Interdependence and the cost of uncoordinated responses to COVID-19
Social distancing is the core policy response to coronavirus disease 2019 (COVID-19). But, as federal, state and local governments begin opening businesses and relaxing shelter-in-place orders worldwide, we lack quantitative evidence on how policies in one region affect mobility and social distancin...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2020-08, Vol.117 (33), p.19837-19843 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 19843 |
---|---|
container_issue | 33 |
container_start_page | 19837 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 117 |
creator | Holtz, David Zhao, Michael Benzell, Seth G. Cao, Cathy Y. Rahimian, Mohammad Amin Yang, Jeremy Allen, Jennifer Collis, Avinash Moehring, Alex Sowrirajan, Tara Ghosh, Dipayan Zhang, Yunhao Dhillon, Paramveer S. Nicolaides, Christos Eckles, Dean Aral, Sinan |
description | Social distancing is the core policy response to coronavirus disease 2019 (COVID-19). But, as federal, state and local governments begin opening businesses and relaxing shelter-in-place orders worldwide, we lack quantitative evidence on how policies in one region affect mobility and social distancing in other regions and the consequences of uncoordinated regional policies adopted in the presence of such spillovers. To investigate this concern, we combined daily, county-level data on shelter-in-place policies with movement data from over 27 million mobile devices, social network connections among over 220 million Facebook users, daily temperature and precipitation data from 62,000 weather stations, and county-level census data on population demographics to estimate the geographic and social network spillovers created by regional policies across the United States. Our analysis shows that the contact patterns of people in a given region are significantly influenced by the policies and behaviors of people in other, sometimes distant, regions. When just one-third of a state’s social and geographic peer states adopt shelter-in-place policies, it creates a reduction in mobility equal to the state’s own policy decisions. These spillovers are mediated by peer travel and distancing behaviors in those states. A simple analytical model calibrated with our empirical estimates demonstrated that the “loss from anarchy” in uncoordinated state policies is increasing in the number of noncooperating states and the size of social and geographic spillovers. These results suggest a substantial cost of uncoordinated government responses to COVID-19 when people, ideas, and media move across borders. |
doi_str_mv | 10.1073/pnas.2009522117 |
format | Article |
fullrecord | <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7443871</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26968579</jstor_id><sourcerecordid>26968579</sourcerecordid><originalsourceid>FETCH-LOGICAL-c509t-96574f898cc3d2449b7cd3fe189275de5b91b5c9bb24bfed9f2f543ac32d13a43</originalsourceid><addsrcrecordid>eNpd0c1r2zAYBnAxVta023mnFsMuvTjRp2VdBiNru0Agl3ZXIUuvF4dEciW5sP--DsnSricd3p8e9OpB6CvBU4Ilm_XepCnFWAlKCZEf0IRgRcqKK_wRTTCmsqw55efoIqUN3rsaf0LnjEpGOWMTNF_4DNFBD96Bt1AY74q8hsKGlIvQFoO3IUTXeZPBFRFSH3yCVORQzFe_Fz9Loj6js9ZsE3w5npfo8e72Yf6rXK7uF_Mfy9IKrHKpKiF5W6vaWuYo56qR1rEWSK2oFA5Eo0gjrGoaypsWnGppKzgzllFHmOHsEn0_5PZDswNnwedotrqP3c7EvzqYTv8_8d1a_wnPWnLOaknGgJtjQAxPA6Ssd12ysN0aD2FImnKqpKRY4JF-e0c3YYh-XG9UrOLjD9ZsVLODsjGkFKE9PYZgvS9I7wvSrwWNN67f7nDy_xoZwdUBbFIO8TSnlapqIRV7AUT3lag</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2436432783</pqid></control><display><type>article</type><title>Interdependence and the cost of uncoordinated responses to COVID-19</title><source>Jstor Complete Legacy</source><source>MEDLINE</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Holtz, David ; Zhao, Michael ; Benzell, Seth G. ; Cao, Cathy Y. ; Rahimian, Mohammad Amin ; Yang, Jeremy ; Allen, Jennifer ; Collis, Avinash ; Moehring, Alex ; Sowrirajan, Tara ; Ghosh, Dipayan ; Zhang, Yunhao ; Dhillon, Paramveer S. ; Nicolaides, Christos ; Eckles, Dean ; Aral, Sinan</creator><creatorcontrib>Holtz, David ; Zhao, Michael ; Benzell, Seth G. ; Cao, Cathy Y. ; Rahimian, Mohammad Amin ; Yang, Jeremy ; Allen, Jennifer ; Collis, Avinash ; Moehring, Alex ; Sowrirajan, Tara ; Ghosh, Dipayan ; Zhang, Yunhao ; Dhillon, Paramveer S. ; Nicolaides, Christos ; Eckles, Dean ; Aral, Sinan</creatorcontrib><description>Social distancing