Exploring pH Dependent Host/Guest Binding Affinities

When the electrostatic environment surrounding binding partners changes between unbound and bound states, the net uptake or release of a proton is possible by either binding partner. This process is pH-dependent in that the free energy required to uptake or release the proton varies with pH. This pH...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of physical chemistry. B 2020-07, Vol.124 (30), p.6520-6528
Hauptverfasser: Paul, Thomas J, Vilseck, Jonah Z, Hayes, Ryan L, Brooks, Charles L
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6528
container_issue 30
container_start_page 6520
container_title The journal of physical chemistry. B
container_volume 124
creator Paul, Thomas J
Vilseck, Jonah Z
Hayes, Ryan L
Brooks, Charles L
description When the electrostatic environment surrounding binding partners changes between unbound and bound states, the net uptake or release of a proton is possible by either binding partner. This process is pH-dependent in that the free energy required to uptake or release the proton varies with pH. This pH-dependence is typically not considered in conventional free energy methods where the use of fixed protonation states is the norm. In the present paper, we apply a simple two-step approach to calculate the pH-dependent binding free energy of a model cucubit­[7]­uril host/guest system. By use of λ-dynamics with an enhanced sampling protocol, adaptive landscape flattening, pK a shifts and reference binding free energies upon complexation were determined. This information enables the construction of pH-dependent binding profiles that accurately capture the pK a shifts and reproduce binding free energies at the different pH conditions that were observed experimentally. Our calculations illustrate a general framework for computing pH-dependent binding free energies but also point to some issues in modeling the molecular charge distributions within this series of molecules with CGenFF. However, by introducing some minor charge modifications to the CGenFF force field, we saw significant improvement in accuracy of the calculated pK a shifts.
doi_str_mv 10.1021/acs.jpcb.0c03671
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7442968</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2421122350</sourcerecordid><originalsourceid>FETCH-LOGICAL-a433t-379bd3f4010d9d9d91cfe48c36703df9b29f0ed85642a41a64ff8e355e820c0f3</originalsourceid><addsrcrecordid>eNp1kM9LwzAUx4Mobk7vnmRHD3bLr7bpRZhzbsLAi55D2iYzo0tq0or-96auDj1ICAm87_u-7_sAcIngBEGMpqLwk21d5BNYQJKk6AgMUYxhFG563P8TBJMBOPN-CyGOMUtOwYDgBDPK8BDQxUddWafNZlyvxveylqaUphmvrG-my1b6ZnynTdnVZ0ppoxst_Tk4UaLy8qJ_R-DlYfE8X0Xrp-XjfLaOBCWkiUia5SVRFCJYZt1BhZKUFSEpJKXKcpwpKEsWJxQLikRClWKSxLFkOCykyAjc7n3rNt_JsgjBnKh47fROuE9uheZ_K0a_8o195ymlOEtYMLjuDZx965bhO-0LWVXCSNt6jilGCGMSwyCFe2nhrPdOqsMYBHkHmwfYvIPNe9ih5ep3vEPDD90guNkLvltt60yg9b_fF-Cciyo</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2421122350</pqid></control><display><type>article</type><title>Exploring pH Dependent Host/Guest Binding Affinities</title><source>ACS Publications</source><source>MEDLINE</source><creator>Paul, Thomas J ; Vilseck, Jonah Z ; Hayes, Ryan L ; Brooks, Charles L</creator><creatorcontrib>Paul, Thomas J ; Vilseck, Jonah Z ; Hayes, Ryan L ; Brooks, Charles L</creatorcontrib><description>When the electrostatic environment surrounding binding partners changes between unbound and bound states, the net uptake or release of a proton is possible by either binding partner. This process is pH-dependent in that the free energy required to uptake or release the proton varies with pH. This pH-dependence is typically not considered in conventional free energy methods where the use of fixed protonation states is the norm. In the present paper, we apply a simple two-step approach to calculate the pH-dependent binding free energy of a model cucubit­[7]­uril host/guest system. By use of λ-dynamics with an enhanced sampling protocol, adaptive landscape flattening, pK a shifts and reference binding free energies upon complexation were determined. This information enables the construction of pH-dependent binding profiles that accurately capture the pK a shifts and reproduce binding free energies at the different pH conditions that were observed experimentally. Our calculations illustrate a general framework for computing pH-dependent binding free energies but also point to some issues in modeling the molecular charge distributions within this series of molecules with CGenFF. However, by introducing some minor charge modifications to the CGenFF force field, we saw significant improvement in accuracy of the calculated pK a shifts.