Engineering Pseudomonas putida KT2440 for the production of isobutanol
We engineered P. putida for the production of isobutanol from glucose by preventing product and precursor degradation, inactivation of the soluble transhydrogenase SthA, overexpression of the native ilvC and ilvD genes, and implementation of the feedback‐resistant acetolactate synthase AlsS from Bac...
Gespeichert in:
Veröffentlicht in: | Engineering in life sciences 2020-04, Vol.20 (5-6), p.148-159 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 159 |
---|---|
container_issue | 5-6 |
container_start_page | 148 |
container_title | Engineering in life sciences |
container_volume | 20 |
creator | Nitschel, Robert Ankenbauer, Andreas Welsch, Ilona Wirth, Nicolas T. Massner, Christoph Ahmad, Naveed McColm, Stephen Borges, Frédéric Fotheringham, Ian Takors, Ralf Blombach, Bastian |
description | We engineered P. putida for the production of isobutanol from glucose by preventing product and precursor degradation, inactivation of the soluble transhydrogenase SthA, overexpression of the native ilvC and ilvD genes, and implementation of the feedback‐resistant acetolactate synthase AlsS from Bacillus subtilis, ketoacid decarboxylase KivD from Lactococcus lactis, and aldehyde dehydrogenase YqhD from Escherichia coli. The resulting strain P. putida Iso2 produced isobutanol with a substrate specific product yield (YIso/S) of 22 ± 2 mg per gram of glucose under aerobic conditions. Furthermore, we identified the ketoacid decarboxylase from Carnobacterium maltaromaticum to be a suitable alternative for isobutanol production, since replacement of kivD from L. lactis in P. putida Iso2 by the variant from C. maltaromaticum yielded an identical YIso/S. Although P. putida is regarded as obligate aerobic, we show that under oxygen deprivation conditions this bacterium does not grow, remains metabolically active, and that engineered producer strains secreted isobutanol also under the non‐growing conditions. |
doi_str_mv | 10.1002/elsc.201900151 |
format | Article |
fullrecord | <record><control><sourceid>wiley_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7447888</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>ELSC1284</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5064-83c3cdd06fdc94125870a8f92e69cbbe74e8d3cc29fea77836216ee419a965bf3</originalsourceid><addsrcrecordid>eNqFkMFLwzAUxoMoTqdXj5Krh84kTdP0IoyxOXGg4DyHNEm3SNeUpJ3sv7ejc6gXT--9vN_38fIBcIPRCCNE7k0Z1IggnCGEE3wCLjDDPCKcxaeHHhGKBuAyhI8OSTnH52AQE57SbrgAs2m1spUx3lYr-BpMq93GVTLAum2slvB5SShFsHAeNmsDa-90qxrrKugKaIPL20ZWrrwCZ4Usg7k-1CF4n02Xk3m0eHl8mowXkUoQoxGPVay0RqzQKqOYJDxFkhcZMSxTeW5SariOlSJZYWSa8pgRzIyhOJMZS_IiHoKH3rdu843RylSNl6Wovd1IvxNOWvF7U9m1WLmtSCnt_s47g7veYP1HNh8vxP4NkYRkDNMt7thRzyrvQvCmOAowEvv0xT59cUy_E9z-vO6If8fdAbQHPm1pdv_YienibYIJp_EX_wKRBw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Engineering Pseudomonas putida KT2440 for the production of isobutanol</title><source>Wiley-Blackwell Open Access Titles</source><source>DOAJ Directory of Open Access Journals</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><creator>Nitschel, Robert ; Ankenbauer, Andreas ; Welsch, Ilona ; Wirth, Nicolas T. ; Massner, Christoph ; Ahmad, Naveed ; McColm, Stephen ; Borges, Frédéric ; Fotheringham, Ian ; Takors, Ralf ; Blombach, Bastian</creator><creatorcontrib>Nitschel, Robert ; Ankenbauer, Andreas ; Welsch, Ilona ; Wirth, Nicolas T. ; Massner, Christoph ; Ahmad, Naveed ; McColm, Stephen ; Borges, Frédéric ; Fotheringham, Ian ; Takors, Ralf ; Blombach, Bastian</creatorcontrib><description>We engineered P. putida for