Design and evaluation of collagen-inspired mineral-hydrogel nanocomposites for bone regeneration

Bone loss due to trauma and tumors remains a serious clinical concern. Due to limited availability and disease transmission risk with autografts and allografts, calcium phosphate bone fillers and growth factor-based substitute bone grafts are currently used in the clinic. However, substitute grafts...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Acta biomaterialia 2020-08, Vol.112, p.262-273
Hauptverfasser: Patel, Akhil, Zaky, Samer H., Schoedel, Karen, Li, Hongshuai, Sant, Vinayak, Beniash, Elia, Sfeir, Charles, Stolz, Donna B., Sant, Shilpa
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 273
container_issue
container_start_page 262
container_title Acta biomaterialia
container_volume 112
creator Patel, Akhil
Zaky, Samer H.
Schoedel, Karen
Li, Hongshuai
Sant, Vinayak
Beniash, Elia
Sfeir, Charles
Stolz, Donna B.
Sant, Shilpa
description Bone loss due to trauma and tumors remains a serious clinical concern. Due to limited availability and disease transmission risk with autografts and allografts, calcium phosphate bone fillers and growth factor-based substitute bone grafts are currently used in the clinic. However, substitute grafts lack bone regeneration potential when used without growth factors. When used along with the added growth factors, they lead to unwanted side effects such as uncontrolled bone growth. Collagen-based hydrogel grafts available on the market fail to provide structural guidance to native cells due to high water-solubility and faster degradation. To overcome these limitations, we employed bioinspired material design and fabricated three different hydrogels with structural features similar to native collagen at multiple length-scales. These hydrogels fabricated using polyionic complexation of oppositely charged natural polysaccharides exhibited multi-scale architecture mimicking nanoscale banding pattern, and microscale fibrous structure of native collagen. All three hydrogels promoted biomimetic apatite-like mineral deposition in vitro elucidating crystalline structure on the surface while amorphous calcium phosphate inside the hydrogels resulting in mineral-hydrogel nanocomposites. When evaluated in a non-load bearing critical size mouse calvaria defect model, chitosan - kappa carrageenan mineral-hydrogel nanocomposites enhanced bone regeneration without added growth factors compared to empty defect as well as widely used marketed collagen scaffolds. Histological assessment of the regenerated bone revealed improved healing and tissue remodeling with mineral-hydrogel nanocomposites. Overall, these collagen-inspired mineral-hydrogel nanocomposites showed multi-scale hierarchical structure and can potentially serve as promising bioactive hydrogel to promote bone regeneration. Hydrogels, especially collagen, are widely used in bone tissue engineering. Collagen fibrils play arguably the most important role during natural bone development. Its multi-scale hierarchical structure to form fibers from fibrils and electrostatic charges enable mineral sequestration, nucleation, and growth. However, bulk collagen hydrogels exhibit limited bone regeneration and are mostly used as carriers for highly potent growth factors such as bone morphogenic protein-2, which increase the risk of uncontrolled bone growth. Thus, there is an unmet clinical need for a collagen-inspired biomaterial
doi_str_mv 10.1016/j.actbio.2020.05.034
