Engineering Pseudomonas putida KT2440 for the production of isobutanol

We engineered P. putida for the production of isobutanol from glucose by preventing product and precursor degradation, inactivation of the soluble transhydrogenase SthA, overexpression of the native ilvC and ilvD genes, and implementation of the feedback‐resistant acetolactate synthase AlsS from Bac...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Engineering in life sciences 2020-04, Vol.20 (5-6), p.148-159
Hauptverfasser: Nitschel, Robert, Ankenbauer, Andreas, Welsch, Ilona, Wirth, Nicolas T., Massner, Christoph, Ahmad, Naveed, McColm, Stephen, Borges, Frédéric, Fotheringham, Ian, Takors, Ralf, Blombach, Bastian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 159
container_issue 5-6
container_start_page 148
container_title Engineering in life sciences
container_volume 20
creator Nitschel, Robert
Ankenbauer, Andreas
Welsch, Ilona
Wirth, Nicolas T.
Massner, Christoph
Ahmad, Naveed
McColm, Stephen
Borges, Frédéric
Fotheringham, Ian
Takors, Ralf
Blombach, Bastian
description We engineered P. putida for the production of isobutanol from glucose by preventing product and precursor degradation, inactivation of the soluble transhydrogenase SthA, overexpression of the native ilvC and ilvD genes, and implementation of the feedback‐resistant acetolactate synthase AlsS from Bacillus subtilis, ketoacid decarboxylase KivD from Lactococcus lactis, and aldehyde dehydrogenase YqhD from Escherichia coli. The resulting strain P. putida Iso2 produced isobutanol with a substrate specific product yield (YIso/S) of 22 ± 2 mg per gram of glucose under aerobic conditions. Furthermore, we identified the ketoacid decarboxylase from Carnobacterium maltaromaticum to be a suitable alternative for isobutanol production, since replacement of kivD from L. lactis in P. putida Iso2 by the variant from C. maltaromaticum yielded an identical YIso/S. Although P. putida is regarded as obligate aerobic, we show that under oxygen deprivation conditions this bacterium does not grow, remains metabolically active, and that engineered producer strains secreted isobutanol also under the non‐growing conditions.
doi_str_mv 10.1002/elsc.201900151
format Article
fullrecord <record><control><sourceid>wiley_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7447888</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>ELSC1284</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5064-83c3cdd06fdc94125870a8f92e69cbbe74e8d3cc29fea77836216ee419a965bf3</originalsourceid><addsrcrecordid>eNqFkMFLwzAUxoMoTqdXj5Krh84kTdP0IoyxOXGg4DyHNEm3SNeUpJ3sv7ejc6gXT--9vN_38fIBcIPRCCNE7k0Z1IggnCGEE3wCLjDDPCKcxaeHHhGKBuAyhI8OSTnH52AQE57SbrgAs2m1spUx3lYr-BpMq93GVTLAum2slvB5SShFsHAeNmsDa-90qxrrKugKaIPL20ZWrrwCZ4Usg7k-1CF4n02Xk3m0eHl8mowXkUoQoxGPVay0RqzQKqOYJDxFkhcZMSxTeW5SariOlSJZYWSa8pgRzIyhOJMZS_IiHoKH3rdu843RylSNl6Wovd1IvxNOWvF7U9m1WLmtSCnt_s47g7veYP1HNh8vxP4NkYRkDNMt7thRzyrvQvCmOAowEvv0xT59cUy_E9z-vO6If8fdAbQHPm1pdv_YienibYIJp_EX_wKRBw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Engineering Pseudomonas putida KT2440 for the production of isobutanol</title><source>Wiley-Blackwell Open Access Titles</source><source>DOAJ Directory of Open Access Journals</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><creator>Nitschel, Robert ; Ankenbauer, Andreas ; Welsch, Ilona ; Wirth, Nicolas T. ; Massner, Christoph ; Ahmad, Naveed ; McColm, Stephen ; Borges, Frédéric ; Fotheringham, Ian ; Takors, Ralf ; Blombach, Bastian</creator><creatorcontrib>Nitschel, Robert ; Ankenbauer, Andreas ; Welsch, Ilona ; Wirth, Nicolas T. ; Massner, Christoph ; Ahmad, Naveed ; McColm, Stephen ; Borges, Frédéric ; Fotheringham, Ian ; Takors, Ralf ; Blombach, Bastian</creatorcontrib><description>We engineered P. putida for the production of isobutanol from glucose by preventing product and precursor degradation, inactivation of the soluble transhydrogenase SthA, overexpression of the native ilvC and ilvD genes, and implementation of the feedback‐resistant acetolactate synthase AlsS from Bacillus subtilis, ketoacid decarboxylase KivD from Lactococcus lactis, and aldehyde dehydrogenase YqhD from Escherichia coli. The resulting strain P. putida Iso2 produced isobutanol with a substrate specific product yield (YIso/S) of 22 ± 2 mg per gram of glucose under aerobic conditions. Furthermore, we identified the ketoacid decarboxylase from Carnobacterium maltaromaticum to be a suitable alternative for isobutanol production, since replacement of kivD from L. lactis in P. putida Iso2 by the variant from C. maltaromaticum yielded an identical YIso/S. Although P. putida is regarded as obligate aerobic, we show that under oxygen deprivation conditions this bacterium does not grow, remains metabolically active, and that engineered producer strains secreted isobutanol also under the non‐growing conditions.</description><identifier>ISSN: 1618-0240</identifier><identifier>EISSN: 1618-2863</identifier><identifier>DOI: 10.1002/elsc.201900151</identifier><identifier>PMID: 32874178</identifier><language>eng</language><publisher>Germany: Wiley-VCH Verlag</publisher><subject>Biodiversity ; Ecology, environment ; Ecosystems ; Genetics ; isobutanol ; ketoacid decarboxylase ; Life Sciences ; metabolic engineering ; microaerobic ; Pseudomonas putida ; Symbiosis</subject><ispartof>Engineering in life sciences, 2020-04, Vol.20 (5-6), p.148-159</ispartof><rights>2019 The Authors. published by WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim.</rights><rights>2019 The Authors. Engineering in Life Sciences published by WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim.</rights><rights>Attribution</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5064-83c3cdd06fdc94125870a8f92e69cbbe74e8d3cc29fea77836216ee419a965bf3</citedby><cites>FETCH-LOGICAL-c5064-83c3cdd06fdc94125870a8f92e69cbbe74e8d3cc29fea77836216ee419a965bf3</cites><orcidid>0000-0002-2996-2049 ; 0000-0002-6159-5509</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7447888/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7447888/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,1411,11541,27901,27902,45550,45551,46027,46451,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32874178$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.univ-lorraine.fr/hal-02529614$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Nitschel, Robert</creatorcontrib><creatorcontrib>Ankenbauer, Andreas</creatorcontrib><creatorcontrib>Welsch, Ilona</creatorcontrib><creatorcontrib>Wirth, Nicolas T.</creatorcontrib><creatorcontrib>Massner, Christoph</creatorcontrib><creatorcontrib>Ahmad, Naveed</creatorcontrib><creatorcontrib>McColm, Stephen</creatorcontrib><creatorcontrib>Borges, Frédéric</creatorcontrib><creatorcontrib>Fotheringham, Ian</creatorcontrib><creatorcontrib>Takors, Ralf</creatorcontrib><creatorcontrib>Blombach, Bastian</creatorcontrib><title>Engineering Pseudomonas putida KT2440 for the production of isobutanol</title><title>Engineering in life sciences</title><addtitle>Eng Life Sci</addtitle><description>We engineered P. putida for the production of isobutanol from glucose by preventing product and precursor degradation, inactivation of the soluble transhydrogenase SthA, overexpression of the native ilvC and ilvD