the production of isobutanol from glucose by preventing product and precursor degradation, inactivation of the soluble transhydrogenase SthA, overexpression of the native ilvC and ilvD genes, and implementation of the feedback‐resistant acetolactate synthase AlsS from Bacillus subtilis, ketoacid decarboxylase KivD from Lactococcus lactis, and aldehyde dehydrogenase YqhD from Escherichia coli. The resulting strain P. putida Iso2 produced isobutanol with a substrate specific product yield (YIso/S) of 22 ± 2 mg per gram of glucose under aerobic conditions. Furthermore, we identified the ketoacid decarboxylase from Carnobacterium maltaromaticum to be a suitable alternative for isobutanol production, since replacement of kivD from L. lactis in P. putida Iso2 by the variant from C. maltaromaticum yielded an identical YIso/S. Although P. putida is regarded as obligate aerobic, we show that under oxygen deprivation conditions this bacterium does not grow, remains metabolically active, and that engineered producer strains secreted isobutanol also under the non‐growing conditions.</description><identifier>ISSN: 1618-0240</identifier><identifier>EISSN: 1618-2863</identifier><identifier>DOI: 10.1002/elsc.201900151</identifier><identifier>PMID: 32874178</identifier><language>eng</language><publisher>Germany: Wiley-VCH Verlag</publisher><subject>Biodiversity ; Ecology, environment ; Ecosystems ; Genetics ; isobutanol ; ketoacid decarboxylase ; Life Sciences ; metabolic engineering ; microaerobic ; Pseudomonas putida ; Symbiosis</subject><ispartof>Engineering in life sciences, 2020-04, Vol.20 (5-6), p.148-159</ispartof><rights>2019 The Authors. published by WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim.</rights><rights>2019 The Authors. Engineering in Life Sciences published by WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim.</rights><rights>Attribution</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5064-83c3cdd06fdc94125870a8f92e69cbbe74e8d3cc29fea77836216ee419a965bf3</citedby><cites>FETCH-LOGICAL-c5064-83c3cdd06fdc94125870a8f92e69cbbe74e8d3cc29fea77836216ee419a965bf3</cites><orcidid>0000-0002-2996-2049 ; 0000-0002-6159-5509</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7447888/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7447888/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,1411,11541,27901,27902,45550,45551,46027,46451,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32874178$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.univ-lorraine.fr/hal-02529614$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Nitschel, Robert</creatorcontrib><creatorcontrib>Ankenbauer, Andreas</creatorcontrib><creatorcontrib>Welsch, Ilona</creatorcontrib><creatorcontrib>Wirth, Nicolas T.</creatorcontrib><creatorcontrib>Massner, Christoph</creatorcontrib><creatorcontrib>Ahmad, Naveed</creatorcontrib><creatorcontrib>McColm, Stephen</creatorcontrib><creatorcontrib>Borges, Frédéric</creatorcontrib><creatorcontrib>Fotheringham, Ian</creatorcontrib><creatorcontrib>Takors, Ralf</creatorcontrib><creatorcontrib>Blombach, Bastian</creatorcontrib><title>Engineering Pseudomonas putida KT2440 for the production of isobutanol</title><title>Engineering in life sciences</title><addtitle>Eng Life Sci</addtitle><description>We engineered P. putida for the production of isobutanol from glucose by preventing product and precursor degradation, inactivation of the soluble transhydrogenase SthA, overexpression of the native ilvC and ilvD genes, and implementation of the feedback‐resistant acetolactate synthase AlsS from Bacillus