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7446305</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1742706120303044</els_id><sourcerecordid>2446723278</sourcerecordid><originalsourceid>FETCH-LOGICAL-c491t-147e7fc69ccdc4d40bc3b6c41dbfe6da90b6fb8187aa5e74dae9c7240641096f3</originalsourceid><addsrcrecordid>eNp9kU1v1DAQhi0Eoh_wDxCyxIVLUttx7OSChAoUpEpc2rNxxpOtV4m92MlK_fd4taV8HHqypXnmnXnnJeQNZzVnXF1sawvL4GMtmGA1a2vWyGfklHe6q3Sruuflr6WoNFP8hJzlvGWs6bjoXpKTRshel-Ip-fEJs98EaoOjuLfTahcfA40jhThNdoOh8iHvfEJHZx8w2am6u3cpbnCiwYYIcd7F7BfMdIyJDjEgTVj6CnqQekVejHbK-PrhPSe3Xz7fXH6trr9ffbv8eF2B7PlScalRj6B6AAfSSTZAMyiQ3A0jKmd7Nqhx6Io7a1vU0lnsQQvJlOSsV2NzTj4cdXfrMKMDDEvZ1eySn226N9F6828l-DuziXujpVQNa4vA-weBFH-umBcz-wxYjhAwrtmIMqhpBe_6gr77D93GNYVir1BSadEI3RVKHilIMeeE4-MynJlDhGZrjhGaQ4SGtaZEWNre_m3ksel3Zn-cYjnn3mMyGTwGQFdSgsW46J-e8AtPnrH-</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2446723278</pqid></control><display><type>article</type><title>Design and evaluation of collagen-inspired mineral-hydrogel nanocomposites for bone regeneration</title><source>MEDLINE</source><source>Access via ScienceDirect (Elsevier)</source><creator>Patel, Akhil ; Zaky, Samer H. ; Schoedel, Karen ; Li, Hongshuai ; Sant, Vinayak ; Beniash, Elia ; Sfeir, Charles ; Stolz, Donna B. ; Sant, Shilpa</creator><creatorcontrib>Patel, Akhil ; Zaky, Samer H. ; Schoedel, Karen ; Li, Hongshuai ; Sant, Vinayak ; Beniash, Elia ; Sfeir, Charles ; Stolz, Donna B. ; Sant, Shilpa</creatorcontrib><description>Bone loss due to trauma and tumors remains a serious clinical concern. Due to limited availability and disease transmission risk with autografts and allografts, calcium phosphate bone fillers and growth factor-based substitute bone grafts are currently used in the clinic. However, substitute grafts lack bone regeneration potential when used without growth factors. When used along with the added growth factors, they lead to unwanted side effects such as uncontrolled bone growth. Collagen-based hydrogel grafts available on the market fail to provide structural guidance to native cells due to high water-solubility and faster degradation. To overcome these limitations, we employed bioinspired material design and fabricated three different hydrogels with structural features similar to native collagen at multiple length-scales. These hydrogels fabricated using polyionic complexation of oppositely charged natural polysaccharides exhibited multi-scale architecture mimicking nanoscale banding pattern, and microscale fibrous structure of native collagen. All three hydrogels promoted biomimetic apatite-like mineral deposition in vitro elucidating crystalline structure on the surface while amorphous calcium phosphate inside the hydrogels resulting in mineral-hydrogel nanocomposites. When evaluated in a non-load bearing critical size mouse calvaria defect model, chitosan - kappa carrageenan mineral-hydrogel nanocomposites enhanced bone regeneration without added growth factors compared to empty defect as well as widely used marketed collagen scaffolds. Histological assessment of the regenerated bone revealed improved healing and tissue remodeling with mineral-hydrogel nanocomposites. Overall, these collagen-inspired mineral-hydrogel nanocomposites showed multi-scale hierarchical structure and can potentially serve as promising bioactive hydrogel to promote bone regeneration. Hydrogels, especially collagen, are widely used in bone tissue engineering. Collagen fibrils play arguably the most important role during natural bone development. Its multi-scale hierarchical structure to form fibers from fibrils and electrostatic charges enable mineral sequestration, nucleation, and growth. However, bulk collagen hydrogels exhibit limited bone regeneration and are mostly used as carriers for highly potent growth factors such as bone morphogenic protein-2, which increase the risk of uncontrolled bone growth. Thus, there is an unmet clinical need for a collagen-inspired biomaterial that can recreate structural hierarchy, mineral sequestration ability, and stimulate