is the core policy response to coronavirus disease 2019 (COVID-19). But, as federal, state and local governments begin opening businesses and relaxing shelter-in-place orders worldwide, we lack quantitative evidence on how policies in one region affect mobility and social distancing in other regions and the consequences of uncoordinated regional policies adopted in the presence of such spillovers. To investigate this concern, we combined daily, county-level data on shelter-in-place policies with movement data from over 27 million mobile devices, social network connections among over 220 million Facebook users, daily temperature and precipitation data from 62,000 weather stations, and county-level census data on population demographics to estimate the geographic and social network spillovers created by regional policies across the United States. Our analysis shows that the contact patterns of people in a given region are significantly influenced by the policies and behaviors of people in other, sometimes distant, regions. When just one-third of a state’s social and geographic peer states adopt shelter-in-place policies, it creates a reduction in mobility equal to the state’s own policy decisions. These spillovers are mediated by peer travel and distancing behaviors in those states. A simple analytical model calibrated with our empirical estimates demonstrated that the “loss from anarchy” in uncoordinated state policies is increasing in the number of noncooperating states and the size of social and geographic spillovers. These results suggest a substantial cost of uncoordinated government responses to COVID-19 when people, ideas, and media move across borders.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.2009522117</identifier><identifier>PMID: 32732433</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject><![CDATA[Coronavirus Infections - economics ; Coronavirus Infections - prevention & control ; Coronaviruses ; Cost-Benefit Analysis ; COVID-19 ; COVID-19 - economics ; COVID-19 - prevention & control ; Demographics ; Demography ; Demography - statistics & numerical data ; Disease control ; Efficiency, Organizational ; Electronic devices ; Empirical analysis ; Humans ; Hydrologic data ; Local government ; Logistic Models ; Mobility ; Pandemics - economics ; Pandemics - prevention & control ; Physical Distancing ; Pneumonia, Viral - economics ; Pneumonia, Viral - prevention & control ; Policies ; Quarantine - economics ; Quarantine - methods ; Quarantine - organization & administration ; Shelter in place ; Shelters ; Social distancing ; Social Media - statistics & numerical data ; Social networks ; Social organization ; Social Sciences ; State policies ; Transportation - statistics & numerical data ; United States ; Viral diseases ; Weather stations ; Wireless networks]]></subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2020-08, Vol.117 (33), p.19837-19843</ispartof><rights>Copyright National Academy of Sciences Aug 18, 2020</rights><rights>2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c509t-96574f898cc3d2449b7cd3fe189275de5b91b5c9bb24bfed9f2f543ac32d13a43</citedby><cites>FETCH-LOGICAL-c509t-96574f898cc3d2449b7cd3fe189275de5b91b5c9bb24bfed9f2f543ac32d13a43</cites><orcidid>0000-0001-8439-442X ; 0000-0003-2454-198X ; 0000-0002-1485-2736 ; 0000-0002-8005-5014 ; 0000-0001-9384-1041 ; 0000-0002-0896-8628 ; 0000-0003-1277-3644 ; 0000-0002-0994-9488 ; 0000-0002-2762-058X ; 0000-0001-5582-9332 ; 0000-0002-9254-4659</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26968579$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26968579$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,799,881,27901,27902,53766,53768,57992,58225</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32732433$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Holtz, David</creatorcontrib><creatorcontrib>Zhao, Michael</creatorcontrib><creatorcontrib>Benzell, Seth G.</creatorcontrib><creatorcontrib>Cao, Cathy Y.</creatorcontrib><creatorcontrib>Rahimian, Mohammad Amin</creatorcontrib><creatorcontrib>Yang, Jeremy</creatorcontrib><creatorcontrib>Allen, Jennifer</creatorcontrib><creatorcontrib>Collis, Avinash</creatorcontrib><creatorcontrib>Moehring, Alex</creatorcontrib><creatorcontrib>Sowrirajan, Tara</creatorcontrib><creatorcontrib>Ghosh, Dipayan</creatorcontrib><creatorcontrib>Zhang, Yunhao</creatorcontrib><creatorcontrib>Dhillon, Paramveer S.