Selective Translation Complex Profiling Reveals Staged Initiation and Co-translational Assembly of Initiation Factor Complexes
Translational control targeting the initiation phase is central to the regulation of gene expression. Understanding all of its aspects requires substantial technological advancements. Here we modified yeast translation complex profile sequencing (TCP-seq), related to ribosome profiling, and adapted...
Gespeichert in:
Veröffentlicht in: | Molecular cell 2020-08, Vol.79 (4), p.546-560.e7 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 560.e7 |
---|---|
container_issue | 4 |
container_start_page | 546 |
container_title | Molecular cell |
container_volume | 79 |
creator | Wagner, Susan Herrmannová, Anna Hronová, Vladislava Gunišová, Stanislava Sen, Neelam D. Hannan, Ross D. Hinnebusch, Alan G. Shirokikh, Nikolay E. Preiss, Thomas Valášek, Leoš Shivaya |
description | Translational control targeting the initiation phase is central to the regulation of gene expression. Understanding all of its aspects requires substantial technological advancements. Here we modified yeast translation complex profile sequencing (TCP-seq), related to ribosome profiling, and adapted it for mammalian cells. Human TCP-seq, capable of capturing footprints of 40S subunits (40Ss) in addition to 80S ribosomes (80Ss), revealed that mammalian and yeast 40Ss distribute similarly across 5′TRs, indicating considerable evolutionary conservation. We further developed yeast and human selective TCP-seq (Sel-TCP-seq), enabling selection of 40Ss and 80Ss associated with immuno-targeted factors. Sel-TCP-seq demonstrated that eIF2 and eIF3 travel along 5′ UTRs with scanning 40Ss to successively dissociate upon AUG recognition; notably, a proportion of eIF3 lingers on during the initial elongation cycles. Highlighting Sel-TCP-seq versatility, we also identified four initiating 48S conformational intermediates, provided novel insights into ATF4 and GCN4 mRNA translational control, and demonstrated co-translational assembly of initiation factor complexes.
[Display omitted]
•Selective TCP-seq dissects translation mechanisms in mammals and yeast•40S-bound eIF2 and eIF3 traverse 5′ UTRs and sequentially dissociate at AUG codons•AUG recognition involves four conformational intermediates of the 48S PIC•Initiation factors can assemble co-translationally into higher-order complexes
Changing environmental conditions require reprogramming of gene expression for cells to adapt and survive. Translational control is central to this complex response. Wagner et al. developed assays capturing footprints of mRNA-bound ribosomal complexes associated with selected translation-promoting factors to uncover mechanisms underlying translation in the context of its regulatory potential. |
doi_str_mv | 10.1016/j.molcel.2020.06.004 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7447980</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1097276520303890</els_id><sourcerecordid>2418128887</sourcerecordid><originalsourceid>FETCH-LOGICAL-c529t-39fb5b88d43df5c9329f28e3d3a0214d10f34391446ad3fd55a26bcbfe1f82f43</originalsourceid><addsrcrecordid>eNp9kUtv1DAUhS0EoqXwDxDKkk2CX0nsDVI1olCpEoiWteXY14NHjj3YmRHd8NtxNdMHG1bXks859_Eh9JbgjmAyfNh0cwoGQkcxxR0eOoz5M3RKsBxbTgb-_Pim49CfoFelbDAmvBfyJTphtFY58FP05xoCmMXvobnJOpagF59is0rzNsDv5ltOzgcf18132IMOpble9Bpscxn94g9aHW3Vt8ujXYfmvBSYp3DbJPdUe6HNkvJ9PJTX6IWrqfDmWM_Qj4tPN6sv7dXXz5er86vW9FQuLZNu6ichLGfW9UYyKh0VwCzTmBJuCXaMM0k4H7Rlzva9psNkJgfECeo4O0MfD7nb3TSDNRDruEFts591vlVJe_XvT_Q_1Trt1cj5KAWuAe-PATn92kFZ1OxLvX7QEdKuKMqJIFQIMVYpP0hNTqVkcA9tCFZ36NRGHdCpO3QKD6qiq7Z3T0d8MN2zetwB6qH2HrIqxkM0YH2uCJVN_v8d_gIEDLBn</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2418128887</pqid></control><display><type>article</type><title>Selective