recruitment of host progenitor cells to facilitate bone regeneration. Here, we propose collagen-inspired bioactive mineral-hydrogel nanocomposites as a growth factor-free approach to guide and enhance bone regeneration. [Display omitted]</description><identifier>ISSN: 1742-7061</identifier><identifier>EISSN: 1878-7568</identifier><identifier>DOI: 10.1016/j.actbio.2020.05.034</identifier><identifier>PMID: 32497742</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Allografts ; Animals ; Apatite ; Autografts ; Bioactive biomaterials ; Biomimetics ; Bone grafts ; Bone growth ; Bone healing ; Bone loss ; Bone Regeneration ; Bone tumors ; Calcium ; Calcium phosphate ; Calcium phosphates ; Calvaria ; Carrageenan ; Chitosan ; Collagen ; Disease transmission ; Evaluation ; Fibrous structure ; Grafting ; Grafts ; Growth factors ; Health risks ; Hydrogels ; Hydrogels - pharmacology ; Mice ; Mineral-hydrogel nanocomposites ; Mouse calvaria defect ; Nanocomposites ; Polysaccharides ; Regeneration ; Regeneration (physiology) ; Saccharides ; Side effects ; Structural hierarchy ; Substitute bone ; Tissue Engineering ; Trauma ; Tumors</subject><ispartof>Acta biomaterialia, 2020-08, Vol.112, p.262-273</ispartof><rights>2020 Acta Materialia Inc.</rights><rights>Copyright © 2020 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.</rights><rights>Copyright Elsevier BV Aug 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c491t-147e7fc69ccdc4d40bc3b6c41dbfe6da90b6fb8187aa5e74dae9c7240641096f3</citedby><cites>FETCH-LOGICAL-c491t-147e7fc69ccdc4d40bc3b6c41dbfe6da90b6fb8187aa5e74dae9c7240641096f3</cites><orcidid>0000-0002-2017-9584 ; 0000-0003-3163-3292</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.actbio.2020.05.034$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32497742$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Patel, Akhil</creatorcontrib><creatorcontrib>Zaky, Samer H.</creatorcontrib><creatorcontrib>Schoedel, Karen</creatorcontrib><creatorcontrib>Li, Hongshuai</creatorcontrib><creatorcontrib>Sant, Vinayak</creatorcontrib><creatorcontrib>Beniash, Elia</creatorcontrib><creatorcontrib>Sfeir, Charles</creatorcontrib><creatorcontrib>Stolz, Donna B.</creatorcontrib><creatorcontrib>Sant, Shilpa</creatorcontrib><title>Design and evaluation of collagen-inspired mineral-hydrogel nanocomposites for bone regeneration</title><title>Acta biomaterialia</title><addtitle>Acta Biomater</addtitle><description>Bone loss due to trauma and tumors remains a serious clinical concern. Due to limited availability and disease transmission risk with autografts and allografts, calcium phosphate bone fillers and growth factor-based substitute bone grafts are currently used in the clinic. However, substitute grafts lack bone regeneration potential when used without growth factors. When used along with the added growth factors, they lead to unwanted side effects such as uncontrolled bone growth. Collagen-based hydrogel grafts available on the market fail to provide structural guidance to native cells due to high water-solubility and faster degradation. To overcome these limitations, we employed bioinspired material design and fabricated three different hydrogels with structural features similar to native collagen at multiple length-scales. These hydrogels fabricated using polyionic complexation of oppositely charged natural polysaccharides exhibited multi-scale architecture mimicking nanoscale banding pattern, and microscale fibrous structure of native collagen. All three hydrogels promoted biomimetic apatite-like mineral deposition in vitro elucidating crystalline structure on the surface while amorphous calcium phosphate inside the hydrogels resulting in mineral-hydrogel nanocomposites. When evaluated in a non-load bearing critical size