Exploring pH Dependent Host/Guest Binding Affinities
When the electrostatic environment surrounding binding partners changes between unbound and bound states, the net uptake or release of a proton is possible by either binding partner. This process is pH-dependent in that the free energy required to uptake or release the proton varies with pH. This pH...
Gespeichert in:
Veröffentlicht in: | The journal of physical chemistry. B 2020-07, Vol.124 (30), p.6520-6528 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 6528 |
---|---|
container_issue | 30 |
container_start_page | 6520 |
container_title | The journal of physical chemistry. B |
container_volume | 124 |
creator | Paul, Thomas J Vilseck, Jonah Z Hayes, Ryan L Brooks, Charles L |
description | When the electrostatic environment surrounding binding partners changes between unbound and bound states, the net uptake or release of a proton is possible by either binding partner. This process is pH-dependent in that the free energy required to uptake or release the proton varies with pH. This pH-dependence is typically not considered in conventional free energy methods where the use of fixed protonation states is the norm. In the present paper, we apply a simple two-step approach to calculate the pH-dependent binding free energy of a model cucubit[7]uril host/guest system. By use of λ-dynamics with an enhanced sampling protocol, adaptive landscape flattening, pK a shifts and reference binding free energies upon complexation were determined. This information enables the construction of pH-dependent binding profiles that accurately capture the pK a shifts and reproduce binding free energies at the different pH conditions that were observed experimentally. Our calculations illustrate a general framework for computing pH-dependent binding free energies but also point to some issues in modeling the molecular charge distributions within this series of molecules with CGenFF. However, by introducing some minor charge modifications to the CGenFF force field, we saw significant improvement in accuracy of the calculated pK a shifts. |
doi_str_mv | 10.1021/acs.jpcb.0c03671 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7442968</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2421122350</sourcerecordid><originalsourceid>FETCH-LOGICAL-a433t-379bd3f4010d9d9d91cfe48c36703df9b29f0ed85642a41a64ff8e355e820c0f3</originalsourceid><addsrcrecordid>eNp1kM9LwzAUx4Mobk7vnmRHD3bLr7bpRZhzbsLAi55D2iYzo0tq0or-96auDj1ICAm87_u-7_sAcIngBEGMpqLwk21d5BNYQJKk6AgMUYxhFG563P8TBJMBOPN-CyGOMUtOwYDgBDPK8BDQxUddWafNZlyvxveylqaUphmvrG-my1b6ZnynTdnVZ0ppoxst_Tk4UaLy8qJ_R-DlYfE8X0Xrp-XjfLaOBCWkiUia5SVRFCJYZt1BhZKUFSEpJKXKcpwpKEsWJxQLikRClWKSxLFkOCykyAjc7n3rNt_JsgjBnKh47fROuE9uheZ_K0a_8o195ymlOEtYMLjuDZx965bhO-0LWVXCSNt6jilGCGMSwyCFe2nhrPdOqsMYBHkHmwfYvIPNe9ih5ep3vEPDD90guNkLvltt60yg9b_fF-Cciyo</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2421122350</pqid></control><display><type>article</type><title>Exploring pH Dependent Host/Guest Binding Affinities</title><source>ACS Publications</source><source>MEDLINE</source><creator>Paul, Thomas J ; Vilseck, Jonah Z ; Hayes, Ryan L ; Brooks, Charles L</creator><creatorcontrib>Paul, Thomas J ; Vilseck, Jonah Z ; Hayes, Ryan L ; Brooks, Charles L</creatorcontrib><description>When the electrostatic environment surrounding binding partners changes between unbound and bound states, the net uptake or release of a proton is possible by either binding partner. This process is pH-dependent in that the free energy required to uptake or release the proton varies with pH. This pH-dependence is typically not considered in conventional free energy methods where the use of fixed protonation states is the norm. In the present paper, we apply a simple two-step approach to calculate the pH-dependent binding free energy of a model cucubit[7]uril host/guest system. By use of λ-dynamics with an enhanced sampling protocol, adaptive landscape flattening, pK a shifts and reference binding free energies upon complexation were determined. This information enables the construction of pH-dependent binding profiles that accurately capture the pK a shifts and reproduce binding free energies at the different pH conditions that were observed experimentally. Our calculations illustrate a general framework for computing pH-dependent binding free energies but also point to some issues in modeling the molecular charge distributions within this series of molecules with CGenFF. However, by introducing some minor charge modifications to the CGenFF force field, we saw significant improvement in accuracy of the calculated pK a shifts.