Translation Complex Profiling Reveals Staged Initiation and Co-translational Assembly of Initiation Factor Complexes</title><source>MEDLINE</source><source>Cell Press Free Archives</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>ScienceDirect Journals (5 years ago - present)</source><source>Free Full-Text Journals in Chemistry</source><creator>Wagner, Susan ; Herrmannová, Anna ; Hronová, Vladislava ; Gunišová, Stanislava ; Sen, Neelam D. ; Hannan, Ross D. ; Hinnebusch, Alan G. ; Shirokikh, Nikolay E. ; Preiss, Thomas ; Valášek, Leoš Shivaya</creator><creatorcontrib>Wagner, Susan ; Herrmannová, Anna ; Hronová, Vladislava ; Gunišová, Stanislava ; Sen, Neelam D. ; Hannan, Ross D. ; Hinnebusch, Alan G. ; Shirokikh, Nikolay E. ; Preiss, Thomas ; Valášek, Leoš Shivaya</creatorcontrib><description>Translational control targeting the initiation phase is central to the regulation of gene expression. Understanding all of its aspects requires substantial technological advancements. Here we modified yeast translation complex profile sequencing (TCP-seq), related to ribosome profiling, and adapted it for mammalian cells. Human TCP-seq, capable of capturing footprints of 40S subunits (40Ss) in addition to 80S ribosomes (80Ss), revealed that mammalian and yeast 40Ss distribute similarly across 5′TRs, indicating considerable evolutionary conservation. We further developed yeast and human selective TCP-seq (Sel-TCP-seq), enabling selection of 40Ss and 80Ss associated with immuno-targeted factors. Sel-TCP-seq demonstrated that eIF2 and eIF3 travel along 5′ UTRs with scanning 40Ss to successively dissociate upon AUG recognition; notably, a proportion of eIF3 lingers on during the initial elongation cycles. Highlighting Sel-TCP-seq versatility, we also identified four initiating 48S conformational intermediates, provided novel insights into ATF4 and GCN4 mRNA translational control, and demonstrated co-translational assembly of initiation factor complexes.
[Display omitted]
•Selective TCP-seq dissects translation mechanisms in mammals and yeast•40S-bound eIF2 and eIF3 traverse 5′ UTRs and sequentially dissociate at AUG codons•AUG recognition involves four conformational intermediates of the 48S PIC•Initiation factors can assemble co-translationally into higher-order complexes
Changing environmental conditions require reprogramming of gene expression for cells to adapt and survive. Translational control is central to this complex response. Wagner et al. developed assays capturing footprints of mRNA-bound ribosomal complexes associated with selected translation-promoting factors to uncover mechanisms underlying translation in the context of its regulatory potential.