Selective Translation Complex Profiling Reveals Staged Initiation and Co-translational Assembly of Initiation Factor Complexes

Translational control targeting the initiation phase is central to the regulation of gene expression. Understanding all of its aspects requires substantial technological advancements. Here we modified yeast translation complex profile sequencing (TCP-seq), related to ribosome profiling, and adapted...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecular cell 2020-08, Vol.79 (4), p.546-560.e7
Hauptverfasser: Wagner, Susan, Herrmannová, Anna, Hronová, Vladislava, Gunišová, Stanislava, Sen, Neelam D., Hannan, Ross D., Hinnebusch, Alan G., Shirokikh, Nikolay E., Preiss, Thomas, Valášek, Leoš Shivaya
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 560.e7
container_issue 4
container_start_page 546
container_title Molecular cell
container_volume 79
creator Wagner, Susan
Herrmannová, Anna
Hronová, Vladislava
Gunišová, Stanislava
Sen, Neelam D.
Hannan, Ross D.
Hinnebusch, Alan G.
Shirokikh, Nikolay E.
Preiss, Thomas
Valášek, Leoš Shivaya
description Translational control targeting the initiation phase is central to the regulation of gene expression. Understanding all of its aspects requires substantial technological advancements. Here we modified yeast translation complex profile sequencing (TCP-seq), related to ribosome profiling, and adapted it for mammalian cells. Human TCP-seq, capable of capturing footprints of 40S subunits (40Ss) in addition to 80S ribosomes (80Ss), revealed that mammalian and yeast 40Ss distribute similarly across 5′TRs, indicating considerable evolutionary conservation. We further developed yeast and human selective TCP-seq (Sel-TCP-seq), enabling selection of 40Ss and 80Ss associated with immuno-targeted factors. Sel-TCP-seq demonstrated that eIF2 and eIF3 travel along 5′ UTRs with scanning 40Ss to successively dissociate upon AUG recognition; notably, a proportion of eIF3 lingers on during the initial elongation cycles. Highlighting Sel-TCP-seq versatility, we also identified four initiating 48S conformational intermediates, provided novel insights into ATF4 and GCN4 mRNA translational control, and demonstrated co-translational assembly of initiation factor complexes. [Display omitted] •Selective TCP-seq dissects translation mechanisms in mammals and yeast•40S-bound eIF2 and eIF3 traverse 5′ UTRs and sequentially dissociate at AUG codons•AUG recognition involves four conformational intermediates of the 48S PIC•Initiation factors can assemble co-translationally into higher-order complexes Changing environmental conditions require reprogramming of gene expression for cells to adapt and survive. Translational control is central to this complex response. Wagner et al. developed assays capturing footprints of mRNA-bound ribosomal complexes associated with selected translation-promoting factors to uncover mechanisms underlying translation in the context of its regulatory potential.