subtilis, ketoacid decarboxylase KivD from Lactococcus lactis, and aldehyde dehydrogenase YqhD from Escherichia coli. The resulting strain P. putida Iso2 produced isobutanol with a substrate specific product yield (YIso/S) of 22 ± 2 mg per gram of glucose under aerobic conditions. Furthermore, we identified the ketoacid decarboxylase from Carnobacterium maltaromaticum to be a suitable alternative for isobutanol production, since replacement of kivD from L. lactis in P. putida Iso2 by the variant from C. maltaromaticum yielded an identical YIso/S. Although P. putida is regarded as obligate aerobic, we show that under oxygen deprivation conditions this bacterium does not grow, remains metabolically active, and that engineered producer strains secreted isobutanol also under the non‐growing conditions.</description><subject>Biodiversity</subject><subject>Ecology, environment</subject><subject>Ecosystems</subject><subject>Genetics</subject><subject>isobutanol</subject><subject>ketoacid decarboxylase</subject><subject>Life Sciences</subject><subject>metabolic engineering</subject><subject>microaerobic</subject><subject>Pseudomonas putida</subject><subject>Symbiosis</subject><issn>1618-0240</issn><issn>1618-2863</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNqFkMFLwzAUxoMoTqdXj5Krh84kTdP0IoyxOXGg4DyHNEm3SNeUpJ3sv7ejc6gXT--9vN_38fIBcIPRCCNE7k0Z1IggnCGEE3wCLjDDPCKcxaeHHhGKBuAyhI8OSTnH52AQE57SbrgAs2m1spUx3lYr-BpMq93GVTLAum2slvB5SShFsHAeNmsDa-90qxrrKugKaIPL20ZWrrwCZ4Usg7k-1CF4n02Xk3m0eHl8mowXkUoQoxGPVay0RqzQKqOYJDxFkhcZMSxTeW5SariOlSJZYWSa8pgRzIyhOJMZS_IiHoKH3rdu843RylSNl6Wovd1IvxNOWvF7U9m1WLmtSCnt_s47g7veYP1HNh8vxP4NkYRkDNMt7thRzyrvQvCmOAowEvv0xT59cUy_E9z-vO6If8fdAbQHPm1pdv_YienibYIJp_EX_wKRBw</recordid><startdate>202004</startdate><enddate>202004</enddate><creator>Nitschel, Robert</creator><creator>Ankenbauer, Andreas</creator><creator>Welsch, Ilona</creator><creator>Wirth, Nicolas T.</creator><creator>Massner, Christoph</creator><creator>Ahmad, Naveed</creator><creator>McColm, Stephen</creator><creator>Borges, Frédéric</creator><creator>Fotheringham, Ian</creator><creator>Takors, Ralf</creator><creator>Blombach, Bastian</creator><general>Wiley-VCH Verlag</general><general>John Wiley and Sons Inc</general><scope>24P</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-2996-2049</orcidid><orcidid>https://orcid.org/0000-0002-6159-5509</orcidid></search><sort><creationdate>202004</creationdate><title>Engineering Pseudomonas putida KT2440 for the production of isobutanol</title><author>Nitschel, Robert ; Ankenbauer, Andreas ; Welsch, Ilona ; Wirth, Nicolas T. ; Massner, Christoph ; Ahmad, Naveed ; McColm, Stephen ; Borges, Frédéric ; Fotheringham, Ian ; Takors, Ralf ; Blombach, Bastian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5064-83c3cdd06fdc94125870a8f92e69cbbe74e8d3cc29fea77836216ee419a965bf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Biodiversity</topic><topic>Ecology, environment</topic><topic>Ecosystems</topic><topic>Genetics</topic><topic>isobutanol</topic><topic>ketoacid decarboxylase</topic><topic>Life Sciences</topic><topic>metabolic engineering</topic><topic>microaerobic</topic><topic>Pseudomonas putida</topic><topic>Symbiosis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nitschel, Robert</creatorcontrib><creatorcontrib>Ankenbauer, Andreas</creatorcontrib><creatorcontrib>Welsch, Ilona</creatorcontrib><creatorcontrib>Wirth, Nicolas T.