Micro‐ and nano‐scale mineralogical characterization of Fe(II)‐oxidizing bacterial stalks

Neutrophilic, microaerobic Fe(II)‐oxidizing bacteria (FeOB) from marine and freshwater environments are known to generate twisted ribbon‐like organo‐mineral stalks. These structures, which are extracellularly precipitated, are susceptible to chemical influences in the environment once synthesized. I...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Geobiology 2020-09, Vol.18 (5), p.606-618
Hauptverfasser: Vigliaturo, Ruggero, Marengo, Alessandra, Bittarello, Erica, Pérez‐Rodríguez, Ileana, Dražić, Goran, Gieré, Reto
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 618
container_issue 5
container_start_page 606
container_title Geobiology
container_volume 18
creator Vigliaturo, Ruggero
Marengo, Alessandra
Bittarello, Erica
Pérez‐Rodríguez, Ileana
Dražić, Goran
Gieré, Reto
description Neutrophilic, microaerobic Fe(II)‐oxidizing bacteria (FeOB) from marine and freshwater environments are known to generate twisted ribbon‐like organo‐mineral stalks. These structures, which are extracellularly precipitated, are susceptible to chemical influences in the environment once synthesized. In this paper, we characterize the minerals associated with freshwater FeOB stalks in order to evaluate key organo‐mineral mechanisms involved in biomineral formation. Micro‐Raman spectroscopy and Field Emission Scanning Electron Microscopy revealed that FeOB isolated from drinking water wells in Sweden produced stalks with ferrihydrite, lepidocrocite and goethite as main mineral components. Based on our observations made by micro‐Raman Spectroscopy, field emission scanning electron microscopy and scanning transmission electron microscope combined with electron energy‐loss spectroscopy, we propose a model that describes the crystal‐growth mechanism, the Fe‐oxidation state, and the mineralogical state of the stalks, as well as the biogenic contribution to these features. Our study suggests that the main crystal‐growth mechanism in stalks includes nanoparticle aggregation and dissolution/re‐precipitation reactions, which are dominant near the organic exopolymeric material produced by the microorganism and in the peripheral region of the stalk, respectively.
doi_str_mv 10.1111/gbi.12398
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7442631</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2435350622</sourcerecordid><originalsourceid>FETCH-LOGICAL-a4668-8c2b605823bf585c36bb27d450df7cce159e6546ca4647f95375229d1917fa43</originalsourceid><addsrcrecordid>eNp1kb1OwzAUhS0EovwNvACKxEKHlPgvThYkQLREArGwW47jtC6pDXYKtBOPwDPyJLgEKhjw4mv5u-ce3QPAIUwGMJzTcakHEOE82wA7kDAUkzTNN9c1Yz2w6_00SRChGG6DHg5FnmVsB_BbLZ39eHuPhKkiI8yq9lI0Kpppo5xo7FiHZyQnwgnZKqeXotXWRLaOhuqkKPqhwb7qSi-1GUdlx4QG34rmwe-DrVo0Xh1833vgfnh1f3kd39yNisvzm1gEr1mcSVSmCc0QLmuaUYnTskSsIjSpaialgjRXKSWpDDhhdU4xowjlFcwhqwXBe-Csk32clzNVSWXaYJ0_Oj0TbsGt0Pzvj9ETPrbPnBGCUgyDwPG3gLNPc-VbPrVzZ4JljgimmCYpQoHqd1TYmfdO1esJMOGrKHiIgn9FEdij35bW5M_uA3DaAS-6UYv_lfjoougkPwF4qZZ4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2435350622</pqid></control><display><type>article</type><title>Micro‐ and nano‐scale mineralogical characterization of Fe(II)‐oxidizing bacterial stalks</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Vigliaturo, Ruggero ; Marengo, Alessandra ; Bittarello, Erica ; Pérez‐Rodríguez, Ileana ; Dražić, Goran ; Gieré, Reto</creator><creatorcontrib>Vigliaturo, Ruggero ; Marengo, Alessandra ; Bittarello, Erica ; Pérez‐Rodríguez, Ileana ; Dražić, Goran ; Gieré, Reto</creatorcontrib><description>Neutrophilic, microaerobic Fe(II)‐oxidizing bacteria (FeOB) from marine and freshwater environments are known to generate twisted ribbon‐like organo‐mineral stalks. These structures, which are extracellularly precipitated, are susceptible to chemical influences in the environment once synthesized. In this paper, we characterize the minerals associated with freshwater FeOB stalks in order to evaluate key organo‐mineral