</description><identifier>ISSN: 1520-6106</identifier><identifier>EISSN: 1520-5207</identifier><identifier>DOI: 10.1021/acs.jpcb.0c03671</identifier><identifier>PMID: 32628482</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>B: Biophysics; Physical Chemistry of Biological Systems and Biomolecules ; Hydrogen-Ion Concentration ; Physical Phenomena ; Protons ; Static Electricity ; Thermodynamics</subject><ispartof>The journal of physical chemistry. B, 2020-07, Vol.124 (30), p.6520-6528</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a433t-379bd3f4010d9d9d91cfe48c36703df9b29f0ed85642a41a64ff8e355e820c0f3</citedby><cites>FETCH-LOGICAL-a433t-379bd3f4010d9d9d91cfe48c36703df9b29f0ed85642a41a64ff8e355e820c0f3</cites><orcidid>0000-0002-8149-5417</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jpcb.0c03671$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jpcb.0c03671$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,776,780,881,2752,27055,27903,27904,56716,56766</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32628482$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Paul, Thomas J</creatorcontrib><creatorcontrib>Vilseck, Jonah Z</creatorcontrib><creatorcontrib>Hayes, Ryan L</creatorcontrib><creatorcontrib>Brooks, Charles L</creatorcontrib><title>Exploring pH Dependent Host/Guest Binding Affinities</title><title>The journal of physical chemistry. B</title><addtitle>J. Phys. Chem. B</addtitle><description>When the electrostatic environment surrounding binding partners changes between unbound and bound states, the net uptake or release of a proton is possible by either binding partner. This process is pH-dependent in that the free energy required to uptake or release the proton varies with pH. This pH-dependence is typically not considered in conventional free energy methods where the use of fixed protonation states is the norm. In the present paper, we apply a simple two-step approach to calculate the pH-dependent binding free energy of a model cucubit[7]uril host/guest system. By use of λ-dynamics with an enhanced sampling protocol, adaptive landscape flattening, pK a shifts and reference binding free energies upon complexation were determined. This information enables the construction of pH-dependent binding profiles that accurately capture the pK a shifts and reproduce binding free energies at the different pH conditions that were observed experimentally. Our calculations illustrate a general framework for computing pH-dependent binding free energies but also point to some issues in modeling the molecular charge distributions within this series of molecules with CGenFF. However, by introducing some minor charge modifications to the CGenFF force field, we saw significant improvement in accuracy of the calculated pK a shifts.</description><subject>B: Biophysics; Physical Chemistry of Biological Systems and Biomolecules</subject><subject>Hydrogen-Ion Concentration</subject><subject>Physical Phenomena</subject><subject>Protons</subject><subject>Static Electricity</subject><subject>Thermodynamics</subject><issn>1520-6106</issn><issn>1520-5207</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kM9LwzAUx4Mobk7vnmRHD3bLr7bpRZhzbsLAi55D2iYzo0tq0or-96auDj1ICAm87_u-7_sAcIngBEGMpqLwk21d5BNYQJKk6AgMUYxhFG563P8TBJMBOPN-CyGOMUtOwYDgBDPK8BDQxUddWafNZlyvxveylqaUphmvrG-my1b6ZnynTdnVZ0ppoxst_Tk4UaLy8qJ_R-DlYfE8X0Xrp-XjfLaOBCWkiUia5SVRFCJYZt1BhZKUFSEpJKXKcpwpKEsWJxQLikRClWKSxLFkOCykyAjc7n3rNt_JsgjBnKh47fROuE9uheZ_K0a_8o195ymlOEtYMLjuDZx965bhO-0LWVXCSNt6jilGCGMSwyCFe2nhrPdOqsMYBHkHmwfYvIPNe9ih5ep3vEPDD90guNkLvltt60yg9b_fF-Cciyo</recordid><startdate>20200730</startdate><enddate>20200730</enddate><creator>Paul, Thomas J</creator><creator>Vilseck, Jonah