</creatorcontrib><creatorcontrib>Massner, Christoph</creatorcontrib><creatorcontrib>Ahmad, Naveed</creatorcontrib><creatorcontrib>McColm, Stephen</creatorcontrib><creatorcontrib>Borges, Frédéric</creatorcontrib><creatorcontrib>Fotheringham, Ian</creatorcontrib><creatorcontrib>Takors, Ralf</creatorcontrib><creatorcontrib>Blombach, Bastian</creatorcontrib><collection>Wiley-Blackwell Open Access Titles</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Engineering in life sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nitschel, Robert</au><au>Ankenbauer, Andreas</au><au>Welsch, Ilona</au><au>Wirth, Nicolas T.</au><au>Massner, Christoph</au><au>Ahmad, Naveed</au><au>McColm, Stephen</au><au>Borges, Frédéric</au><au>Fotheringham, Ian</au><au>Takors, Ralf</au><au>Blombach, Bastian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Engineering Pseudomonas putida KT2440 for the production of isobutanol</atitle><jtitle>Engineering in life sciences</jtitle><addtitle>Eng Life Sci</addtitle><date>2020-04</date><risdate>2020</risdate><volume>20</volume><issue>5-6</issue><spage>148</spage><epage>159</epage><pages>148-159</pages><issn>1618-0240</issn><eissn>1618-2863</eissn><abstract>We engineered P. putida for the production of isobutanol from glucose by preventing product and precursor degradation, inactivation of the soluble transhydrogenase SthA, overexpression of the native ilvC and ilvD genes, and implementation of the feedback‐resistant acetolactate synthase AlsS from Bacillus subtilis, ketoacid decarboxylase KivD from Lactococcus lactis, and aldehyde dehydrogenase YqhD from Escherichia coli. The resulting strain P. putida Iso2 produced isobutanol with a substrate specific product yield (YIso/S) of 22 ± 2 mg per gram of glucose under aerobic conditions. Furthermore, we identified the ketoacid decarboxylase from Carnobacterium maltaromaticum to be a suitable alternative for isobutanol production, since replacement of kivD from L. lactis in P. putida Iso2 by the variant from C. maltaromaticum yielded an identical YIso/S. Although P. putida is regarded as obligate aerobic, we show that under oxygen deprivation conditions this bacterium does not grow, remains metabolically active, and that engineered producer strains secreted isobutanol also under the non‐growing conditions.</abstract><cop>Germany</cop><pub>Wiley-VCH Verlag</pub><pmid>32874178</pmid><doi>10.1002/elsc.201900151</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-2996-2049</orcidid><orcidid>https://orcid.org/0000-0002-6159-5509</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1618-0240 |
ispartof | Engineering in life sciences, 2020-04, Vol.20 (5-6), p.148-159 |
issn | 1618-0240 1618-2863 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7447888 |
source | Wiley-Blackwell Open Access Titles; DOAJ Directory of Open Access Journals; Wiley Online Library Journals Frontfile Complete; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central |
subjects | Biodiversity Ecology, environment Ecosystems Genetics isobutanol ketoacid decarboxylase Life Sciences metabolic engineering microaerobic Pseudomonas putida Symbiosis |
title | Engineering Pseudomonas putida KT2440 for the production of isobutanol |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-15T17%3A47%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Engineering%20Pseudomonas%20putida%20KT2440%20for%20the%20production%20of%20isobutanol&rft.jtitle=Engineering%20in%20life%20sciences&rft.au=Nitschel,%20Robert&rft.date=2020-04&rft.volume=20&rft.issue=5-6&rft.spage=148&rft.epage=159&rft.pages=148-159&rft.issn=1618-0240&rft.eissn=1618-2863&rft_id=info:doi/10.1002/elsc.201900151&rft_dat=%3Cwiley_pubme%3EELSC1284%3C/wiley_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/32874178&rfr_iscdi=true |