</description><identifier>ISSN: 1097-2765</identifier><identifier>EISSN: 1097-4164</identifier><identifier>DOI: 10.1016/j.molcel.2020.06.004</identifier><identifier>PMID: 32589964</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>5' Untranslated Regions ; Activating Transcription Factor 4 - genetics ; Activating Transcription Factor 4 - metabolism ; ATF4 ; Basic-Leucine Zipper Transcription Factors - genetics ; Basic-Leucine Zipper Transcription Factors - metabolism ; co-translational assembly ; Codon, Initiator ; eIF2 ; eIF3 ; Eukaryotic Initiation Factor-2 - genetics ; Eukaryotic Initiation Factor-2 - metabolism ; Eukaryotic Initiation Factor-3 - genetics ; Eukaryotic Initiation Factor-3 - metabolism ; GCN4 ; gene expression ; HEK293 Cells ; Humans ; mRNA ; Multiprotein Complexes - genetics ; Multiprotein Complexes - metabolism ; Peptide Initiation Factors - genetics ; Peptide Initiation Factors - metabolism ; Protein Biosynthesis ; Ribo-seq ; ribosome ; ribosome profiling ; Ribosome Subunits, Small, Eukaryotic - genetics ; Ribosome Subunits, Small, Eukaryotic - metabolism ; Ribosomes - genetics ; Ribosomes - metabolism ; Saccharomyces cerevisiae - genetics ; Saccharomyces cerevisiae Proteins - genetics ; Saccharomyces cerevisiae Proteins - metabolism ; TCP-seq ; translational control ; UTR</subject><ispartof>Molecular cell, 2020-08, Vol.79 (4), p.546-560.e7</ispartof><rights>2020 The Author(s)</rights><rights>Copyright © 2020 The Author(s). Published by Elsevier Inc. All rights reserved.</rights><rights>2020 The Author(s) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c529t-39fb5b88d43df5c9329f28e3d3a0214d10f34391446ad3fd55a26bcbfe1f82f43</citedby><cites>FETCH-LOGICAL-c529t-39fb5b88d43df5c9329f28e3d3a0214d10f34391446ad3fd55a26bcbfe1f82f43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.molcel.2020.06.004$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32589964$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wagner, Susan</creatorcontrib><creatorcontrib>Herrmannová, Anna</creatorcontrib><creatorcontrib>Hronová, Vladislava</creatorcontrib><creatorcontrib>Gunišová, Stanislava</creatorcontrib><creatorcontrib>Sen, Neelam D.</creatorcontrib><creatorcontrib>Hannan, Ross D.</creatorcontrib><creatorcontrib>Hinnebusch, Alan G.</creatorcontrib><creatorcontrib>Shirokikh, Nikolay E.</creatorcontrib><creatorcontrib>Preiss, Thomas</creatorcontrib><creatorcontrib>Valášek, Leoš Shivaya</creatorcontrib><title>Selective Translation Complex Profiling Reveals Staged Initiation and Co-translational Assembly of Initiation Factor Complexes</title><title>Molecular cell</title><addtitle>Mol Cell</addtitle><description>Translational control targeting the initiation phase is central to the regulation of gene expression. Understanding all of its aspects requires substantial technological advancements. Here we modified yeast translation complex profile sequencing (TCP-seq), related to ribosome profiling, and adapted it for mammalian cells. Human TCP-seq, capable of capturing footprints of 40S subunits (40Ss) in addition to 80S ribosomes (80Ss), revealed that mammalian and yeast 40Ss distribute similarly across 5′TRs, indicating considerable evolutionary conservation. We further developed yeast and human selective TCP-seq (Sel-TCP-seq), enabling selection of 40Ss and 80Ss associated with immuno-targeted factors. Sel-TCP-seq demonstrated that eIF2 and eIF3 travel along 5′ UTRs with scanning 40Ss to successively dissociate upon AUG recognition; notably, a proportion of eIF3 lingers on during the initial elongation cycles. Highlighting Sel-TCP-seq versatility, we also identified four initiating 48S conformational intermediates, provided novel insights into ATF4 and GCN4 mRNA translational control, and demonstrated co-translational assembly of initiation factor complexes.