</creatorcontrib><creatorcontrib>Nicolaides, Christos</creatorcontrib><creatorcontrib>Eckles, Dean</creatorcontrib><creatorcontrib>Aral, Sinan</creatorcontrib><title>Interdependence and the cost of uncoordinated responses to COVID-19</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Social distancing is the core policy response to coronavirus disease 2019 (COVID-19). But, as federal, state and local governments begin opening businesses and relaxing shelter-in-place orders worldwide, we lack quantitative evidence on how policies in one region affect mobility and social distancing in other regions and the consequences of uncoordinated regional policies adopted in the presence of such spillovers. To investigate this concern, we combined daily, county-level data on shelter-in-place policies with movement data from over 27 million mobile devices, social network connections among over 220 million Facebook users, daily temperature and precipitation data from 62,000 weather stations, and county-level census data on population demographics to estimate the geographic and social network spillovers created by regional policies across the United States. Our analysis shows that the contact patterns of people in a given region are significantly influenced by the policies and behaviors of people in other, sometimes distant, regions. When just one-third of a state’s social and geographic peer states adopt shelter-in-place policies, it creates a reduction in mobility equal to the state’s own policy decisions. These spillovers are mediated by peer travel and distancing behaviors in those states. A simple analytical model calibrated with our empirical estimates demonstrated that the “loss from anarchy” in uncoordinated state policies is increasing in the number of noncooperating states and the size of social and geographic spillovers. These results suggest a substantial cost of uncoordinated government responses to COVID-19 when people, ideas, and media move across borders.</description><subject>Coronavirus Infections - economics</subject><subject>Coronavirus Infections - prevention & control</subject><subject>Coronaviruses</subject><subject>Cost-Benefit Analysis</subject><subject>COVID-19</subject><subject>COVID-19 - economics</subject><subject>COVID-19 - prevention & control</subject><subject>Demographics</subject><subject>Demography</subject><subject>Demography - statistics & numerical data</subject><subject>Disease control</subject><subject>Efficiency, Organizational</subject><subject>Electronic devices</subject><subject>Empirical analysis</subject><subject>Humans</subject><subject>Hydrologic data</subject><subject>Local government</subject><subject>Logistic Models</subject><subject>Mobility</subject><subject>Pandemics - economics</subject><subject>Pandemics - prevention & control</subject><subject>Physical Distancing</subject><subject>Pneumonia, Viral - economics</subject><subject>Pneumonia, Viral - prevention & control</subject><subject>Policies</subject><subject>Quarantine - economics</subject><subject>Quarantine - methods</subject><subject>Quarantine - organization & administration</subject><subject>Shelter in place</subject><subject>Shelters</subject><subject>Social distancing</subject><subject>Social Media - statistics & numerical data</subject><subject>Social networks</subject><subject>Social organization</subject><subject>Social Sciences</subject><subject>State policies</subject><subject>Transportation - statistics & numerical data</subject><subject>United States</subject><subject>Viral diseases</subject><subject>Weather stations</subject><subject>Wireless networks</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpd0c1r2zAYBnAxVta023mnFsMuvTjRp2VdBiNru0Agl3ZXIUuvF4dEciW5sP--DsnSricd3p8e9OpB6CvBU4Ilm_XepCnFWAlKCZEf0IRgRcqKK_wRTTCmsqw55efoIqUN3rsaf0LnjEpGOWMTNF_4DNFBD96Bt1AY74q8hsKGlIvQFoO3IUTXeZPBFRFSH3yCVORQzFe_Fz9Loj6js9ZsE3w5npfo8e72Yf6rXK7uF_Mfy9IKrHKpKiF5W6vaWuYo56qR1rEWSK2oFA5Eo0gjrGoaypsWnGppKzgzllFHmOHsEn0_5PZDswNnwedotrqP3c7EvzqYTv8_8d1a_wnPWnLOaknGgJtjQAxPA6Ssd12ysN0aD2FImnKqpKRY4JF-e0c3YYh-XG9UrOLjD9ZsVLODsjGkFKE9PYZgvS9I7wvSrwWNN67f7nDy_xoZwdUBbFIO8TSnlapqIRV7AUT3lag</recordid><startdate>20200818</startdate><enddate>20200818</enddate><creator>Holtz, David</creator><creator>Zhao, Michael</creator><creator>Benzell, Seth G.</creator><creator>Cao, Cathy Y.