doi_str_mv 10.1016/j.molcel.2020.06.004
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7447980</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1097276520303890</els_id><sourcerecordid>2418128887</sourcerecordid><originalsourceid>FETCH-LOGICAL-c529t-39fb5b88d43df5c9329f28e3d3a0214d10f34391446ad3fd55a26bcbfe1f82f43</originalsourceid><addsrcrecordid>eNp9kUtv1DAUhS0EoqXwDxDKkk2CX0nsDVI1olCpEoiWteXY14NHjj3YmRHd8NtxNdMHG1bXks859_Eh9JbgjmAyfNh0cwoGQkcxxR0eOoz5M3RKsBxbTgb-_Pim49CfoFelbDAmvBfyJTphtFY58FP05xoCmMXvobnJOpagF59is0rzNsDv5ltOzgcf18132IMOpble9Bpscxn94g9aHW3Vt8ujXYfmvBSYp3DbJPdUe6HNkvJ9PJTX6IWrqfDmWM_Qj4tPN6sv7dXXz5er86vW9FQuLZNu6ichLGfW9UYyKh0VwCzTmBJuCXaMM0k4H7Rlzva9psNkJgfECeo4O0MfD7nb3TSDNRDruEFts591vlVJe_XvT_Q_1Trt1cj5KAWuAe-PATn92kFZ1OxLvX7QEdKuKMqJIFQIMVYpP0hNTqVkcA9tCFZ36NRGHdCpO3QKD6qiq7Z3T0d8MN2zetwB6qH2HrIqxkM0YH2uCJVN_v8d_gIEDLBn</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2418128887</pqid></control><display><type>article</type><title>Selective Translation Complex Profiling Reveals Staged Initiation and Co-translational Assembly of Initiation Factor Complexes</title><source>MEDLINE</source><source>Cell Press Free Archives</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>ScienceDirect Journals (5 years ago - present)</source><source>Free Full-Text Journals in Chemistry</source><creator>Wagner, Susan ; Herrmannová, Anna ; Hronová, Vladislava ; Gunišová, Stanislava ; Sen, Neelam D. ; Hannan, Ross D. ; Hinnebusch, Alan G. ; Shirokikh, Nikolay E. ; Preiss, Thomas ; Valášek, Leoš Shivaya</creator><creatorcontrib>Wagner, Susan ; Herrmannová, Anna ; Hronová, Vladislava ; Gunišová, Stanislava ; Sen, Neelam D. ; Hannan, Ross D. ; Hinnebusch, Alan G. ; Shirokikh, Nikolay E. ; Preiss, Thomas ; Valášek, Leoš Shivaya</creatorcontrib><description>Translational control targeting the initiation phase is central to the regulation of gene expression. Understanding all of its aspects requires substantial technological advancements. Here we modified yeast translation complex profile sequencing (TCP-seq), related to ribosome profiling, and adapted it for mammalian cells. Human TCP-seq, capable of capturing footprints of 40S subunits (40Ss) in addition to 80S ribosomes (80Ss), revealed that mammalian and yeast 40Ss distribute similarly across 5′TRs, indicating considerable evolutionary conservation. We further developed yeast and human selective TCP-seq (Sel-TCP-seq), enabling selection of 40Ss and 80Ss associated with immuno-targeted factors. Sel-TCP-seq demonstrated that eIF2 and eIF3 travel along 5′ UTRs with scanning 40Ss to successively dissociate upon AUG recognition; notably, a proportion of eIF3 lingers on during the initial elongation cycles. Highlighting Sel-TCP-seq versatility, we also identified four initiating 48S conformational intermediates, provided novel insights into ATF4 and GCN4 mRNA translational control, and demonstrated co-translational assembly of initiation factor complexes. [Display omitted] •Selective TCP-seq dissects translation mechanisms in mammals and yeast•40S-bound eIF2 and eIF3 traverse 5′ UTRs and sequentially dissociate at AUG codons•AUG recognition involves four conformational intermediates of the 48S PIC•Initiation factors can assemble co-translationally into higher-order complexes Changing environmental conditions require reprogramming of gene expression for cells to adapt and survive. Translational control is central to this complex response. Wagner et al. developed assays capturing footprints of mRNA-bound ribosomal complexes associated with selected translation-promoting factors to uncover mechanisms underlying translation in the context of its regulatory potential.