[Display omitted]
•Selective TCP-seq dissects translation mechanisms in mammals and yeast•40S-bound eIF2 and eIF3 traverse 5′ UTRs and sequentially dissociate at AUG codons•AUG recognition involves four conformational intermediates of the 48S PIC•Initiation factors can assemble co-translationally into higher-order complexes
Changing environmental conditions require reprogramming of gene expression for cells to adapt and survive. Translational control is central to this complex response. Wagner et al. developed assays capturing footprints of mRNA-bound ribosomal complexes associated with selected translation-promoting factors to uncover mechanisms underlying translation in the context of its regulatory potential.</description><subject>5' Untranslated Regions</subject><subject>Activating Transcription Factor 4 - genetics</subject><subject>Activating Transcription Factor 4 - metabolism</subject><subject>ATF4</subject><subject>Basic-Leucine Zipper Transcription Factors - genetics</subject><subject>Basic-Leucine Zipper Transcription Factors - metabolism</subject><subject>co-translational assembly</subject><subject>Codon, Initiator</subject><subject>eIF2</subject><subject>eIF3</subject><subject>Eukaryotic Initiation Factor-2 - genetics</subject><subject>Eukaryotic Initiation Factor-2 - metabolism</subject><subject>Eukaryotic Initiation Factor-3 - genetics</subject><subject>Eukaryotic Initiation Factor-3 - metabolism</subject><subject>GCN4</subject><subject>gene expression</subject><subject>HEK293 Cells</subject><subject>Humans</subject><subject>mRNA</subject><subject>Multiprotein Complexes - genetics</subject><subject>Multiprotein Complexes - metabolism</subject><subject>Peptide Initiation Factors - genetics</subject><subject>Peptide Initiation Factors - metabolism</subject><subject>Protein Biosynthesis</subject><subject>Ribo-seq</subject><subject>ribosome</subject><subject>ribosome profiling</subject><subject>Ribosome Subunits, Small, Eukaryotic - genetics</subject><subject>Ribosome Subunits, Small, Eukaryotic - metabolism</subject><subject>Ribosomes - genetics</subject><subject>Ribosomes - metabolism</subject><subject>Saccharomyces cerevisiae - genetics</subject><subject>Saccharomyces cerevisiae Proteins - genetics</subject><subject>Saccharomyces cerevisiae Proteins - metabolism</subject><subject>TCP-seq</subject><subject>translational control</subject><subject>UTR</subject><issn>1097-2765</issn><issn>1097-4164</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kUtv1DAUhS0EoqXwDxDKkk2CX0nsDVI1olCpEoiWteXY14NHjj3YmRHd8NtxNdMHG1bXks859_Eh9JbgjmAyfNh0cwoGQkcxxR0eOoz5M3RKsBxbTgb-_Pim49CfoFelbDAmvBfyJTphtFY58FP05xoCmMXvobnJOpagF59is0rzNsDv5ltOzgcf18132IMOpble9Bpscxn94g9aHW3Vt8ujXYfmvBSYp3DbJPdUe6HNkvJ9PJTX6IWrqfDmWM_Qj4tPN6sv7dXXz5er86vW9FQuLZNu6ichLGfW9UYyKh0VwCzTmBJuCXaMM0k4H7Rlzva9psNkJgfECeo4O0MfD7nb3TSDNRDruEFts591vlVJe_XvT_Q_1Trt1cj5KAWuAe-PATn92kFZ1OxLvX7QEdKuKMqJIFQIMVYpP0hNTqVkcA9tCFZ36NRGHdCpO3QKD6qiq7Z3T0d8MN2zetwB6qH2HrIqxkM0YH2uCJVN_v8d_gIEDLBn</recordid><startdate>20200820</startdate><enddate>20200820</enddate><creator>Wagner, Susan</creator><creator>Herrmannová, Anna</creator><creator>Hronová, Vladislava</creator><creator>Gunišová, Stanislava</creator><creator>Sen, Neelam D.</creator><creator>Hannan, Ross D.</creator><creator>Hinnebusch, Alan G.</creator><creator>Shirokikh, Nikolay E.</creator><creator>Preiss, Thomas</creator><creator>Valášek, Leoš Shivaya</creator><general>Elsevier Inc</general><general>Cell Press</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20200820</creationdate><title>Selective Translation Complex Profiling Reveals Staged Initiation and Co-translational Assembly of Initiation Factor Complexes</title><author>Wagner, Susan ; Herrmannová, Anna ; Hronová, Vladislava ; Gunišová, Stanislava ; Sen, Neelam D. ; Hannan, Ross D. ; Hinnebusch, Alan G. ; Shirokikh, Nikolay E. ; Preiss, Thomas ; Valášek, Leoš Shivaya</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c529t-39fb5b88d43df5c9329f28e3d3a0214d10f34391446ad3fd55a26bcbfe1f82f43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>5' Untranslated