Interdependence and the cost of uncoordinated responses to COVID-19

Social distancing is the core policy response to coronavirus disease 2019 (COVID-19). But, as federal, state and local governments begin opening businesses and relaxing shelter-in-place orders worldwide, we lack quantitative evidence on how policies in one region affect mobility and social distancin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2020-08, Vol.117 (33), p.19837-19843
Hauptverfasser: Holtz, David, Zhao, Michael, Benzell, Seth G., Cao, Cathy Y., Rahimian, Mohammad Amin, Yang, Jeremy, Allen, Jennifer, Collis, Avinash, Moehring, Alex, Sowrirajan, Tara, Ghosh, Dipayan, Zhang, Yunhao, Dhillon, Paramveer S., Nicolaides, Christos, Eckles, Dean, Aral, Sinan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 19843
container_issue 33
container_start_page 19837
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 117
creator Holtz, David
Zhao, Michael
Benzell, Seth G.
Cao, Cathy Y.
Rahimian, Mohammad Amin
Yang, Jeremy
Allen, Jennifer
Collis, Avinash
Moehring, Alex
Sowrirajan, Tara
Ghosh, Dipayan
Zhang, Yunhao
Dhillon, Paramveer S.
Nicolaides, Christos
Eckles, Dean
Aral, Sinan
description Social distancing is the core policy response to coronavirus disease 2019 (COVID-19). But, as federal, state and local governments begin opening businesses and relaxing shelter-in-place orders worldwide, we lack quantitative evidence on how policies in one region affect mobility and social distancing in other regions and the consequences of uncoordinated regional policies adopted in the presence of such spillovers. To investigate this concern, we combined daily, county-level data on shelter-in-place policies with movement data from over 27 million mobile devices, social network connections among over 220 million Facebook users, daily temperature and precipitation data from 62,000 weather stations, and county-level census data on population demographics to estimate the geographic and social network spillovers created by regional policies across the United States. Our analysis shows that the contact patterns of people in a given region are significantly influenced by the policies and behaviors of people in other, sometimes distant, regions. When just one-third of a state’s social and geographic peer states adopt shelter-in-place policies, it creates a reduction in mobility equal to the state’s own policy decisions. These spillovers are mediated by peer travel and distancing behaviors in those states. A simple analytical model calibrated with our empirical estimates demonstrated that the “loss from anarchy” in uncoordinated state policies is increasing in the number of noncooperating states and the size of social and geographic spillovers. These results suggest a substantial cost of uncoordinated government responses to COVID-19 when people, ideas, and media move across borders.
doi_str_mv 10.1073/pnas.2009522117
format Article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7443871</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26968579</jstor_id><sourcerecordid>26968579</sourcerecordid><originalsourceid>FETCH-LOGICAL-c509t-96574f898cc3d2449b7cd3fe189275de5b91b5c9bb24bfed9f2f543ac32d13a43</originalsourceid><addsrcrecordid>eNpd0c1r2zAYBnAxVta023mnFsMuvTjRp2VdBiNru0Agl3ZXIUuvF4dEciW5sP--DsnSricd3p8e9OpB6CvBU4Ilm_XepCnFWAlKCZEf0IRgRcqKK_wRTTCmsqw55efoIqUN3rsaf0LnjEpGOWMTNF_4DNFBD96Bt1AY74q8hsKGlIvQFoO3IUTXeZPBFRFSH3yCVORQzFe_Fz9Loj6js9ZsE3w5npfo8e72Yf6rXK7uF_Mfy9IKrHKpKiF5W6vaWuYo56qR1rEWSK2oFA5Eo0gjrGoaypsWnGppKzgzllFHmOHsEn0_5PZDswNnwedotrqP3c7EvzqYTv8_8d1a_wnPWnLOaknGgJtjQAxPA6Ssd12ysN0aD2FImnKqpKRY4JF-e0c3YYh-XG9UrOLjD9ZsVLODsjGkFKE9PYZgvS9I7wvSrwWNN67f7nDy_xoZwdUBbFIO8TSnlapqIRV7AUT3lag</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2436432783</pqid></control><display><type>article</type><title>Interdependence and the cost of uncoordinated responses to COVID-19</title><source>Jstor Complete Legacy</source><source>MEDLINE</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Holtz, David ; Zhao, Michael ; Benzell, Seth G. ; Cao, Cathy Y. ; Rahimian, Mohammad Amin ; Yang, Jeremy ; Allen, Jennifer ; Collis, Avinash ; Moehring, Alex ; Sowrirajan, Tara ; Ghosh, Dipayan ; Zhang, Yunhao ; Dhillon, Paramveer S. ; Nicolaides, Christos ; Eckles, Dean ; Aral, Sinan</creator><creatorcontrib>Holtz, David ; Zhao, Michael ; Benzell, Seth G. ; Cao, Cathy Y. ; Rahimian, Mohammad Amin ; Yang, Jeremy ; Allen, Jennifer ; Collis, Avinash ; Moehring, Alex ; Sowrirajan, Tara ; Ghosh, Dipayan ; Zhang, Yunhao ; Dhillon, Paramveer S. ; Nicolaides, Christos ; Eckles, Dean ; Aral, Sinan</creatorcontrib><description>Social distancing is the core policy response to coronavirus disease 2019 (COVID-19). But, as federal, state and local governments begin opening businesses and relaxing shelter-in-place orders worldwide, we lack quantitative evidence on how policies in one region affect mobility and social distancing in other regions and the consequences of uncoordinated regional policies adopted in the presence of such spillovers. To investigate this concern, we combined daily, county-level data on shelter-in-place policies with movement data from over 27 million mobile devices, social network connections among over 220 million Facebook users, daily temperature and precipitation data from 62,000 weather stations, and county-level census data on population demographics to estimate the geographic and social network spillovers created by regional policies across the United States. Our analysis shows that the contact patterns of people in a given region are significantly influenced by the policies and behaviors of people in other, sometimes distant, regions. When just one-third of a state’s social and geographic peer states adopt shelter-in-place policies, it creates a reduction in mobility equal to the state’s own policy decisions. These spillovers are mediated by peer travel and distancing behaviors in those states. A simple analytical model calibrated with our empirical estimates demonstrated that the “loss from anarchy” in uncoordinated state policies is increasing in the number of noncooperating states and the size of social and geographic spillovers. These results suggest a substantial cost of uncoordinated government responses to COVID-19 when people, ideas, and media move across borders.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.2009522117</identifier><identifier>PMID: 32732433</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject><![CDATA[Coronavirus Infections - economics ; Coronavirus Infections - prevention & control ; Coronaviruses ; Cost-Benefit Analysis ; COVID-19 ; COVID-19 - economics ; COVID-19 - prevention & control ; Demographics ; Demography ; Demography - statistics & numerical data ; Disease control ; Efficiency, Organizational ; Electronic devices ; Empirical analysis ; Humans ; Hydrologic data ; Local government ; Logistic Models ; Mobility ; Pandemics - economics ; Pandemics - prevention & control ; Physical Distancing ; Pneumonia, Viral - economics ; Pneumonia, Viral - prevention & control ; Policies ; Quarantine - economics ; Quarantine - methods ; Quarantine - organization & administration ; Shelter in place ; Shelters ; Social distancing ; Social Media - statistics & numerical data ; Social networks ; Social organization ; Social Sciences ; State policies ; Transportation - statistics & numerical data ; United States ; Viral diseases ; Weather stations ; Wireless networks]]></subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2020-08, Vol.117 (33), p.19837-19843</ispartof><rights>Copyright National Academy of Sciences Aug 18, 2020</rights><rights>2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c509t-96574f898cc3d2449b7cd3fe189275de5b91b5c9bb24bfed9f2f543ac32d13a43</citedby><cites>FETCH-LOGICAL-c509t-96574f898cc3d2449b7cd3fe189275de5b91b5c9bb24bfed9f2f543ac32d13a43</cites><orcidid>0000-0001-8439-442X ; 0000-0003-2454-198X ; 0000-0002-1485-2736 ; 0000-0002-8005-5014 ; 0000-0001-9384-1041 ; 0000-0002-0896-8628 ; 0000-0003-1277-3644 ; 0000-0002-0994-9488 ; 0000-0002-2762-058X ; 0000-0001-5582-9332 ; 0000-0002-9254-4659</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26968579$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26968579$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,799,881,27901,27902,53766,53768,57992,58225</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32732433$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Holtz, David</creatorcontrib><creatorcontrib>Zhao, Michael</creatorcontrib><creatorcontrib>Benzell, Seth G.</creatorcontrib><creatorcontrib>Cao, Cathy Y.</creatorcontrib><creatorcontrib>Rahimian, Mohammad Amin</creatorcontrib><creatorcontrib>Yang, Jeremy</creatorcontrib><creatorcontrib>Allen, Jennifer</creatorcontrib><creatorcontrib>Collis, Avinash</creatorcontrib><creatorcontrib>Moehring, Alex</creatorcontrib><creatorcontrib>Sowrirajan, Tara</creatorcontrib><creatorcontrib>Ghosh, Dipayan</creatorcontrib><creatorcontrib>Zhang, Yunhao</creatorcontrib><creatorcontrib>Dhillon, Paramveer S.