</description><identifier>ISSN: 1097-2765</identifier><identifier>EISSN: 1097-4164</identifier><identifier>DOI: 10.1016/j.molcel.2020.06.004</identifier><identifier>PMID: 32589964</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>5' Untranslated Regions ; Activating Transcription Factor 4 - genetics ; Activating Transcription Factor 4 - metabolism ; ATF4 ; Basic-Leucine Zipper Transcription Factors - genetics ; Basic-Leucine Zipper Transcription Factors - metabolism ; co-translational assembly ; Codon, Initiator ; eIF2 ; eIF3 ; Eukaryotic Initiation Factor-2 - genetics ; Eukaryotic Initiation Factor-2 - metabolism ; Eukaryotic Initiation Factor-3 - genetics ; Eukaryotic Initiation Factor-3 - metabolism ; GCN4 ; gene expression ; HEK293 Cells ; Humans ; mRNA ; Multiprotein Complexes - genetics ; Multiprotein Complexes - metabolism ; Peptide Initiation Factors - genetics ; Peptide Initiation Factors - metabolism ; Protein Biosynthesis ; Ribo-seq ; ribosome ; ribosome profiling ; Ribosome Subunits, Small, Eukaryotic - genetics ; Ribosome Subunits, Small, Eukaryotic - metabolism ; Ribosomes - genetics ; Ribosomes - metabolism ; Saccharomyces cerevisiae - genetics ; Saccharomyces cerevisiae Proteins - genetics ; Saccharomyces cerevisiae Proteins - metabolism ; TCP-seq ; translational control ; UTR</subject><ispartof>Molecular cell, 2020-08, Vol.79 (4), p.546-560.e7</ispartof><rights>2020 The Author(s)</rights><rights>Copyright © 2020 The Author(s). Published by Elsevier Inc. All rights reserved.</rights><rights>2020 The Author(s) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c529t-39fb5b88d43df5c9329f28e3d3a0214d10f34391446ad3fd55a26bcbfe1f82f43</citedby><cites>FETCH-LOGICAL-c529t-39fb5b88d43df5c9329f28e3d3a0214d10f34391446ad3fd55a26bcbfe1f82f43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.molcel.2020.06.004$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32589964$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wagner, Susan</creatorcontrib><creatorcontrib>Herrmannová, Anna</creatorcontrib><creatorcontrib>Hronová, Vladislava</creatorcontrib><creatorcontrib>Gunišová, Stanislava</creatorcontrib><creatorcontrib>Sen, Neelam D.</creatorcontrib><creatorcontrib>Hannan, Ross D.</creatorcontrib><creatorcontrib>Hinnebusch, Alan G.</creatorcontrib><creatorcontrib>Shirokikh, Nikolay E.</creatorcontrib><creatorcontrib>Preiss, Thomas</creatorcontrib><creatorcontrib>Valášek, Leoš Shivaya</creatorcontrib><title>Selective Translation Complex Profiling Reveals Staged Initiation and Co-translational Assembly of Initiation Factor Complexes</title><title>Molecular cell</title><addtitle>Mol Cell</addtitle><description>Translational control targeting the initiation phase is central to the regulation of gene expression. Understanding all of its aspects requires substantial technological advancements. Here we modified yeast translation complex profile sequencing (TCP-seq), related to ribosome profiling, and adapted it for mammalian cells. Human TCP-seq, capable of capturing footprints of 40S subunits (40Ss) in addition to 80S ribosomes (80Ss), revealed that mammalian and yeast 40Ss distribute similarly across 5′TRs, indicating considerable evolutionary conservation. We further developed yeast and human selective TCP-seq (Sel-TCP-seq), enabling selection of 40Ss and 80Ss associated with immuno-targeted factors. Sel-TCP-seq demonstrated that eIF2 and eIF3 travel along 5′ UTRs with scanning 40Ss to successively dissociate upon AUG recognition; notably, a proportion of eIF3 lingers on during the initial elongation cycles. Highlighting Sel-TCP-seq versatility, we also identified four initiating 48S conformational intermediates, provided novel insights into ATF4 and GCN4 mRNA translational control, and demonstrated co-translational