Adding Insult to Injury: Mechanistic Basis for How AmpC Mutations Allow Pseudomonas aeruginosa To Accelerate Cephalosporin Hydrolysis and Evade Avibactam

is a leading cause of nosocomial infections worldwide and notorious for its broad-spectrum resistance to antibiotics. A key mechanism that provides extensive resistance to β-lactam antibiotics is the inducible expression of AmpC β-lactamase. Recently, a number of clinical isolates expressing mutated...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Antimicrobial agents and chemotherapy 2020-08, Vol.64 (9)
Hauptverfasser: Slater, Cole L, Winogrodzki, Judith, Fraile-Ribot, Pablo A, Oliver, Antonio, Khajehpour, Mazdak, Mark, Brian L
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 9
container_start_page
container_title Antimicrobial agents and chemotherapy
container_volume 64
creator Slater, Cole L
Winogrodzki, Judith
Fraile-Ribot, Pablo A
Oliver, Antonio
Khajehpour, Mazdak
Mark, Brian L
description is a leading cause of nosocomial infections worldwide and notorious for its broad-spectrum resistance to antibiotics. A key mechanism that provides extensive resistance to β-lactam antibiotics is the inducible expression of AmpC β-lactamase. Recently, a number of clinical isolates expressing mutated forms of AmpC have been found to be clinically resistant to the antipseudomonal β-lactam-β-lactamase inhibitor (BLI) combinations ceftolozane-tazobactam and ceftazidime-avibactam. Here, we compare the enzymatic activity of wild-type (WT) AmpC from PAO1 to those of four of these reported AmpC mutants, bearing mutations E247K (a change of E to K at position 247), G183D, T96I, and ΔG229-E247 (a deletion from position 229 to 247), to gain detailed insights into how these mutations allow the circumvention of these clinically vital antibiotic-inhibitor combinations. We found that these mutations exert a 2-fold effect on the catalytic cycle of AmpC. First, they reduce the stability of the enzyme, thereby increasing its flexibility. This appears to increase the rate of deacylation of the enzyme-bound β-lactam, resulting in greater catalytic efficiencies toward ceftolozane and ceftazidime. Second, these mutations reduce the affinity of avibactam for AmpC by increasing the apparent activation barrier of the enzyme acylation step. This does not influence the catalytic turnover of ceftolozane and ceftazidime significantly, as deacylation is the rate-limiting step for the breakdown of these antibiotic substrates. It is remarkable that these mutations enhance the catalytic efficiency of AmpC toward ceftolozane and ceftazidime while simultaneously reducing susceptibility to inhibition by avibactam. Knowledge gained from the molecular analysis of these and other AmpC resistance mutants will, we believe, aid in the design of β-lactams and BLIs with reduced susceptibility to mutational resistance.
doi_str_mv 10.1128/AAC.00894-20
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7449160</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2436401858</sourcerecordid><originalsourceid>FETCH-LOGICAL-a418t-8c0ac5eb412ae44b5b5436d95bff5e2c77a18cb368d299e994ade0617cccfcce3</originalsourceid><addsrcrecordid>eNp1kc1u1DAURi0EokNhxxp5CVJT7MRJbBZIISpMpVawKGvrxnFmPErsYDuD5lH6tniYUsGClf-Ozr3XH0KvKbmkNOfvm6a9JIQLluXkCVpRInhWlaJ6ilaEVFXGOGFn6EUIO5LOpSDP0VmRV1Xi6hW6b_re2A2-tmEZI44u7XaLP3zAt1ptwZoQjcKfIJiAB-fx2v3EzTS3-HaJEI2zATfjmC6_Bb30bnIWAgbtl42xLgC-c7hRSo_aQ9S41fMWRhdm543F60Pv3Xg4qsH2-GoPvcbN3nSgIkwv0bMBxqBfPazn6Pvnq7t2nd18_XLdNjcZMMpjxhUBVeqO0Rw0Y13ZlayoelF2w1DqXNU1UK66ouJ9LoQWgqUqpKK1UmpInRXn6OPJOy_dpHulbfQwytmbCfxBOjDy3xdrtnLj9rJmTNCKJMHbB4F3PxYdopxMSCOPYLVbgsxTP4xQXvKEXpxQ5V0IXg-PZSiRxzRlSlP-TlPmR_O7Ew5hyuXOLd6mn_gf--bvMR7Ff6IufgEpTqt-</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2436401858</pqid></control><display><type>article</type><title>Adding Insult to Injury: Mechanistic Basis for How AmpC Mutations Allow Pseudomonas aeruginosa To Accelerate Cephalosporin Hydrolysis and Evade Avibactam</title><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Slater, Cole L ; Winogrodzki, Judith ; Fraile-Ribot, Pablo A ; Oliver, Antonio ; Khajehpour, Mazdak ; Mark, Brian L</creator><creatorcontrib>Slater, Cole L ; Winogrodzki, Judith ; Fraile-Ribot, Pablo A ; Oliver, Antonio ; Khajehpour, Mazdak ; Mark, Brian L</creatorcontrib><description>is a leading cause of nosocomial infections worldwide and notorious for