</description><identifier>ISSN: 1520-6106</identifier><identifier>EISSN: 1520-5207</identifier><identifier>DOI: 10.1021/acs.jpcb.0c03671</identifier><identifier>PMID: 32628482</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>B: Biophysics; Physical Chemistry of Biological Systems and Biomolecules ; Hydrogen-Ion Concentration ; Physical Phenomena ; Protons ; Static Electricity ; Thermodynamics</subject><ispartof>The journal of physical chemistry. B, 2020-07, Vol.124 (30), p.6520-6528</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a433t-379bd3f4010d9d9d91cfe48c36703df9b29f0ed85642a41a64ff8e355e820c0f3</citedby><cites>FETCH-LOGICAL-a433t-379bd3f4010d9d9d91cfe48c36703df9b29f0ed85642a41a64ff8e355e820c0f3</cites><orcidid>0000-0002-8149-5417</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jpcb.0c03671$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jpcb.0c03671$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,776,780,881,2752,27055,27903,27904,56716,56766</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32628482$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Paul, Thomas J</creatorcontrib><creatorcontrib>Vilseck, Jonah Z</creatorcontrib><creatorcontrib>Hayes, Ryan L</creatorcontrib><creatorcontrib>Brooks, Charles L</creatorcontrib><title>Exploring pH Dependent Host/Guest Binding Affinities</title><title>The journal of physical chemistry. B</title><addtitle>J. Phys. Chem. B</addtitle><description>When the electrostatic environment surrounding binding partners changes between unbound and bound states, the net uptake or release of a proton is possible by either binding partner. This process is pH-dependent in that the free energy required to uptake or release the proton varies with pH. This pH-dependence is typically not considered in conventional free energy methods where the use of fixed protonation states is the norm. In the present paper, we apply a simple two-step approach to calculate the pH-dependent binding free energy of a model cucubit­[7]­uril host/guest system. By use of λ-dynamics with an enhanced sampling protocol, adaptive landscape flattening, pK a shifts and reference binding free energies upon complexation were determined. This information enables the construction of pH-dependent binding profiles that accurately capture the pK a shifts and reproduce binding free energies at the different pH conditions that were observed experimentally. Our calculations illustrate a general framework for computing pH-dependent binding free energies but also point to some issues in modeling the molecular charge distributions within this series of molecules with CGenFF. However, by introducing some minor charge modifications to the CGenFF force field, we saw significant improvement in accuracy of the calculated pK a shifts.</description><subject>B: Biophysics; Physical Chemistry of Biological Systems and Biomolecules</subject><subject>Hydrogen-Ion Concentration</subject><subject>Physical Phenomena</subject><subject>Protons</subject><subject>Static Electricity</subject><subject>Thermodynamics</subject><issn>1520-6106</issn><issn>1520-5207</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kM9LwzAUx4Mobk7vnmRHD3bLr7bpRZhzbsLAi55D2iYzo0tq0or-96auDj1ICAm87_u-7_sAcIngBEGMpqLwk21d5BNYQJKk6AgMUYxhFG563P8TBJMBOPN-CyGOMUtOwYDgBDPK8BDQxUddWafNZlyvxveylqaUphmvrG-my1b6ZnynTdnVZ0ppoxst_Tk4UaLy8qJ_R-DlYfE8X0Xrp-XjfLaOBCWkiUia5SVRFCJYZt1BhZKUFSEpJKXKcpwpKEsWJxQLikRClWKSxLFkOCykyAjc7n3rNt_JsgjBnKh47fROuE9uheZ_K0a_8o195ymlOEtYMLjuDZx965bhO-0LWVXCSNt6jilGCGMSwyCFe2nhrPdOqsMYBHkHmwfYvIPNe9ih5ep3vEPDD90guNkLvltt60yg9b_fF-Cciyo</recordid><startdate>20200730</startdate><enddate>20200730</enddate><creator>Paul, Thomas