assembly of initiation factor complexes. [Display omitted] •Selective TCP-seq dissects translation mechanisms in mammals and yeast•40S-bound eIF2 and eIF3 traverse 5′ UTRs and sequentially dissociate at AUG codons•AUG recognition involves four conformational intermediates of the 48S PIC•Initiation factors can assemble co-translationally into higher-order complexes Changing environmental conditions require reprogramming of gene expression for cells to adapt and survive. Translational control is central to this complex response. Wagner et al. developed assays capturing footprints of mRNA-bound ribosomal complexes associated with selected translation-promoting factors to uncover mechanisms underlying translation in the context of its regulatory potential.</description><subject>5' Untranslated Regions</subject><subject>Activating Transcription Factor 4 - genetics</subject><subject>Activating Transcription Factor 4 - metabolism</subject><subject>ATF4</subject><subject>Basic-Leucine Zipper Transcription Factors - genetics</subject><subject>Basic-Leucine Zipper Transcription Factors - metabolism</subject><subject>co-translational assembly</subject><subject>Codon, Initiator</subject><subject>eIF2</subject><subject>eIF3</subject><subject>Eukaryotic Initiation Factor-2 - genetics</subject><subject>Eukaryotic Initiation Factor-2 - metabolism</subject><subject>Eukaryotic Initiation Factor-3 - genetics</subject><subject>Eukaryotic Initiation Factor-3 - metabolism</subject><subject>GCN4</subject><subject>gene expression</subject><subject>HEK293 Cells</subject><subject>Humans</subject><subject>mRNA</subject><subject>Multiprotein Complexes - genetics</subject><subject>Multiprotein Complexes - metabolism</subject><subject>Peptide Initiation Factors - genetics</subject><subject>Peptide Initiation Factors - metabolism</subject><subject>Protein Biosynthesis</subject><subject>Ribo-seq</subject><subject>ribosome</subject><subject>ribosome profiling</subject><subject>Ribosome Subunits, Small, Eukaryotic - genetics</subject><subject>Ribosome Subunits, Small, Eukaryotic - metabolism</subject><subject>Ribosomes - genetics</subject><subject>Ribosomes - metabolism</subject><subject>Saccharomyces cerevisiae - genetics</subject><subject>Saccharomyces cerevisiae Proteins - genetics</subject><subject>Saccharomyces cerevisiae Proteins - metabolism</subject><subject>TCP-seq</subject><subject>translational control</subject><subject>UTR</subject><issn>1097-2765</issn><issn>1097-4164</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kUtv1DAUhS0EoqXwDxDKkk2CX0nsDVI1olCpEoiWteXY14NHjj3YmRHd8NtxNdMHG1bXks859_Eh9JbgjmAyfNh0cwoGQkcxxR0eOoz5M3RKsBxbTgb-_Pim49CfoFelbDAmvBfyJTphtFY58FP05xoCmMXvobnJOpagF59is0rzNsDv5ltOzgcf18132IMOpble9Bpscxn94g9aHW3Vt8ujXYfmvBSYp3DbJPdUe6HNkvJ9PJTX6IWrqfDmWM_Qj4tPN6sv7dXXz5er86vW9FQuLZNu6ichLGfW9UYyKh0VwCzTmBJuCXaMM0k4H7Rlzva9psNkJgfECeo4O0MfD7nb3TSDNRDruEFts591vlVJe_XvT_Q_1Trt1cj5KAWuAe-PATn92kFZ1OxLvX7QEdKuKMqJIFQIMVYpP0hNTqVkcA9tCFZ36NRGHdCpO3QKD6qiq7Z3T0d8MN2zetwB6qH2HrIqxkM0YH2uCJVN_v8d_gIEDLBn</recordid><startdate>20200820</startdate><enddate>20200820</enddate><creator>Wagner, Susan</creator><creator>Herrmannová, Anna</creator><creator>Hronová, Vladislava</creator><creator>Gunišová, Stanislava</creator><creator>Sen, Neelam D.</creator><creator>Hannan, Ross D.</creator><creator>Hinnebusch, Alan G.</creator><creator>Shirokikh, Nikolay E.