genes, and implementation of the feedback‐resistant acetolactate synthase AlsS from Bacillus subtilis, ketoacid decarboxylase KivD from Lactococcus lactis, and aldehyde dehydrogenase YqhD from Escherichia coli. The resulting strain P. putida Iso2 produced isobutanol with a substrate specific product yield (YIso/S) of 22 ± 2 mg per gram of glucose under aerobic conditions. Furthermore, we identified the ketoacid decarboxylase from Carnobacterium maltaromaticum to be a suitable alternative for isobutanol production, since replacement of kivD from L. lactis in P. putida Iso2 by the variant from C. maltaromaticum yielded an identical YIso/S. Although P. putida is regarded as obligate aerobic, we show that under oxygen deprivation conditions this bacterium does not grow, remains metabolically active, and that engineered producer strains secreted isobutanol also under the non‐growing conditions.</description><subject>Biodiversity</subject><subject>Ecology, environment</subject><subject>Ecosystems</subject><subject>Genetics</subject><subject>isobutanol</subject><subject>ketoacid decarboxylase</subject><subject>Life Sciences</subject><subject>metabolic engineering</subject><subject>microaerobic</subject><subject>Pseudomonas putida</subject><subject>Symbiosis</subject><issn>1618-0240</issn><issn>1618-2863</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNqFkMFLwzAUxoMoTqdXj5Krh84kTdP0IoyxOXGg4DyHNEm3SNeUpJ3sv7ejc6gXT--9vN_38fIBcIPRCCNE7k0Z1IggnCGEE3wCLjDDPCKcxaeHHhGKBuAyhI8OSTnH52AQE57SbrgAs2m1spUx3lYr-BpMq93GVTLAum2slvB5SShFsHAeNmsDa-90qxrrKugKaIPL20ZWrrwCZ4Usg7k-1CF4n02Xk3m0eHl8mowXkUoQoxGPVay0RqzQKqOYJDxFkhcZMSxTeW5SariOlSJZYWSa8pgRzIyhOJMZS_IiHoKH3rdu843RylSNl6Wovd1IvxNOWvF7U9m1WLmtSCnt_s47g7veYP1HNh8vxP4NkYRkDNMt7thRzyrvQvCmOAowEvv0xT59cUy_E9z-vO6If8fdAbQHPm1pdv_YienibYIJp_EX_wKRBw</recordid><startdate>202004</startdate><enddate>202004</enddate><creator>Nitschel, Robert</creator><creator>Ankenbauer, Andreas</creator><creator>Welsch, Ilona</creator><creator>Wirth, Nicolas T.</creator><creator>Massner, Christoph</creator><creator>Ahmad, Naveed</creator><creator>McColm, Stephen</creator><creator>Borges, Frédéric</creator><creator>Fotheringham, Ian</creator><creator>Takors, Ralf</creator><creator>Blombach, Bastian</creator><general>Wiley-VCH Verlag</general><general>John Wiley and Sons Inc</general><scope>24P</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-2996-2049</orcidid><orcidid>https://orcid.org/0000-0002-6159-5509</orcidid></search><sort><creationdate>202004</creationdate><title>Engineering Pseudomonas putida KT2440 for the production of isobutanol</title><author>Nitschel, Robert ; Ankenbauer, Andreas ; Welsch, Ilona ; Wirth, Nicolas T. ; Massner, Christoph ; Ahmad, Naveed ; McColm, Stephen ; Borges, Frédéric ; Fotheringham, Ian ; Takors, Ralf ; Blombach, Bastian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5064-83c3cdd06fdc94125870a8f92e69cbbe74e8d3cc29fea77836216ee419a965bf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Biodiversity</topic><topic>Ecology, environment</topic><topic>Ecosystems</topic><topic>Genetics</topic><topic>isobutanol</topic><topic>ketoacid decarboxylase</topic><topic>Life Sciences</topic><topic>metabolic engineering</topic><topic>microaerobic</topic><topic>Pseudomonas putida</topic><topic>Symbiosis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nitschel, Robert</creatorcontrib><creatorcontrib>Ankenbauer, Andreas</creatorcontrib><creatorcontrib>Welsch, Ilona</creatorcontrib><creatorcontrib>Wirth, Nicolas T.