mechanisms involved in biomineral formation. Micro‐Raman spectroscopy and Field Emission Scanning Electron Microscopy revealed that FeOB isolated from drinking water wells in Sweden produced stalks with ferrihydrite, lepidocrocite and goethite as main mineral components. Based on our observations made by micro‐Raman Spectroscopy, field emission scanning electron microscopy and scanning transmission electron microscope combined with electron energy‐loss spectroscopy, we propose a model that describes the crystal‐growth mechanism, the Fe‐oxidation state, and the mineralogical state of the stalks, as well as the biogenic contribution to these features. Our study suggests that the main crystal‐growth mechanism in stalks includes nanoparticle aggregation and dissolution/re‐precipitation reactions, which are dominant near the organic exopolymeric material produced by the microorganism and in the peripheral region of the stalk, respectively.</description><identifier>ISSN: 1472-4677</identifier><identifier>EISSN: 1472-4669</identifier><identifier>DOI: 10.1111/gbi.12398</identifier><identifier>PMID: 32459887</identifier><language>eng</language><publisher>England: Wiley Subscription Services, Inc</publisher><subject>Aggregation ; Analytical methods ; Bacteria ; Chemical precipitation ; Drinking water ; EELS ; Electron microscopes ; Electron microscopy ; Emissions ; Fe redox state ; Ferric Compounds ; Ferrous Compounds ; Freshwater ; Freshwater environments ; Goethite ; Inland water environment ; Iron ; Leukocytes (neutrophilic) ; Mineralogy ; Minerals ; Nanoparticles ; Nanostructures ; organo‐mineral stalk ; Oxidation ; Oxidation-Reduction ; Raman spectroscopy ; Scanning electron microscopy ; Spectroscopy ; Spectrum analysis ; stalk mineral speciation ; STEM ; Sweden ; Water wells</subject><ispartof>Geobiology, 2020-09, Vol.18 (5), p.606-618</ispartof><rights>2020 John Wiley &amp; Sons Ltd</rights><rights>2020 John Wiley &amp; Sons Ltd.</rights><rights>Copyright © 2020 John Wiley &amp; Sons Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a4668-8c2b605823bf585c36bb27d450df7cce159e6546ca4647f95375229d1917fa43</citedby><cites>FETCH-LOGICAL-a4668-8c2b605823bf585c36bb27d450df7cce159e6546ca4647f95375229d1917fa43</cites><orcidid>0000-0001-6957-5396 ; 0000-0001-8507-1956</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fgbi.12398$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fgbi.12398$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,776,780,881,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32459887$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Vigliaturo, Ruggero</creatorcontrib><creatorcontrib>Marengo, Alessandra</creatorcontrib><creatorcontrib>Bittarello, Erica</creatorcontrib><creatorcontrib>Pérez‐Rodríguez, Ileana</creatorcontrib><creatorcontrib>Dražić, Goran</creatorcontrib><creatorcontrib>Gieré, Reto</creatorcontrib><title>Micro‐ and nano‐scale mineralogical characterization of Fe(II)‐oxidizing bacterial stalks</title><title>Geobiology</title><addtitle>Geobiology</addtitle><description>Neutrophilic, microaerobic Fe(II)‐oxidizing bacteria (FeOB) from marine and freshwater environments are known to generate twisted ribbon‐like organo‐mineral stalks. These structures, which are extracellularly precipitated, are susceptible to chemical influences in the environment once synthesized. In this paper, we characterize the minerals associated with freshwater FeOB stalks in order to evaluate key organo‐mineral mechanisms involved in biomineral formation. Micro‐Raman spectroscopy and Field Emission Scanning Electron Microscopy revealed that FeOB isolated from drinking water wells in Sweden produced stalks with ferrihydrite, lepidocrocite and goethite as main mineral components. Based on our observations made by micro‐Raman Spectroscopy, field emission scanning electron microscopy and scanning transmission electron microscope combined with electron energy‐loss spectroscopy, we propose a model that describes the crystal‐growth mechanism, the Fe‐oxidation state, and the mineralogical state of the stalks, as well as the biogenic contribution to these features. Our study suggests that the main crystal‐growth mechanism in stalks includes nanoparticle aggregation and dissolution/re‐precipitation reactions, which are dominant near the organic exopolymeric material produced by the microorganism and in the peripheral region of the stalk, respectively.