</creatorcontrib><creatorcontrib>Nicolaides, Christos</creatorcontrib><creatorcontrib>Eckles, Dean</creatorcontrib><creatorcontrib>Aral, Sinan</creatorcontrib><title>Interdependence and the cost of uncoordinated responses to COVID-19</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Social distancing is the core policy response to coronavirus disease 2019 (COVID-19). But, as federal, state and local governments begin opening businesses and relaxing shelter-in-place orders worldwide, we lack quantitative evidence on how policies in one region affect mobility and social distancing in other regions and the consequences of uncoordinated regional policies adopted in the presence of such spillovers. To investigate this concern, we combined daily, county-level data on shelter-in-place policies with movement data from over 27 million mobile devices, social network connections among over 220 million Facebook users, daily temperature and precipitation data from 62,000 weather stations, and county-level census data on population demographics to estimate the geographic and social network spillovers created by regional policies across the United States. Our analysis shows that the contact patterns of people in a given region are significantly influenced by the policies and behaviors of people in other, sometimes distant, regions. When just one-third of a state’s social and geographic peer states adopt shelter-in-place policies, it creates a reduction in mobility equal to the state’s own policy decisions. These spillovers are mediated by peer travel and distancing behaviors in those states. A simple analytical model calibrated with our empirical estimates demonstrated that the “loss from anarchy” in uncoordinated state policies is increasing in the number of noncooperating states and the size of social and geographic spillovers. These results suggest a substantial cost of uncoordinated government responses to COVID-19 when people, ideas, and media move across borders.</description><subject>Coronavirus Infections - economics</subject><subject>Coronavirus Infections - prevention &amp; control</subject><subject>Coronaviruses</subject><subject>Cost-Benefit Analysis</subject><subject>COVID-19</subject><subject>COVID-19 - economics</subject><subject>COVID-19 - prevention &amp; control</subject><subject>Demographics</subject><subject>Demography</subject><subject>Demography - statistics &amp; numerical data</subject><subject>Disease control</subject><subject>Efficiency, Organizational</subject><subject>Electronic devices</subject><subject>Empirical analysis</subject><subject>Humans</subject><subject>Hydrologic data</subject><subject>Local government</subject><subject>Logistic Models</subject><subject>Mobility</subject><subject>Pandemics - economics</subject><subject>Pandemics - prevention &amp; control</subject><subject>Physical Distancing</subject><subject>Pneumonia, Viral - economics</subject><subject>Pneumonia, Viral - prevention &amp; control</subject><subject>Policies</subject><subject>Quarantine - economics</subject><subject>Quarantine - methods</subject><subject>Quarantine - organization &amp; administration</subject><subject>Shelter in place</subject><subject>Shelters</subject><subject>Social distancing</subject><subject>Social Media - statistics &amp; numerical data</subject><subject>Social networks</subject><subject>Social organization</subject><subject>Social Sciences</subject><subject>State policies</subject><subject>Transportation - statistics &amp; numerical data</subject><subject>United States</subject><subject>Viral diseases</subject><subject>Weather stations</subject><subject>Wireless networks</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpd0c1r2zAYBnAxVta023mnFsMuvTjRp2VdBiNru0Agl3ZXIUuvF4dEciW5sP--DsnSricd3p8e9OpB6CvBU4Ilm_XepCnFWAlKCZEf0IRgRcqKK_wRTTCmsqw55efoIqUN3rsaf0LnjEpGOWMTNF_4DNFBD96Bt1AY74q8hsKGlIvQFoO3IUTXeZPBFRFSH3yCVORQzFe_Fz9Loj6js9ZsE3w5npfo8e72Yf6rXK7uF_Mfy9IKrHKpKiF5W6vaWuYo56qR1rEWSK2oFA5Eo0gjrGoaypsWnGppKzgzllFHmOHsEn0_5PZDswNnwedotrqP3c7EvzqYTv8_8d1a_wnPWnLOaknGgJtjQAxPA6Ssd12ysN0aD2FImnKqpKRY4JF-e0c3YYh-XG9UrOLjD9ZsVLODsjGkFKE9PYZgvS9I7wvSrwWNN67f7nDy_xoZwdUBbFIO8TSnlapqIRV7AUT3lag</recordid><startdate>20200818</startdate><enddate>20200818</enddate><creator>Holtz, David</creator><creator>Zhao, Michael</creator><creator>Benzell, Seth G.</creator><creator>Cao, Cathy Y.