</creatorcontrib><creatorcontrib>Massner, Christoph</creatorcontrib><creatorcontrib>Ahmad, Naveed</creatorcontrib><creatorcontrib>McColm, Stephen</creatorcontrib><creatorcontrib>Borges, Frédéric</creatorcontrib><creatorcontrib>Fotheringham, Ian</creatorcontrib><creatorcontrib>Takors, Ralf</creatorcontrib><creatorcontrib>Blombach, Bastian</creatorcontrib><collection>Wiley-Blackwell Open Access Titles</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Engineering in life sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nitschel, Robert</au><au>Ankenbauer, Andreas</au><au>Welsch, Ilona</au><au>Wirth, Nicolas T.</au><au>Massner, Christoph</au><au>Ahmad, Naveed</au><au>McColm, Stephen</au><au>Borges, Frédéric</au><au>Fotheringham, Ian</au><au>Takors, Ralf</au><au>Blombach, Bastian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Engineering Pseudomonas putida KT2440 for the production of isobutanol</atitle><jtitle>Engineering in life sciences</jtitle><addtitle>Eng Life Sci</addtitle><date>2020-04</date><risdate>2020</risdate><volume>20</volume><issue>5-6</issue><spage>148</spage><epage>159</epage><pages>148-159</pages><issn>1618-0240</issn><eissn>1618-2863</eissn><abstract>We engineered P. putida for the production of isobutanol from glucose by preventing product and precursor degradation, inactivation of the soluble transhydrogenase SthA, overexpression of the native ilvC and ilvD genes, and implementation of the feedback‐resistant acetolactate synthase AlsS from Bacillus subtilis, ketoacid decarboxylase KivD from Lactococcus lactis, and aldehyde dehydrogenase YqhD from Escherichia coli. The resulting strain P. putida Iso2 produced isobutanol with a substrate specific product yield (YIso/S) of 22 ± 2 mg per gram of glucose under aerobic conditions. Furthermore, we identified the ketoacid decarboxylase from Carnobacterium maltaromaticum to be a suitable alternative for isobutanol production, since replacement of kivD from L. lactis in P. putida Iso2 by the variant from C. maltaromaticum yielded an identical YIso/S. Although P. putida is regarded as obligate aerobic, we show that under oxygen deprivation conditions this bacterium does not grow, remains metabolically active, and that engineered producer strains secreted isobutanol also under the non‐growing conditions.</abstract><cop>Germany</cop><pub>Wiley-VCH Verlag</pub><pmid>32874178</pmid><doi>10.1002/elsc.201900151</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-2996-2049</orcidid><orcidid>https://orcid.org/0000-0002-6159-5509</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1618-0240
ispartof Engineering in life sciences, 2020-04, Vol.20 (5-6), p.148-159
issn 1618-0240
1618-2863
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7447888
source Wiley-Blackwell Open Access Titles; DOAJ Directory of Open Access Journals; Wiley Online Library Journals Frontfile Complete; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central
subjects Biodiversity
Ecology, environment
Ecosystems
Genetics
isobutanol
ketoacid decarboxylase
Life Sciences
metabolic engineering
microaerobic
Pseudomonas putida
Symbiosis
title Engineering Pseudomonas putida KT2440 for the production of isobutanol
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-15T17%3A47%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Engineering%20Pseudomonas%20putida%20KT2440%20for%20the%20production%20of%20isobutanol&rft.jtitle=Engineering%20in%20life%20sciences&rft.au=Nitschel,%20Robert&rft.date=2020-04&rft.volume=20&rft.issue=5-6&rft.spage=148&rft.epage=159&rft.pages=148-159&rft.issn=1618-0240&rft.eissn=1618-2863&rft_id=info:doi/10.1002/elsc.201900151&rft_dat=%3Cwiley_pubme%3EELSC1284%3C/wiley_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/32874178&rfr_iscdi=true