</description><subject>Aggregation</subject><subject>Analytical methods</subject><subject>Bacteria</subject><subject>Chemical precipitation</subject><subject>Drinking water</subject><subject>EELS</subject><subject>Electron microscopes</subject><subject>Electron microscopy</subject><subject>Emissions</subject><subject>Fe redox state</subject><subject>Ferric Compounds</subject><subject>Ferrous Compounds</subject><subject>Freshwater</subject><subject>Freshwater environments</subject><subject>Goethite</subject><subject>Inland water environment</subject><subject>Iron</subject><subject>Leukocytes (neutrophilic)</subject><subject>Mineralogy</subject><subject>Minerals</subject><subject>Nanoparticles</subject><subject>Nanostructures</subject><subject>organo‐mineral stalk</subject><subject>Oxidation</subject><subject>Oxidation-Reduction</subject><subject>Raman spectroscopy</subject><subject>Scanning electron microscopy</subject><subject>Spectroscopy</subject><subject>Spectrum analysis</subject><subject>stalk mineral speciation</subject><subject>STEM</subject><subject>Sweden</subject><subject>Water wells</subject><issn>1472-4677</issn><issn>1472-4669</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kb1OwzAUhS0EovwNvACKxEKHlPgvThYkQLREArGwW47jtC6pDXYKtBOPwDPyJLgEKhjw4mv5u-ce3QPAIUwGMJzTcakHEOE82wA7kDAUkzTNN9c1Yz2w6_00SRChGG6DHg5FnmVsB_BbLZ39eHuPhKkiI8yq9lI0Kpppo5xo7FiHZyQnwgnZKqeXotXWRLaOhuqkKPqhwb7qSi-1GUdlx4QG34rmwe-DrVo0Xh1833vgfnh1f3kd39yNisvzm1gEr1mcSVSmCc0QLmuaUYnTskSsIjSpaialgjRXKSWpDDhhdU4xowjlFcwhqwXBe-Csk32clzNVSWXaYJ0_Oj0TbsGt0Pzvj9ETPrbPnBGCUgyDwPG3gLNPc-VbPrVzZ4JljgimmCYpQoHqd1TYmfdO1esJMOGrKHiIgn9FEdij35bW5M_uA3DaAS-6UYv_lfjoougkPwF4qZZ4</recordid><startdate>202009</startdate><enddate>202009</enddate><creator>Vigliaturo, Ruggero</creator><creator>Marengo, Alessandra</creator><creator>Bittarello, Erica</creator><creator>Pérez‐Rodríguez, Ileana</creator><creator>Dražić, Goran</creator><creator>Gieré, Reto</creator><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>F1W</scope><scope>FR3</scope><scope>H95</scope><scope>L.G</scope><scope>P64</scope><scope>RC3</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-6957-5396</orcidid><orcidid>https://orcid.org/0000-0001-8507-1956</orcidid></search><sort><creationdate>202009</creationdate><title>Micro‐ and nano‐scale mineralogical characterization of Fe(II)‐oxidizing bacterial stalks</title><author>Vigliaturo, Ruggero ; Marengo, Alessandra ; Bittarello, Erica ; Pérez‐Rodríguez, Ileana ; Dražić, Goran ; Gieré, Reto</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a4668-8c2b605823bf585c36bb27d450df7cce159e6546ca4647f95375229d1917fa43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Aggregation</topic><topic>Analytical methods</topic><topic>Bacteria</topic><topic>Chemical precipitation</topic><topic>Drinking water</topic><topic>EELS</topic><topic>Electron microscopes</topic><topic>Electron microscopy</topic><topic>Emissions</topic><topic>Fe redox state</topic><topic>Ferric Compounds</topic><topic>Ferrous Compounds</topic><topic>Freshwater</topic><topic>Freshwater environments</topic><topic>Goethite</topic><topic>Inland water environment</topic><topic>Iron</topic><topic>Leukocytes (neutrophilic)</topic><topic>Mineralogy</topic><topic>Minerals</topic><topic>Nanoparticles</topic><topic>Nanostructures</topic><topic>organo‐mineral stalk</topic><topic>Oxidation</topic><topic>Oxidation-Reduction</topic><topic>Raman spectroscopy</topic><topic>Scanning electron microscopy</topic><topic>Spectroscopy</topic><topic>Spectrum analysis</topic><topic>stalk mineral