</creator><creator>Rahimian, Mohammad Amin</creator><creator>Yang, Jeremy</creator><creator>Allen, Jennifer</creator><creator>Collis, Avinash</creator><creator>Moehring, Alex</creator><creator>Sowrirajan, Tara</creator><creator>Ghosh, Dipayan</creator><creator>Zhang, Yunhao</creator><creator>Dhillon, Paramveer S.</creator><creator>Nicolaides, Christos</creator><creator>Eckles, Dean</creator><creator>Aral, Sinan</creator><general>National Academy of Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-8439-442X</orcidid><orcidid>https://orcid.org/0000-0003-2454-198X</orcidid><orcidid>https://orcid.org/0000-0002-1485-2736</orcidid><orcidid>https://orcid.org/0000-0002-8005-5014</orcidid><orcidid>https://orcid.org/0000-0001-9384-1041</orcidid><orcidid>https://orcid.org/0000-0002-0896-8628</orcidid><orcidid>https://orcid.org/0000-0003-1277-3644</orcidid><orcidid>https://orcid.org/0000-0002-0994-9488</orcidid><orcidid>https://orcid.org/0000-0002-2762-058X</orcidid><orcidid>https://orcid.org/0000-0001-5582-9332</orcidid><orcidid>https://orcid.org/0000-0002-9254-4659</orcidid></search><sort><creationdate>20200818</creationdate><title>Interdependence and the cost of uncoordinated responses to COVID-19</title><author>Holtz, David ; Zhao, Michael ; Benzell, Seth G. ; Cao, Cathy Y. ; Rahimian, Mohammad Amin ; Yang, Jeremy ; Allen, Jennifer ; Collis, Avinash ; Moehring, Alex ; Sowrirajan, Tara ; Ghosh, Dipayan ; Zhang, Yunhao ; Dhillon, Paramveer S. ; Nicolaides, Christos ; Eckles, Dean ; Aral, Sinan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c509t-96574f898cc3d2449b7cd3fe189275de5b91b5c9bb24bfed9f2f543ac32d13a43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Coronavirus Infections - economics</topic><topic>Coronavirus Infections - prevention &amp; control</topic><topic>Coronaviruses</topic><topic>Cost-Benefit Analysis</topic><topic>COVID-19</topic><topic>COVID-19 - economics</topic><topic>COVID-19 - prevention &amp; control</topic><topic>Demographics</topic><topic>Demography</topic><topic>Demography - statistics &amp; numerical data</topic><topic>Disease control</topic><topic>Efficiency, Organizational</topic><topic>Electronic devices</topic><topic>Empirical analysis</topic><topic>Humans</topic><topic>Hydrologic data</topic><topic>Local government</topic><topic>Logistic Models</topic><topic>Mobility</topic><topic>Pandemics - economics</topic><topic>Pandemics - prevention &amp; control</topic><topic>Physical Distancing</topic><topic>Pneumonia, Viral - economics</topic><topic>Pneumonia, Viral - prevention &amp; control</topic><topic>Policies</topic><topic>Quarantine - economics</topic><topic>Quarantine - methods</topic><topic>Quarantine - organization &amp; administration</topic><topic>Shelter in place</topic><topic>Shelters</topic><topic>Social distancing</topic><topic>Social Media - statistics &amp; numerical data</topic><topic>Social networks</topic><topic>Social organization</topic><topic>Social Sciences</topic><topic>State policies</topic><topic>Transportation - statistics &amp; numerical data</topic><topic>United States</topic><topic>Viral diseases</topic><topic>Weather stations</topic><topic>Wireless networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Holtz, David</creatorcontrib><creatorcontrib>Zhao, Michael</creatorcontrib><creatorcontrib>Benzell, Seth G.</creatorcontrib><creatorcontrib>Cao, Cathy Y.</creatorcontrib><creatorcontrib>Rahimian, Mohammad Amin</creatorcontrib><creatorcontrib>Yang, Jeremy</creatorcontrib><creatorcontrib>Allen, Jennifer</creatorcontrib><creatorcontrib>Collis, Avinash</creatorcontrib><creatorcontrib>Moehring, Alex</creatorcontrib><creatorcontrib>Sowrirajan, Tara</creatorcontrib><creatorcontrib>Ghosh, Dipayan</creatorcontrib><creatorcontrib>Zhang, Yunhao</creatorcontrib><creatorcontrib>Dhillon, Paramveer S.</creatorcontrib><creatorcontrib>Nicolaides, Christos</creatorcontrib><creatorcontrib>Eckles, Dean</creatorcontrib><creatorcontrib>Aral, Sinan</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Holtz, David</au><au>Zhao, Michael</au><au>Benzell, Seth G.</au><au>Cao, Cathy Y.</au><au>Rahimian, Mohammad Amin</au><au>Yang, Jeremy</au><au>Allen, Jennifer</au><au>Collis, Avinash</au><au>Moehring, Alex</au><au>Sowrirajan, Tara</au><au>Ghosh, Dipayan</au><au>Zhang, Yunhao</au><au>Dhillon, Paramveer S.