mouse calvaria defect model, chitosan - kappa carrageenan mineral-hydrogel nanocomposites enhanced bone regeneration without added growth factors compared to empty defect as well as widely used marketed collagen scaffolds. Histological assessment of the regenerated bone revealed improved healing and tissue remodeling with mineral-hydrogel nanocomposites. Overall, these collagen-inspired mineral-hydrogel nanocomposites showed multi-scale hierarchical structure and can potentially serve as promising bioactive hydrogel to promote bone regeneration. Hydrogels, especially collagen, are widely used in bone tissue engineering. Collagen fibrils play arguably the most important role during natural bone development. Its multi-scale hierarchical structure to form fibers from fibrils and electrostatic charges enable mineral sequestration, nucleation, and growth. However, bulk collagen hydrogels exhibit limited bone regeneration and are mostly used as carriers for highly potent growth factors such as bone morphogenic protein-2, which increase the risk of uncontrolled bone growth. Thus, there is an unmet clinical need for a collagen-inspired biomaterial that can recreate structural hierarchy, mineral sequestration ability, and stimulate recruitment of host progenitor cells to facilitate bone regeneration. Here, we propose collagen-inspired bioactive mineral-hydrogel nanocomposites as a growth factor-free approach to guide and enhance bone regeneration. [Display omitted]</description><subject>Allografts</subject><subject>Animals</subject><subject>Apatite</subject><subject>Autografts</subject><subject>Bioactive biomaterials</subject><subject>Biomimetics</subject><subject>Bone grafts</subject><subject>Bone growth</subject><subject>Bone healing</subject><subject>Bone loss</subject><subject>Bone Regeneration</subject><subject>Bone tumors</subject><subject>Calcium</subject><subject>Calcium phosphate</subject><subject>Calcium phosphates</subject><subject>Calvaria</subject><subject>Carrageenan</subject><subject>Chitosan</subject><subject>Collagen</subject><subject>Disease transmission</subject><subject>Evaluation</subject><subject>Fibrous structure</subject><subject>Grafting</subject><subject>Grafts</subject><subject>Growth factors</subject><subject>Health risks</subject><subject>Hydrogels</subject><subject>Hydrogels - pharmacology</subject><subject>Mice</subject><subject>Mineral-hydrogel nanocomposites</subject><subject>Mouse calvaria defect</subject><subject>Nanocomposites</subject><subject>Polysaccharides</subject><subject>Regeneration</subject><subject>Regeneration (physiology)</subject><subject>Saccharides</subject><subject>Side effects</subject><subject>Structural hierarchy</subject><subject>Substitute bone</subject><subject>Tissue Engineering</subject><subject>Trauma</subject><subject>Tumors</subject><issn>1742-7061</issn><issn>1878-7568</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kU1v1DAQhi0Eoh_wDxCyxIVLUttx7OSChAoUpEpc2rNxxpOtV4m92MlK_fd4taV8HHqypXnmnXnnJeQNZzVnXF1sawvL4GMtmGA1a2vWyGfklHe6q3Sruuflr6WoNFP8hJzlvGWs6bjoXpKTRshel-Ip-fEJs98EaoOjuLfTahcfA40jhThNdoOh8iHvfEJHZx8w2am6u3cpbnCiwYYIcd7F7BfMdIyJDjEgTVj6CnqQekVejHbK-PrhPSe3Xz7fXH6trr9ffbv8eF2B7PlScalRj6B6AAfSSTZAMyiQ3A0jKmd7Nqhx6Io7a1vU0lnsQQvJlOSsV2NzTj4cdXfrMKMDDEvZ1eySn226N9F6828l-DuziXujpVQNa4vA-weBFH-umBcz-wxYjhAwrtmIMqhpBe_6gr77D93GNYVir1BSadEI3RVKHilIMeeE4-MynJlDhGZrjhGaQ4SGtaZEWNre_m3ksel3Zn-cYjnn3mMyGTwGQFdSgsW46J-e8AtPnrH-</recordid><startdate>20200801</startdate><enddate>20200801</enddate><creator>Patel, Akhil</creator><creator>Zaky, Samer H.</creator><creator>Schoedel, Karen</creator><creator>Li, Hongshuai</creator><creator>Sant, Vinayak</creator><creator>Beniash, Elia</creator><creator>Sfeir, Charles</creator><creator>Stolz, Donna B.