</creator><creator>Preiss, Thomas</creator><creator>Valášek, Leoš Shivaya</creator><general>Elsevier Inc</general><general>Cell Press</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20200820</creationdate><title>Selective Translation Complex Profiling Reveals Staged Initiation and Co-translational Assembly of Initiation Factor Complexes</title><author>Wagner, Susan ; Herrmannová, Anna ; Hronová, Vladislava ; Gunišová, Stanislava ; Sen, Neelam D. ; Hannan, Ross D. ; Hinnebusch, Alan G. ; Shirokikh, Nikolay E. ; Preiss, Thomas ; Valášek, Leoš Shivaya</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c529t-39fb5b88d43df5c9329f28e3d3a0214d10f34391446ad3fd55a26bcbfe1f82f43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>5' Untranslated Regions</topic><topic>Activating Transcription Factor 4 - genetics</topic><topic>Activating Transcription Factor 4 - metabolism</topic><topic>ATF4</topic><topic>Basic-Leucine Zipper Transcription Factors - genetics</topic><topic>Basic-Leucine Zipper Transcription Factors - metabolism</topic><topic>co-translational assembly</topic><topic>Codon, Initiator</topic><topic>eIF2</topic><topic>eIF3</topic><topic>Eukaryotic Initiation Factor-2 - genetics</topic><topic>Eukaryotic Initiation Factor-2 - metabolism</topic><topic>Eukaryotic Initiation Factor-3 - genetics</topic><topic>Eukaryotic Initiation Factor-3 - metabolism</topic><topic>GCN4</topic><topic>gene expression</topic><topic>HEK293 Cells</topic><topic>Humans</topic><topic>mRNA</topic><topic>Multiprotein Complexes - genetics</topic><topic>Multiprotein Complexes - metabolism</topic><topic>Peptide Initiation Factors - genetics</topic><topic>Peptide Initiation Factors - metabolism</topic><topic>Protein Biosynthesis</topic><topic>Ribo-seq</topic><topic>ribosome</topic><topic>ribosome profiling</topic><topic>Ribosome Subunits, Small, Eukaryotic - genetics</topic><topic>Ribosome Subunits, Small, Eukaryotic - metabolism</topic><topic>Ribosomes - genetics</topic><topic>Ribosomes - metabolism</topic><topic>Saccharomyces cerevisiae - genetics</topic><topic>Saccharomyces cerevisiae Proteins - genetics</topic><topic>Saccharomyces cerevisiae Proteins - metabolism</topic><topic>TCP-seq</topic><topic>translational control</topic><topic>UTR</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wagner, Susan</creatorcontrib><creatorcontrib>Herrmannová, Anna</creatorcontrib><creatorcontrib>Hronová, Vladislava</creatorcontrib><creatorcontrib>Gunišová, Stanislava</creatorcontrib><creatorcontrib>Sen, Neelam D.</creatorcontrib><creatorcontrib>Hannan, Ross D.</creatorcontrib><creatorcontrib>Hinnebusch, Alan G.</creatorcontrib><creatorcontrib>Shirokikh, Nikolay E.</creatorcontrib><creatorcontrib>Preiss, Thomas</creatorcontrib><creatorcontrib>Valášek, Leoš Shivaya</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Molecular cell</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wagner, Susan</au><au>Herrmannová, Anna</au><au>Hronová, Vladislava</au><au>Gunišová, Stanislava</au><au>Sen, Neelam D.</au><au>Hannan, Ross D.</au><au>Hinnebusch, Alan G.</au><au>Shirokikh, Nikolay E.</au><au>Preiss, Thomas</au><au>Valášek, Leoš Shivaya</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Selective Translation Complex Profiling Reveals Staged Initiation and Co-translational Assembly of Initiation Factor Complexes</atitle><jtitle>Molecular cell</jtitle><addtitle>Mol Cell</addtitle><date>2020-08-20</date><risdate>2020</risdate><volume>79</volume><issue>4</issue><spage>546</spage><epage>560.e7</epage><pages>546-560.e7</pages><issn>1097-2765</issn><eissn>1097-4164</eissn><abstract>Translational control targeting the initiation phase is central to the regulation of gene expression. Understanding all of its aspects requires substantial technological advancements. Here we modified yeast translation complex profile sequencing (TCP-seq), related to ribosome profiling, and adapted it for mammalian cells. Human TCP-seq, capable of capturing footprints of 40S subunits (40Ss) in addition to 80S ribosomes (80Ss), revealed that mammalian and yeast 40Ss