</creator><creator>Rahimian, Mohammad Amin</creator><creator>Yang, Jeremy</creator><creator>Allen, Jennifer</creator><creator>Collis, Avinash</creator><creator>Moehring, Alex</creator><creator>Sowrirajan, Tara</creator><creator>Ghosh, Dipayan</creator><creator>Zhang, Yunhao</creator><creator>Dhillon, Paramveer S.</creator><creator>Nicolaides, Christos</creator><creator>Eckles, Dean</creator><creator>Aral, Sinan</creator><general>National Academy of Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-8439-442X</orcidid><orcidid>https://orcid.org/0000-0003-2454-198X</orcidid><orcidid>https://orcid.org/0000-0002-1485-2736</orcidid><orcidid>https://orcid.org/0000-0002-8005-5014</orcidid><orcidid>https://orcid.org/0000-0001-9384-1041</orcidid><orcidid>https://orcid.org/0000-0002-0896-8628</orcidid><orcidid>https://orcid.org/0000-0003-1277-3644</orcidid><orcidid>https://orcid.org/0000-0002-0994-9488</orcidid><orcidid>https://orcid.org/0000-0002-2762-058X</orcidid><orcidid>https://orcid.org/0000-0001-5582-9332</orcidid><orcidid>https://orcid.org/0000-0002-9254-4659</orcidid></search><sort><creationdate>20200818</creationdate><title>Interdependence and the cost of uncoordinated responses to COVID-19</title><author>Holtz, David ; Zhao, Michael ; Benzell, Seth G. ; Cao, Cathy Y. ; Rahimian, Mohammad Amin ; Yang, Jeremy ; Allen, Jennifer ; Collis, Avinash ; Moehring, Alex ; Sowrirajan, Tara ; Ghosh, Dipayan ; Zhang, Yunhao ; Dhillon, Paramveer S. ; Nicolaides, Christos ; Eckles, Dean ; Aral, Sinan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c509t-96574f898cc3d2449b7cd3fe189275de5b91b5c9bb24bfed9f2f543ac32d13a43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Coronavirus Infections - economics</topic><topic>Coronavirus Infections - prevention & control</topic><topic>Coronaviruses</topic><topic>Cost-Benefit Analysis</topic><topic>COVID-19</topic><topic>COVID-19 - economics</topic><topic>COVID-19 - prevention & control</topic><topic>Demographics</topic><topic>Demography</topic><topic>Demography - statistics & numerical data</topic><topic>Disease control</topic><topic>Efficiency, Organizational</topic><topic>Electronic devices</topic><topic>Empirical analysis</topic><topic>Humans</topic><topic>Hydrologic data</topic><topic>Local government</topic><topic>Logistic Models</topic><topic>Mobility</topic><topic>Pandemics - economics</topic><topic>Pandemics - prevention & control</topic><topic>Physical Distancing</topic><topic>Pneumonia, Viral - economics</topic><topic>Pneumonia, Viral - prevention & control</topic><topic>Policies</topic><topic>Quarantine - economics</topic><topic>Quarantine - methods</topic><topic>Quarantine - organization & administration</topic><topic>Shelter in place</topic><topic>Shelters</topic><topic>Social distancing</topic><topic>Social Media - statistics & numerical data</topic><topic>Social networks</topic><topic>Social organization</topic><topic>Social Sciences</topic><topic>State policies</topic><topic>Transportation - statistics & numerical data</topic><topic>United States</topic><topic>Viral diseases</topic><topic>Weather stations</topic><topic>Wireless networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Holtz, David</creatorcontrib><creatorcontrib>Zhao, Michael</creatorcontrib><creatorcontrib>Benzell, Seth G.</creatorcontrib><creatorcontrib>Cao, Cathy Y.</creatorcontrib><creatorcontrib>Rahimian, Mohammad Amin</creatorcontrib><creatorcontrib>Yang, Jeremy</creatorcontrib><creatorcontrib>Allen, Jennifer</creatorcontrib><creatorcontrib>Collis, Avinash</creatorcontrib><creatorcontrib>Moehring, Alex</creatorcontrib><creatorcontrib>Sowrirajan, Tara</creatorcontrib><creatorcontrib>Ghosh, Dipayan</creatorcontrib><creatorcontrib>Zhang, Yunhao</creatorcontrib><creatorcontrib>Dhillon, Paramveer S.</creatorcontrib><creatorcontrib>Nicolaides, Christos</creatorcontrib><creatorcontrib>Eckles, Dean</creatorcontrib><creatorcontrib>Aral, Sinan</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Holtz, David</au><au>Zhao, Michael</au><au>Benzell, Seth G.</au><au>Cao, Cathy Y.</au><au>Rahimian, Mohammad Amin</au><au>Yang, Jeremy</au><au>Allen, Jennifer</au><au>Collis, Avinash</au><au>Moehring, Alex</au><au>Sowrirajan, Tara</au><au>Ghosh, Dipayan</au><au>Zhang, Yunhao</au><au>Dhillon, Paramveer S.