</creator><creator>Sant, Shilpa</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-2017-9584</orcidid><orcidid>https://orcid.org/0000-0003-3163-3292</orcidid></search><sort><creationdate>20200801</creationdate><title>Design and evaluation of collagen-inspired mineral-hydrogel nanocomposites for bone regeneration</title><author>Patel, Akhil ; Zaky, Samer H. ; Schoedel, Karen ; Li, Hongshuai ; Sant, Vinayak ; Beniash, Elia ; Sfeir, Charles ; Stolz, Donna B. ; Sant, Shilpa</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c491t-147e7fc69ccdc4d40bc3b6c41dbfe6da90b6fb8187aa5e74dae9c7240641096f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Allografts</topic><topic>Animals</topic><topic>Apatite</topic><topic>Autografts</topic><topic>Bioactive biomaterials</topic><topic>Biomimetics</topic><topic>Bone grafts</topic><topic>Bone growth</topic><topic>Bone healing</topic><topic>Bone loss</topic><topic>Bone Regeneration</topic><topic>Bone tumors</topic><topic>Calcium</topic><topic>Calcium phosphate</topic><topic>Calcium phosphates</topic><topic>Calvaria</topic><topic>Carrageenan</topic><topic>Chitosan</topic><topic>Collagen</topic><topic>Disease transmission</topic><topic>Evaluation</topic><topic>Fibrous structure</topic><topic>Grafting</topic><topic>Grafts</topic><topic>Growth factors</topic><topic>Health risks</topic><topic>Hydrogels</topic><topic>Hydrogels - pharmacology</topic><topic>Mice</topic><topic>Mineral-hydrogel nanocomposites</topic><topic>Mouse calvaria defect</topic><topic>Nanocomposites</topic><topic>Polysaccharides</topic><topic>Regeneration</topic><topic>Regeneration (physiology)</topic><topic>Saccharides</topic><topic>Side effects</topic><topic>Structural hierarchy</topic><topic>Substitute bone</topic><topic>Tissue Engineering</topic><topic>Trauma</topic><topic>Tumors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Patel, Akhil</creatorcontrib><creatorcontrib>Zaky, Samer H.</creatorcontrib><creatorcontrib>Schoedel, Karen</creatorcontrib><creatorcontrib>Li, Hongshuai</creatorcontrib><creatorcontrib>Sant, Vinayak</creatorcontrib><creatorcontrib>Beniash, Elia</creatorcontrib><creatorcontrib>Sfeir, Charles</creatorcontrib><creatorcontrib>Stolz, Donna B.</creatorcontrib><creatorcontrib>Sant, Shilpa</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Acta biomaterialia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Patel, Akhil</au><au>Zaky, Samer H.</au><au>Schoedel, Karen</au><au>Li, Hongshuai</au><au>Sant, Vinayak</au><au>Beniash, Elia</au><au>Sfeir, Charles</au><au>Stolz, Donna B.</au><au>Sant, Shilpa</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Design and evaluation of collagen-inspired mineral-hydrogel nanocomposites for bone regeneration</atitle><jtitle>Acta biomaterialia</jtitle><addtitle>Acta Biomater</addtitle><date>2020-08-01</date><risdate>2020</risdate><volume>112</volume><spage>262</spage><epage>273</epage><pages>262-273</pages><issn>1742-7061</issn><eissn>1878-7568</eissn><abstract>Bone loss due to trauma and tumors remains a serious clinical concern. Due to limited availability and disease transmission risk with autografts and allografts, calcium phosphate bone fillers and growth factor-based substitute bone grafts are currently used in the clinic. However, substitute grafts lack bone regeneration potential when used without growth factors. When used along with the added growth factors, they lead to unwanted side effects such as uncontrolled bone growth. Collagen-based hydrogel grafts available on the market fail to provide structural guidance to native cells due to high water-solubility and faster degradation. To overcome these limitations, we employed bioinspired material design and fabricated three different hydrogels with structural features similar to native collagen at multiple length-scales. These