its broad-spectrum resistance to antibiotics. A key mechanism that provides extensive resistance to β-lactam antibiotics is the inducible expression of AmpC β-lactamase. Recently, a number of clinical isolates expressing mutated forms of AmpC have been found to be clinically resistant to the antipseudomonal β-lactam-β-lactamase inhibitor (BLI) combinations ceftolozane-tazobactam and ceftazidime-avibactam. Here, we compare the enzymatic activity of wild-type (WT) AmpC from PAO1 to those of four of these reported AmpC mutants, bearing mutations E247K (a change of E to K at position 247), G183D, T96I, and ΔG229-E247 (a deletion from position 229 to 247), to gain detailed insights into how these mutations allow the circumvention of these clinically vital antibiotic-inhibitor combinations. We found that these mutations exert a 2-fold effect on the catalytic cycle of AmpC. First, they reduce the stability of the enzyme, thereby increasing its flexibility. This appears to increase the rate of deacylation of the enzyme-bound β-lactam, resulting in greater catalytic efficiencies toward ceftolozane and ceftazidime. Second, these mutations reduce the affinity of avibactam for AmpC by increasing the apparent activation barrier of the enzyme acylation step. This does not influence the catalytic turnover of ceftolozane and ceftazidime significantly, as deacylation is the rate-limiting step for the breakdown of these antibiotic substrates. It is remarkable that these mutations enhance the catalytic efficiency of AmpC toward ceftolozane and ceftazidime while simultaneously reducing susceptibility to inhibition by avibactam. Knowledge gained from the molecular analysis of these and other AmpC resistance mutants will, we believe, aid in the design of β-lactams and BLIs with reduced susceptibility to mutational resistance.</description><identifier>ISSN: 0066-4804</identifier><identifier>EISSN: 1098-6596</identifier><identifier>DOI: 10.1128/AAC.00894-20</identifier><identifier>PMID: 32660987</identifier><language>eng</language><publisher>United States: American Society for Microbiology</publisher><subject>Anti-Bacterial Agents - pharmacology ; Azabicyclo Compounds - pharmacology ; beta-Lactamases - genetics ; Ceftazidime - pharmacology ; Cephalosporins - pharmacology ; Drug Combinations ; Drug Resistance, Bacterial - genetics ; Editor's Pick ; Hydrolysis ; Mechanisms of Resistance ; Microbial Sensitivity Tests ; Mutation ; Pseudomonas aeruginosa - genetics</subject><ispartof>Antimicrobial agents and chemotherapy, 2020-08, Vol.64 (9)</ispartof><rights>Copyright © 2020 American Society for Microbiology.</rights><rights>Copyright © 2020 American Society for Microbiology. 2020 American Society for Microbiology</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a418t-8c0ac5eb412ae44b5b5436d95bff5e2c77a18cb368d299e994ade0617cccfcce3</citedby><cites>FETCH-LOGICAL-a418t-8c0ac5eb412ae44b5b5436d95bff5e2c77a18cb368d299e994ade0617cccfcce3</cites><orcidid>0000-0002-7344-1355 ; 0000-0001-9327-1894</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7449160/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7449160/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,724,777,781,882,27906,27907,53773,53775</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32660987$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Slater, Cole L</creatorcontrib><creatorcontrib>Winogrodzki, Judith</creatorcontrib><creatorcontrib>Fraile-Ribot, Pablo A</creatorcontrib><creatorcontrib>Oliver, Antonio</creatorcontrib><creatorcontrib>Khajehpour, Mazdak</creatorcontrib><creatorcontrib>Mark, Brian L</creatorcontrib><title>Adding Insult to Injury: Mechanistic Basis for How AmpC Mutations Allow Pseudomonas aeruginosa To Accelerate Cephalosporin Hydrolysis and Evade Avibactam</title><title>Antimicrobial agents and chemotherapy</title><addtitle>Antimicrob Agents Chemother</addtitle><addtitle>Antimicrob Agents Chemother</addtitle><description>is a leading cause of nosocomial infections worldwide and notorious for its broad-spectrum resistance to antibiotics. A key mechanism that provides extensive resistance to β-lactam antibiotics is the inducible expression of AmpC β-lactamase. Recently, a number of clinical isolates expressing mutated forms of AmpC have been found to be clinically resistant to the antipseudomonal β-lactam-β-lactamase inhibitor (BLI) combinations ceftolozane-tazobactam