distribute similarly across 5′TRs, indicating considerable evolutionary conservation. We further developed yeast and human selective TCP-seq (Sel-TCP-seq), enabling selection of 40Ss and 80Ss associated with immuno-targeted factors. Sel-TCP-seq demonstrated that eIF2 and eIF3 travel along 5′ UTRs with scanning 40Ss to successively dissociate upon AUG recognition; notably, a proportion of eIF3 lingers on during the initial elongation cycles. Highlighting Sel-TCP-seq versatility, we also identified four initiating 48S conformational intermediates, provided novel insights into ATF4 and GCN4 mRNA translational control, and demonstrated co-translational assembly of initiation factor complexes. [Display omitted] •Selective TCP-seq dissects translation mechanisms in mammals and yeast•40S-bound eIF2 and eIF3 traverse 5′ UTRs and sequentially dissociate at AUG codons•AUG recognition involves four conformational intermediates of the 48S PIC•Initiation factors can assemble co-translationally into higher-order complexes Changing environmental conditions require reprogramming of gene expression for cells to adapt and survive. Translational control is central to this complex response. Wagner et al. developed assays capturing footprints of mRNA-bound ribosomal complexes associated with selected translation-promoting factors to uncover mechanisms underlying translation in the context of its regulatory potential.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>32589964</pmid><doi>10.1016/j.molcel.2020.06.004</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1097-2765
ispartof Molecular cell, 2020-08, Vol.79 (4), p.546-560.e7
issn 1097-2765
1097-4164
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7447980
source MEDLINE; Cell Press Free Archives; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; ScienceDirect Journals (5 years ago - present); Free Full-Text Journals in Chemistry
subjects 5' Untranslated Regions
Activating Transcription Factor 4 - genetics
Activating Transcription Factor 4 - metabolism
ATF4
Basic-Leucine Zipper Transcription Factors - genetics
Basic-Leucine Zipper Transcription Factors - metabolism
co-translational assembly
Codon, Initiator
eIF2
eIF3
Eukaryotic Initiation Factor-2 - genetics
Eukaryotic Initiation Factor-2 - metabolism
Eukaryotic Initiation Factor-3 - genetics
Eukaryotic Initiation Factor-3 - metabolism
GCN4
gene expression
HEK293 Cells
Humans
mRNA
Multiprotein Complexes - genetics
Multiprotein Complexes - metabolism
Peptide Initiation Factors - genetics
Peptide Initiation Factors - metabolism
Protein Biosynthesis
Ribo-seq
ribosome
ribosome profiling
Ribosome Subunits, Small, Eukaryotic - genetics
Ribosome Subunits, Small, Eukaryotic - metabolism
Ribosomes - genetics
Ribosomes - metabolism
Saccharomyces cerevisiae - genetics
Saccharomyces cerevisiae Proteins - genetics
Saccharomyces cerevisiae Proteins - metabolism
TCP-seq
translational control
UTR
title Selective Translation Complex Profiling Reveals Staged Initiation and Co-translational Assembly of Initiation Factor Complexes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T00%3A17%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Selective%20Translation%20Complex%20Profiling%20Reveals%20Staged%20Initiation%20and%20Co-translational%20Assembly%20of%20Initiation%20Factor%20Complexes&rft.jtitle=Molecular%20cell&rft.au=Wagner,%20Susan&rft.date=2020-08-20&rft.volume=79&rft.issue=4&rft.spage=546&rft.epage=560.e7&rft.pages=546-560.e7&rft.issn=1097-2765&rft.eissn=1097-4164&rft_id=info:doi/10.1016/j.molcel.2020.06.004&rft_dat=%3Cproquest_pubme%3E2418128887%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2418128887&rft_id=info:pmid/32589964&rft_els_id=S1097276520303890&rfr_iscdi=true