J</creator><creator>Vilseck, Jonah Z</creator><creator>Hayes, Ryan L</creator><creator>Brooks, Charles L</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-8149-5417</orcidid></search><sort><creationdate>20200730</creationdate><title>Exploring pH Dependent Host/Guest Binding Affinities</title><author>Paul, Thomas J ; Vilseck, Jonah Z ; Hayes, Ryan L ; Brooks, Charles L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a433t-379bd3f4010d9d9d91cfe48c36703df9b29f0ed85642a41a64ff8e355e820c0f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>B: Biophysics; Physical Chemistry of Biological Systems and Biomolecules</topic><topic>Hydrogen-Ion Concentration</topic><topic>Physical Phenomena</topic><topic>Protons</topic><topic>Static Electricity</topic><topic>Thermodynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Paul, Thomas J</creatorcontrib><creatorcontrib>Vilseck, Jonah Z</creatorcontrib><creatorcontrib>Hayes, Ryan L</creatorcontrib><creatorcontrib>Brooks, Charles L</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The journal of physical chemistry. B</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Paul, Thomas J</au><au>Vilseck, Jonah Z</au><au>Hayes, Ryan L</au><au>Brooks, Charles L</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Exploring pH Dependent Host/Guest Binding Affinities</atitle><jtitle>The journal of physical chemistry. B</jtitle><addtitle>J. Phys. Chem. B</addtitle><date>2020-07-30</date><risdate>2020</risdate><volume>124</volume><issue>30</issue><spage>6520</spage><epage>6528</epage><pages>6520-6528</pages><issn>1520-6106</issn><eissn>1520-5207</eissn><abstract>When the electrostatic environment surrounding binding partners changes between unbound and bound states, the net uptake or release of a proton is possible by either binding partner. This process is pH-dependent in that the free energy required to uptake or release the proton varies with pH. This pH-dependence is typically not considered in conventional free energy methods where the use of fixed protonation states is the norm. In the present paper, we apply a simple two-step approach to calculate the pH-dependent binding free energy of a model cucubit­[7]­uril host/guest system. By use of λ-dynamics with an enhanced sampling protocol, adaptive landscape flattening, pK a shifts and reference binding free energies upon complexation were determined. This information enables the construction of pH-dependent binding profiles that accurately capture the pK a shifts and reproduce binding free energies at the different pH conditions that were observed experimentally. Our calculations illustrate a general framework for computing pH-dependent binding free energies but also point to some issues in modeling the molecular charge distributions within this series of molecules with CGenFF. However, by introducing some minor charge modifications to the CGenFF force field, we saw significant improvement in accuracy of the calculated pK a shifts.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>32628482</pmid><doi>10.1021/acs.jpcb.0c03671</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-8149-5417</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1520-6106
ispartof The journal of physical chemistry. B, 2020-07, Vol.124 (30), p.6520-6528
issn 1520-6106
1520-5207
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7442968
source ACS Publications; MEDLINE
subjects B: Biophysics
Physical Chemistry of Biological Systems and Biomolecules
Hydrogen-Ion Concentration
Physical Phenomena
Protons
Static Electricity
Thermodynamics
title Exploring pH Dependent Host/Guest Binding Affinities
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T14%3A52%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Exploring%20pH%20Dependent%20Host/Guest%20Binding%20Affinities&rft.jtitle=The%20journal%20of%20physical%20chemistry.%20B&rft.au=Paul,%20Thomas%20J&rft.date=2020-07-30&rft.volume=124&rft.issue=30&rft.spage=6520&rft.epage=6528&rft.pages=6520-6528&rft.issn=1520-6106&rft.eissn=1520-5207&rft_id=info:doi/10.1021/acs.jpcb.0c03671&rft_dat=%3Cproquest_pubme%3E2421122350%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2421122350&rft_id=info:pmid/32628482&rfr_iscdi=true