and ceftazidime-avibactam. Here, we compare the enzymatic activity of wild-type (WT) AmpC from PAO1 to those of four of these reported AmpC mutants, bearing mutations E247K (a change of E to K at position 247), G183D, T96I, and ΔG229-E247 (a deletion from position 229 to 247), to gain detailed insights into how these mutations allow the circumvention of these clinically vital antibiotic-inhibitor combinations. We found that these mutations exert a 2-fold effect on the catalytic cycle of AmpC. First, they reduce the stability of the enzyme, thereby increasing its flexibility. This appears to increase the rate of deacylation of the enzyme-bound β-lactam, resulting in greater catalytic efficiencies toward ceftolozane and ceftazidime. Second, these mutations reduce the affinity of avibactam for AmpC by increasing the apparent activation barrier of the enzyme acylation step. This does not influence the catalytic turnover of ceftolozane and ceftazidime significantly, as deacylation is the rate-limiting step for the breakdown of these antibiotic substrates. It is remarkable that these mutations enhance the catalytic efficiency of AmpC toward ceftolozane and ceftazidime while simultaneously reducing susceptibility to inhibition by avibactam. Knowledge gained from the molecular analysis of these and other AmpC resistance mutants will, we believe, aid in the design of β-lactams and BLIs with reduced susceptibility to mutational resistance.</description><subject>Anti-Bacterial Agents - pharmacology</subject><subject>Azabicyclo Compounds - pharmacology</subject><subject>beta-Lactamases - genetics</subject><subject>Ceftazidime - pharmacology</subject><subject>Cephalosporins - pharmacology</subject><subject>Drug Combinations</subject><subject>Drug Resistance, Bacterial - genetics</subject><subject>Editor's Pick</subject><subject>Hydrolysis</subject><subject>Mechanisms of Resistance</subject><subject>Microbial Sensitivity Tests</subject><subject>Mutation</subject><subject>Pseudomonas aeruginosa - genetics</subject><issn>0066-4804</issn><issn>1098-6596</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kc1u1DAURi0EokNhxxp5CVJT7MRJbBZIISpMpVawKGvrxnFmPErsYDuD5lH6tniYUsGClf-Ozr3XH0KvKbmkNOfvm6a9JIQLluXkCVpRInhWlaJ6ilaEVFXGOGFn6EUIO5LOpSDP0VmRV1Xi6hW6b_re2A2-tmEZI44u7XaLP3zAt1ptwZoQjcKfIJiAB-fx2v3EzTS3-HaJEI2zATfjmC6_Bb30bnIWAgbtl42xLgC-c7hRSo_aQ9S41fMWRhdm543F60Pv3Xg4qsH2-GoPvcbN3nSgIkwv0bMBxqBfPazn6Pvnq7t2nd18_XLdNjcZMMpjxhUBVeqO0Rw0Y13ZlayoelF2w1DqXNU1UK66ouJ9LoQWgqUqpKK1UmpInRXn6OPJOy_dpHulbfQwytmbCfxBOjDy3xdrtnLj9rJmTNCKJMHbB4F3PxYdopxMSCOPYLVbgsxTP4xQXvKEXpxQ5V0IXg-PZSiRxzRlSlP-TlPmR_O7Ew5hyuXOLd6mn_gf--bvMR7Ff6IufgEpTqt-</recordid><startdate>20200820</startdate><enddate>20200820</enddate><creator>Slater, Cole L</creator><creator>Winogrodzki, Judith</creator><creator>Fraile-Ribot, Pablo A</creator><creator>Oliver, Antonio</creator><creator>Khajehpour, Mazdak</creator><creator>Mark, Brian L</creator><general>American Society for Microbiology</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-7344-1355</orcidid><orcidid>https://orcid.org/0000-0001-9327-1894</orcidid></search><sort><creationdate>20200820</creationdate><title>Adding Insult to Injury: Mechanistic Basis for How AmpC Mutations Allow Pseudomonas aeruginosa To Accelerate Cephalosporin Hydrolysis and Evade Avibactam</title><author>Slater, Cole L ; Winogrodzki, Judith ; Fraile-Ribot, Pablo A ; Oliver, Antonio ; Khajehpour, Mazdak ; Mark, Brian L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a418t-8c0ac5eb412ae44b5b5436d95bff5e2c77a18cb368d299e994ade0617cccfcce3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Anti-Bacterial Agents - pharmacology</topic><topic>Azabicyclo Compounds - pharmacology</topic><topic>beta-Lactamases - genetics</topic><topic>Ceftazidime - pharmacology</topic><topic>Cephalosporins - pharmacology</topic><topic>Drug Combinations</topic><topic>Drug Resistance, Bacterial - genetics</topic><topic>Editor's Pick</topic><topic>Hydrolysis</topic><topic>Mechanisms of Resistance</topic><topic>Microbial Sensitivity Tests</topic><topic>Mutation</topic><topic>Pseudomonas aeruginosa - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Slater, Cole L</creatorcontrib><creatorcontrib>Winogrodzki, Judith</creatorcontrib><creatorcontrib>Fraile-Ribot, Pablo A</creatorcontrib><creatorcontrib>Oliver, Antonio</creatorcontrib><creatorcontrib>Khajehpour, Mazdak</creatorcontrib><creatorcontrib>Mark, Brian