</au><au>Nicolaides, Christos</au><au>Eckles, Dean</au><au>Aral, Sinan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Interdependence and the cost of uncoordinated responses to COVID-19</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2020-08-18</date><risdate>2020</risdate><volume>117</volume><issue>33</issue><spage>19837</spage><epage>19843</epage><pages>19837-19843</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Social distancing is the core policy response to coronavirus disease 2019 (COVID-19). But, as federal, state and local governments begin opening businesses and relaxing shelter-in-place orders worldwide, we lack quantitative evidence on how policies in one region affect mobility and social distancing in other regions and the consequences of uncoordinated regional policies adopted in the presence of such spillovers. To investigate this concern, we combined daily, county-level data on shelter-in-place policies with movement data from over 27 million mobile devices, social network connections among over 220 million Facebook users, daily temperature and precipitation data from 62,000 weather stations, and county-level census data on population demographics to estimate the geographic and social network spillovers created by regional policies across the United States. Our analysis shows that the contact patterns of people in a given region are significantly influenced by the policies and behaviors of people in other, sometimes distant, regions. When just one-third of a state’s social and geographic peer states adopt shelter-in-place policies, it creates a reduction in mobility equal to the state’s own policy decisions. These spillovers are mediated by peer travel and distancing behaviors in those states. A simple analytical model calibrated with our empirical estimates demonstrated that the “loss from anarchy” in uncoordinated state policies is increasing in the number of noncooperating states and the size of social and geographic spillovers. These results suggest a substantial cost of uncoordinated government responses to COVID-19 when people, ideas, and media move across borders.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>32732433</pmid><doi>10.1073/pnas.2009522117</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0001-8439-442X</orcidid><orcidid>https://orcid.org/0000-0003-2454-198X</orcidid><orcidid>https://orcid.org/0000-0002-1485-2736</orcidid><orcidid>https://orcid.org/0000-0002-8005-5014</orcidid><orcidid>https://orcid.org/0000-0001-9384-1041</orcidid><orcidid>https://orcid.org/0000-0002-0896-8628</orcidid><orcidid>https://orcid.org/0000-0003-1277-3644</orcidid><orcidid>https://orcid.org/0000-0002-0994-9488</orcidid><orcidid>https://orcid.org/0000-0002-2762-058X</orcidid><orcidid>https://orcid.org/0000-0001-5582-9332</orcidid><orcidid>https://orcid.org/0000-0002-9254-4659</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2020-08, Vol.117 (33), p.19837-19843 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7443871 |
source | Jstor Complete Legacy; MEDLINE; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Coronavirus Infections - economics Coronavirus Infections - prevention & control Coronaviruses Cost-Benefit Analysis COVID-19 COVID-19 - economics COVID-19 - prevention & control Demographics Demography Demography - statistics & numerical data Disease control Efficiency, Organizational Electronic devices Empirical analysis Humans Hydrologic data Local government Logistic Models Mobility Pandemics - economics Pandemics - prevention & control Physical Distancing Pneumonia, Viral - economics Pneumonia, Viral - prevention & control Policies Quarantine - economics Quarantine - methods Quarantine - organization & administration Shelter in place Shelters Social distancing Social Media - statistics & numerical data Social networks Social organization Social Sciences State policies Transportation - statistics & numerical data United States Viral diseases Weather stations Wireless networks |
title | Interdependence and the cost of uncoordinated responses to COVID-19 |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T21%3A11%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Interdependence%20and%20the%20cost%20of%20uncoordinated%20responses%20to%20COVID-19&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Holtz,%20David&rft.date=2020-08-18&rft.volume=117&rft.issue=33&rft.spage=19837&rft.epage=19843&rft.pages=19837-19843&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.2009522117&rft_dat=%3Cjstor_pubme%3E26968579%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2436432783&rft_id=info:pmid/32732433&rft_jstor_id=26968579&rfr_iscdi=true |