Regions</topic><topic>Activating Transcription Factor 4 - genetics</topic><topic>Activating Transcription Factor 4 - metabolism</topic><topic>ATF4</topic><topic>Basic-Leucine Zipper Transcription Factors - genetics</topic><topic>Basic-Leucine Zipper Transcription Factors - metabolism</topic><topic>co-translational assembly</topic><topic>Codon, Initiator</topic><topic>eIF2</topic><topic>eIF3</topic><topic>Eukaryotic Initiation Factor-2 - genetics</topic><topic>Eukaryotic Initiation Factor-2 - metabolism</topic><topic>Eukaryotic Initiation Factor-3 - genetics</topic><topic>Eukaryotic Initiation Factor-3 - metabolism</topic><topic>GCN4</topic><topic>gene expression</topic><topic>HEK293 Cells</topic><topic>Humans</topic><topic>mRNA</topic><topic>Multiprotein Complexes - genetics</topic><topic>Multiprotein Complexes - metabolism</topic><topic>Peptide Initiation Factors - genetics</topic><topic>Peptide Initiation Factors - metabolism</topic><topic>Protein Biosynthesis</topic><topic>Ribo-seq</topic><topic>ribosome</topic><topic>ribosome profiling</topic><topic>Ribosome Subunits, Small, Eukaryotic - genetics</topic><topic>Ribosome Subunits, Small, Eukaryotic - metabolism</topic><topic>Ribosomes - genetics</topic><topic>Ribosomes - metabolism</topic><topic>Saccharomyces cerevisiae - genetics</topic><topic>Saccharomyces cerevisiae Proteins - genetics</topic><topic>Saccharomyces cerevisiae Proteins - metabolism</topic><topic>TCP-seq</topic><topic>translational control</topic><topic>UTR</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wagner, Susan</creatorcontrib><creatorcontrib>Herrmannová, Anna</creatorcontrib><creatorcontrib>Hronová, Vladislava</creatorcontrib><creatorcontrib>Gunišová, Stanislava</creatorcontrib><creatorcontrib>Sen, Neelam D.</creatorcontrib><creatorcontrib>Hannan, Ross D.</creatorcontrib><creatorcontrib>Hinnebusch, Alan G.</creatorcontrib><creatorcontrib>Shirokikh, Nikolay E.</creatorcontrib><creatorcontrib>Preiss, Thomas</creatorcontrib><creatorcontrib>Valášek, Leoš Shivaya</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Molecular cell</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wagner, Susan</au><au>Herrmannová, Anna</au><au>Hronová, Vladislava</au><au>Gunišová, Stanislava</au><au>Sen, Neelam D.</au><au>Hannan, Ross D.</au><au>Hinnebusch, Alan G.</au><au>Shirokikh, Nikolay E.</au><au>Preiss, Thomas</au><au>Valášek, Leoš Shivaya</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Selective Translation Complex Profiling Reveals Staged Initiation and Co-translational Assembly of Initiation Factor Complexes</atitle><jtitle>Molecular cell</jtitle><addtitle>Mol Cell</addtitle><date>2020-08-20</date><risdate>2020</risdate><volume>79</volume><issue>4</issue><spage>546</spage><epage>560.e7</epage><pages>546-560.e7</pages><issn>1097-2765</issn><eissn>1097-4164</eissn><abstract>Translational control targeting the initiation phase is central to the regulation of gene expression. Understanding all of its aspects requires substantial technological advancements. Here we modified yeast translation complex profile sequencing (TCP-seq), related to ribosome profiling, and adapted it for mammalian cells. Human TCP-seq, capable of capturing footprints of 40S subunits (40Ss) in addition to 80S ribosomes (80Ss), revealed that mammalian and yeast 40Ss distribute similarly across 5′TRs, indicating considerable evolutionary conservation. We further developed yeast and human selective TCP-seq (Sel-TCP-seq), enabling selection of 40Ss and 80Ss associated with immuno-targeted factors. Sel-TCP-seq demonstrated that eIF2 and eIF3 travel along 5′ UTRs with scanning 40Ss to successively dissociate upon AUG recognition; notably, a proportion of eIF3 lingers on during the initial elongation cycles. Highlighting Sel-TCP-seq versatility, we also identified four initiating 48S conformational intermediates, provided novel insights into ATF4 and GCN4 mRNA translational control, and demonstrated co-translational assembly of initiation factor complexes.