hydrogels fabricated using polyionic complexation of oppositely charged natural polysaccharides exhibited multi-scale architecture mimicking nanoscale banding pattern, and microscale fibrous structure of native collagen. All three hydrogels promoted biomimetic apatite-like mineral deposition in vitro elucidating crystalline structure on the surface while amorphous calcium phosphate inside the hydrogels resulting in mineral-hydrogel nanocomposites. When evaluated in a non-load bearing critical size mouse calvaria defect model, chitosan - kappa carrageenan mineral-hydrogel nanocomposites enhanced bone regeneration without added growth factors compared to empty defect as well as widely used marketed collagen scaffolds. Histological assessment of the regenerated bone revealed improved healing and tissue remodeling with mineral-hydrogel nanocomposites. Overall, these collagen-inspired mineral-hydrogel nanocomposites showed multi-scale hierarchical structure and can potentially serve as promising bioactive hydrogel to promote bone regeneration. Hydrogels, especially collagen, are widely used in bone tissue engineering. Collagen fibrils play arguably the most important role during natural bone development. Its multi-scale hierarchical structure to form fibers from fibrils and electrostatic charges enable mineral sequestration, nucleation, and growth. However, bulk collagen hydrogels exhibit limited bone regeneration and are mostly used as carriers for highly potent growth factors such as bone morphogenic protein-2, which increase the risk of uncontrolled bone growth. Thus, there is an unmet clinical need for a collagen-inspired biomaterial that can recreate structural hierarchy, mineral sequestration ability, and stimulate recruitment of host progenitor cells to facilitate bone regeneration. Here, we propose collagen-inspired bioactive mineral-hydrogel nanocomposites as a growth factor-free approach to guide and enhance bone regeneration. [Display omitted]</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>32497742</pmid><doi>10.1016/j.actbio.2020.05.034</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-2017-9584</orcidid><orcidid>https://orcid.org/0000-0003-3163-3292</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1742-7061
ispartof Acta biomaterialia, 2020-08, Vol.112, p.262-273
issn 1742-7061
1878-7568
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7446305
source MEDLINE; Access via ScienceDirect (Elsevier)
subjects Allografts
Animals
Apatite
Autografts
Bioactive biomaterials
Biomimetics
Bone grafts
Bone growth
Bone healing
Bone loss
Bone Regeneration
Bone tumors
Calcium
Calcium phosphate
Calcium phosphates
Calvaria
Carrageenan
Chitosan
Collagen
Disease transmission
Evaluation
Fibrous structure
Grafting
Grafts
Growth factors
Health risks
Hydrogels
Hydrogels - pharmacology
Mice
Mineral-hydrogel nanocomposites
Mouse calvaria defect
Nanocomposites
Polysaccharides
Regeneration
Regeneration (physiology)
Saccharides
Side effects
Structural hierarchy
Substitute bone
Tissue Engineering
Trauma
Tumors
title Design and evaluation of collagen-inspired mineral-hydrogel nanocomposites for bone regeneration
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T20%3A02%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Design%20and%20evaluation%20of%20collagen-inspired%20mineral-hydrogel%20nanocomposites%20for%20bone%20regeneration&rft.jtitle=Acta%20biomaterialia&rft.au=Patel,%20Akhil&rft.date=2020-08-01&rft.volume=112&rft.spage=262&rft.epage=273&rft.pages=262-273&rft.issn=1742-7061&rft.eissn=1878-7568&rft_id=info:doi/10.1016/j.actbio.2020.05.034&rft_dat=%3Cproquest_pubme%3E2446723278%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2446723278&rft_id=info:pmid/32497742&rft_els_id=S1742706120303044&rfr_iscdi=true