</au><au>Nicolaides, Christos</au><au>Eckles, Dean</au><au>Aral, Sinan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Interdependence and the cost of uncoordinated responses to COVID-19</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2020-08-18</date><risdate>2020</risdate><volume>117</volume><issue>33</issue><spage>19837</spage><epage>19843</epage><pages>19837-19843</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Social distancing is the core policy response to coronavirus disease 2019 (COVID-19). But, as federal, state and local governments begin opening businesses and relaxing shelter-in-place orders worldwide, we lack quantitative evidence on how policies in one region affect mobility and social distancing in other regions and the consequences of uncoordinated regional policies adopted in the presence of such spillovers. To investigate this concern, we combined daily, county-level data on shelter-in-place policies with movement data from over 27 million mobile devices, social network connections among over 220 million Facebook users, daily temperature and precipitation data from 62,000 weather stations, and county-level census data on population demographics to estimate the geographic and social network spillovers created by regional policies across the United States. Our analysis shows that the contact patterns of people in a given region are significantly influenced by the policies and behaviors of people in other, sometimes distant, regions. When just one-third of a state’s social and geographic peer states adopt shelter-in-place policies, it creates a reduction in mobility equal to the state’s own policy decisions. These spillovers are mediated by peer travel and distancing behaviors in those states. A simple analytical model calibrated with our empirical estimates demonstrated that the “loss from anarchy” in uncoordinated state policies is increasing in the number of noncooperating states and the size of social and geographic spillovers. These results suggest a substantial cost of uncoordinated government responses to COVID-19 when people, ideas, and media move across borders.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>32732433</pmid><doi>10.1073/pnas.2009522117</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0001-8439-442X</orcidid><orcidid>https://orcid.org/0000-0003-2454-198X</orcidid><orcidid>https://orcid.org/0000-0002-1485-2736</orcidid><orcidid>https://orcid.org/0000-0002-8005-5014</orcidid><orcidid>https://orcid.org/0000-0001-9384-1041</orcidid><orcidid>https://orcid.org/0000-0002-0896-8628</orcidid><orcidid>https://orcid.org/0000-0003-1277-3644</orcidid><orcidid>https://orcid.org/0000-0002-0994-9488</orcidid><orcidid>https://orcid.org/0000-0002-2762-058X</orcidid><orcidid>https://orcid.org/0000-0001-5582-9332</orcidid><orcidid>https://orcid.org/0000-0002-9254-4659</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2020-08, Vol.117 (33), p.19837-19843
issn 0027-8424
1091-6490
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7443871
source Jstor Complete Legacy; MEDLINE; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Coronavirus Infections - economics
Coronavirus Infections - prevention & control
Coronaviruses
Cost-Benefit Analysis
COVID-19
COVID-19 - economics
COVID-19 - prevention & control
Demographics
Demography
Demography - statistics & numerical data
Disease control
Efficiency, Organizational
Electronic devices
Empirical analysis
Humans
Hydrologic data
Local government
Logistic Models
Mobility
Pandemics - economics
Pandemics - prevention & control
Physical Distancing
Pneumonia, Viral - economics
Pneumonia, Viral - prevention & control
Policies
Quarantine - economics
Quarantine - methods
Quarantine - organization & administration
Shelter in place
Shelters
Social distancing
Social Media - statistics & numerical data
Social networks
Social organization
Social Sciences
State policies
Transportation - statistics & numerical data
United States
Viral diseases
Weather stations
Wireless networks
title Interdependence and the cost of uncoordinated responses to COVID-19
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T21%3A11%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Interdependence%20and%20the%20cost%20of%20uncoordinated%20responses%20to%20COVID-19&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Holtz,%20David&rft.date=2020-08-18&rft.volume=117&rft.issue=33&rft.spage=19837&rft.epage=19843&rft.pages=19837-19843&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.2009522117&rft_dat=%3Cjstor_pubme%3E26968579%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2436432783&rft_id=info:pmid/32732433&rft_jstor_id=26968579&rfr_iscdi=true