Z</creator><creator>Hayes, Ryan L</creator><creator>Brooks, Charles L</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-8149-5417</orcidid></search><sort><creationdate>20200730</creationdate><title>Exploring pH Dependent Host/Guest Binding Affinities</title><author>Paul, Thomas J ; Vilseck, Jonah Z ; Hayes, Ryan L ; Brooks, Charles L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a433t-379bd3f4010d9d9d91cfe48c36703df9b29f0ed85642a41a64ff8e355e820c0f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>B: Biophysics; Physical Chemistry of Biological Systems and Biomolecules</topic><topic>Hydrogen-Ion Concentration</topic><topic>Physical Phenomena</topic><topic>Protons</topic><topic>Static Electricity</topic><topic>Thermodynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Paul, Thomas J</creatorcontrib><creatorcontrib>Vilseck, Jonah Z</creatorcontrib><creatorcontrib>Hayes, Ryan L</creatorcontrib><creatorcontrib>Brooks, Charles L</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The journal of physical chemistry. B</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Paul, Thomas J</au><au>Vilseck, Jonah Z</au><au>Hayes, Ryan L</au><au>Brooks, Charles L</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Exploring pH Dependent Host/Guest Binding Affinities</atitle><jtitle>The journal of physical chemistry. B</jtitle><addtitle>J. Phys. Chem. B</addtitle><date>2020-07-30</date><risdate>2020</risdate><volume>124</volume><issue>30</issue><spage>6520</spage><epage>6528</epage><pages>6520-6528</pages><issn>1520-6106</issn><eissn>1520-5207</eissn><abstract>When the electrostatic environment surrounding binding partners changes between unbound and bound states, the net uptake or release of a proton is possible by either binding partner. This process is pH-dependent in that the free energy required to uptake or release the proton varies with pH. This pH-dependence is typically not considered in conventional free energy methods where the use of fixed protonation states is the norm. In the present paper, we apply a simple two-step approach to calculate the pH-dependent binding free energy of a model cucubit[7]uril host/guest system. By use of λ-dynamics with an enhanced sampling protocol, adaptive landscape flattening, pK a shifts and reference binding free energies upon complexation were determined. This information enables the construction of pH-dependent binding profiles that accurately capture the pK a shifts and reproduce binding free energies at the different pH conditions that were observed experimentally. Our calculations illustrate a general framework for computing pH-dependent binding free energies but also point to some issues in modeling the molecular charge distributions within this series of molecules with CGenFF. However, by introducing some minor charge modifications to the CGenFF force field, we saw significant improvement in accuracy of the calculated pK a shifts.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>32628482</pmid><doi>10.1021/acs.jpcb.0c03671</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-8149-5417</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1520-6106 |
ispartof | The journal of physical chemistry. B, 2020-07, Vol.124 (30), p.6520-6528 |
issn | 1520-6106 1520-5207 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7442968 |
source | ACS Publications; MEDLINE |
subjects | B: Biophysics Physical Chemistry of Biological Systems and Biomolecules Hydrogen-Ion Concentration Physical Phenomena Protons Static Electricity Thermodynamics |
title | Exploring pH Dependent Host/Guest Binding Affinities |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T14%3A52%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Exploring%20pH%20Dependent%20Host/Guest%20Binding%20Affinities&rft.jtitle=The%20journal%20of%20physical%20chemistry.%20B&rft.au=Paul,%20Thomas%20J&rft.date=2020-07-30&rft.volume=124&rft.issue=30&rft.spage=6520&rft.epage=6528&rft.pages=6520-6528&rft.issn=1520-6106&rft.eissn=1520-5207&rft_id=info:doi/10.1021/acs.jpcb.0c03671&rft_dat=%3Cproquest_pubme%3E2421122350%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2421122350&rft_id=info:pmid/32628482&rfr_iscdi=true |