887 |
issn | 1838-7640 1838-7640 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7449918 |
source | MEDLINE; PubMed Central Open Access; EZB-FREE-00999 freely available EZB journals; PubMed Central |
subjects | A549 Cells Animals Antineoplastic Agents - chemistry Antineoplastic Agents - pharmacology Apoptosis - drug effects Biosynthesis Cancer therapies Cell division Cell growth Cell Line Cell Line, Tumor Cell Proliferation - drug effects Ethanol Glutathione - metabolism Hep G2 Cells Homeostasis - drug effects Human Umbilical Vein Endothelial Cells Humans Laboratory animals Liver cancer Liver Neoplasms - drug therapy Liver Neoplasms - metabolism Male Manganese - chemistry Metabolism Mice, Nude Nanomaterials Nanoparticles Nanoparticles - chemistry Oxidation-Reduction - drug effects Oxidative Stress - drug effects Rats Rats, Sprague-Dawley Reactive Oxygen Species - metabolism Research Paper Signal transduction Silicon Dioxide - chemistry Sorafenib - chemistry Sorafenib - pharmacology |
title | Targeted Manganese doped silica nano GSH-cleaner for treatment of Liver Cancer by destroying the intracellular redox homeostasis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T13%3A40%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Targeted%20Manganese%20doped%20silica%20nano%20GSH-cleaner%20for%20treatment%20of%20Liver%20Cancer%20by%20destroying%20the%20intracellular%20redox%20homeostasis&rft.jtitle=Theranostics&rft.au=Tang,%20Hongxia&rft.date=2020-01-01&rft.volume=10&rft.issue=21&rft.spage=9865&rft.epage=9887&rft.pages=9865-9887&rft.issn=1838-7640&rft.eissn=1838-7640&rft_id=info:doi/10.7150/thno.46771&rft_dat=%3Cproquest_pubme%3E2438993233%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2598246587&rft_id=info:pmid/32863964&rfr_iscdi=true |