[Display omitted]
•Selective TCP-seq dissects translation mechanisms in mammals and yeast•40S-bound eIF2 and eIF3 traverse 5′ UTRs and sequentially dissociate at AUG codons•AUG recognition involves four conformational intermediates of the 48S PIC•Initiation factors can assemble co-translationally into higher-order complexes
Changing environmental conditions require reprogramming of gene expression for cells to adapt and survive. Translational control is central to this complex response. Wagner et al. developed assays capturing footprints of mRNA-bound ribosomal complexes associated with selected translation-promoting factors to uncover mechanisms underlying translation in the context of its regulatory potential.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>32589964</pmid><doi>10.1016/j.molcel.2020.06.004</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1097-2765 |
ispartof | Molecular cell, 2020-08, Vol.79 (4), p.546-560.e7 |
issn | 1097-2765 1097-4164 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7447980 |
source | MEDLINE; Cell Press Free Archives; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; ScienceDirect Journals (5 years ago - present); Free Full-Text Journals in Chemistry |
subjects | 5' Untranslated Regions Activating Transcription Factor 4 - genetics Activating Transcription Factor 4 - metabolism ATF4 Basic-Leucine Zipper Transcription Factors - genetics Basic-Leucine Zipper Transcription Factors - metabolism co-translational assembly Codon, Initiator eIF2 eIF3 Eukaryotic Initiation Factor-2 - genetics Eukaryotic Initiation Factor-2 - metabolism Eukaryotic Initiation Factor-3 - genetics Eukaryotic Initiation Factor-3 - metabolism GCN4 gene expression HEK293 Cells Humans mRNA Multiprotein Complexes - genetics Multiprotein Complexes - metabolism Peptide Initiation Factors - genetics Peptide Initiation Factors - metabolism Protein Biosynthesis Ribo-seq ribosome ribosome profiling Ribosome Subunits, Small, Eukaryotic - genetics Ribosome Subunits, Small, Eukaryotic - metabolism Ribosomes - genetics Ribosomes - metabolism Saccharomyces cerevisiae - genetics Saccharomyces cerevisiae Proteins - genetics Saccharomyces cerevisiae Proteins - metabolism TCP-seq translational control UTR |
title | Selective Translation Complex Profiling Reveals Staged Initiation and Co-translational Assembly of Initiation Factor Complexes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T00%3A17%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Selective%20Translation%20Complex%20Profiling%20Reveals%20Staged%20Initiation%20and%20Co-translational%20Assembly%20of%20Initiation%20Factor%20Complexes&rft.jtitle=Molecular%20cell&rft.au=Wagner,%20Susan&rft.date=2020-08-20&rft.volume=79&rft.issue=4&rft.spage=546&rft.epage=560.e7&rft.pages=546-560.e7&rft.issn=1097-2765&rft.eissn=1097-4164&rft_id=info:doi/10.1016/j.molcel.2020.06.004&rft_dat=%3Cproquest_pubme%3E2418128887%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2418128887&rft_id=info:pmid/32589964&rft_els_id=S1097276520303890&rfr_iscdi=true |