L</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Antimicrobial agents and chemotherapy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Slater, Cole L</au><au>Winogrodzki, Judith</au><au>Fraile-Ribot, Pablo A</au><au>Oliver, Antonio</au><au>Khajehpour, Mazdak</au><au>Mark, Brian L</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Adding Insult to Injury: Mechanistic Basis for How AmpC Mutations Allow Pseudomonas aeruginosa To Accelerate Cephalosporin Hydrolysis and Evade Avibactam</atitle><jtitle>Antimicrobial agents and chemotherapy</jtitle><stitle>Antimicrob Agents Chemother</stitle><addtitle>Antimicrob Agents Chemother</addtitle><date>2020-08-20</date><risdate>2020</risdate><volume>64</volume><issue>9</issue><issn>0066-4804</issn><eissn>1098-6596</eissn><abstract>is a leading cause of nosocomial infections worldwide and notorious for its broad-spectrum resistance to antibiotics. A key mechanism that provides extensive resistance to β-lactam antibiotics is the inducible expression of AmpC β-lactamase. Recently, a number of clinical isolates expressing mutated forms of AmpC have been found to be clinically resistant to the antipseudomonal β-lactam-β-lactamase inhibitor (BLI) combinations ceftolozane-tazobactam and ceftazidime-avibactam. Here, we compare the enzymatic activity of wild-type (WT) AmpC from PAO1 to those of four of these reported AmpC mutants, bearing mutations E247K (a change of E to K at position 247), G183D, T96I, and ΔG229-E247 (a deletion from position 229 to 247), to gain detailed insights into how these mutations allow the circumvention of these clinically vital antibiotic-inhibitor combinations. We found that these mutations exert a 2-fold effect on the catalytic cycle of AmpC. First, they reduce the stability of the enzyme, thereby increasing its flexibility. This appears to increase the rate of deacylation of the enzyme-bound β-lactam, resulting in greater catalytic efficiencies toward ceftolozane and ceftazidime. Second, these mutations reduce the affinity of avibactam for AmpC by increasing the apparent activation barrier of the enzyme acylation step. This does not influence the catalytic turnover of ceftolozane and ceftazidime significantly, as deacylation is the rate-limiting step for the breakdown of these antibiotic substrates. It is remarkable that these mutations enhance the catalytic efficiency of AmpC toward ceftolozane and ceftazidime while simultaneously reducing susceptibility to inhibition by avibactam. Knowledge gained from the molecular analysis of these and other AmpC resistance mutants will, we believe, aid in the design of β-lactams and BLIs with reduced susceptibility to mutational resistance.</abstract><cop>United States</cop><pub>American Society for Microbiology</pub><pmid>32660987</pmid><doi>10.1128/AAC.00894-20</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-7344-1355</orcidid><orcidid>https://orcid.org/0000-0001-9327-1894</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0066-4804
ispartof Antimicrobial agents and chemotherapy, 2020-08, Vol.64 (9)
issn 0066-4804
1098-6596
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7449160
source MEDLINE; EZB-FREE-00999 freely available EZB journals; PubMed Central
subjects Anti-Bacterial Agents - pharmacology
Azabicyclo Compounds - pharmacology
beta-Lactamases - genetics
Ceftazidime - pharmacology
Cephalosporins - pharmacology
Drug Combinations
Drug Resistance, Bacterial - genetics
Editor's Pick
Hydrolysis
Mechanisms of Resistance
Microbial Sensitivity Tests
Mutation
Pseudomonas aeruginosa - genetics
title Adding Insult to Injury: Mechanistic Basis for How AmpC Mutations Allow Pseudomonas aeruginosa To Accelerate Cephalosporin Hydrolysis and Evade Avibactam
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T10%3A14%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Adding%20Insult%20to%20Injury:%20Mechanistic%20Basis%20for%20How%20AmpC%20Mutations%20Allow%20Pseudomonas%20aeruginosa%20To%20Accelerate%20Cephalosporin%20Hydrolysis%20and%20Evade%20Avibactam&rft.jtitle=Antimicrobial%20agents%20and%20chemotherapy&rft.au=Slater,%20Cole%20L&rft.date=2020-08-20&rft.volume=64&rft.issue=9&rft.issn=0066-4804&rft.eissn=1098-6596&rft_id=info:doi/10.1128/AAC.00894-20&rft_dat=%3Cproquest_pubme%3E2436401858%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2436401858&rft_id=info:pmid/32660987&rfr_iscdi=true