speciation</topic><topic>STEM</topic><topic>Sweden</topic><topic>Water wells</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vigliaturo, Ruggero</creatorcontrib><creatorcontrib>Marengo, Alessandra</creatorcontrib><creatorcontrib>Bittarello, Erica</creatorcontrib><creatorcontrib>Pérez‐Rodríguez, Ileana</creatorcontrib><creatorcontrib>Dražić, Goran</creatorcontrib><creatorcontrib>Gieré, Reto</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 1: Biological Sciences &amp; Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Geobiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vigliaturo, Ruggero</au><au>Marengo, Alessandra</au><au>Bittarello, Erica</au><au>Pérez‐Rodríguez, Ileana</au><au>Dražić, Goran</au><au>Gieré, Reto</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Micro‐ and nano‐scale mineralogical characterization of Fe(II)‐oxidizing bacterial stalks</atitle><jtitle>Geobiology</jtitle><addtitle>Geobiology</addtitle><date>2020-09</date><risdate>2020</risdate><volume>18</volume><issue>5</issue><spage>606</spage><epage>618</epage><pages>606-618</pages><issn>1472-4677</issn><eissn>1472-4669</eissn><abstract>Neutrophilic, microaerobic Fe(II)‐oxidizing bacteria (FeOB) from marine and freshwater environments are known to generate twisted ribbon‐like organo‐mineral stalks. These structures, which are extracellularly precipitated, are susceptible to chemical influences in the environment once synthesized. In this paper, we characterize the minerals associated with freshwater FeOB stalks in order to evaluate key organo‐mineral mechanisms involved in biomineral formation. Micro‐Raman spectroscopy and Field Emission Scanning Electron Microscopy revealed that FeOB isolated from drinking water wells in Sweden produced stalks with ferrihydrite, lepidocrocite and goethite as main mineral components. Based on our observations made by micro‐Raman Spectroscopy, field emission scanning electron microscopy and scanning transmission electron microscope combined with electron energy‐loss spectroscopy, we propose a model that describes the crystal‐growth mechanism, the Fe‐oxidation state, and the mineralogical state of the stalks, as well as the biogenic contribution to these features. Our study suggests that the main crystal‐growth mechanism in stalks includes nanoparticle aggregation and dissolution/re‐precipitation reactions, which are dominant near the organic exopolymeric material produced by the microorganism and in the peripheral region of the stalk, respectively.</abstract><cop>England</cop><pub>Wiley Subscription Services, Inc</pub><pmid>32459887</pmid><doi>10.1111/gbi.12398</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-6957-5396</orcidid><orcidid>https://orcid.org/0000-0001-8507-1956</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1472-4677
ispartof Geobiology, 2020-09, Vol.18 (5), p.606-618
issn 1472-4677
1472-4669
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7442631
source MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects Aggregation
Analytical methods
Bacteria
Chemical precipitation
Drinking water
EELS
Electron microscopes
Electron microscopy
Emissions
Fe redox state
Ferric Compounds
Ferrous Compounds
Freshwater
Freshwater environments
Goethite
Inland water environment
Iron
Leukocytes (neutrophilic)
Mineralogy
Minerals
Nanoparticles
Nanostructures
organo‐mineral stalk
Oxidation
Oxidation-Reduction
Raman spectroscopy
Scanning electron microscopy
Spectroscopy
Spectrum analysis
stalk mineral speciation
STEM
Sweden
Water wells
title Micro‐ and nano‐scale mineralogical characterization of Fe(II)‐oxidizing bacterial stalks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T18%3A04%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Micro%E2%80%90%20and%20nano%E2%80%90scale%20mineralogical%20characterization%20of%20Fe(II)%E2%80%90oxidizing%20bacterial%20stalks&rft.jtitle=Geobiology&rft.au=Vigliaturo,%20Ruggero&rft.date=2020-09&rft.volume=18&rft.issue=5&rft.spage=606&rft.epage=618&rft.pages=606-618&rft.issn=1472-4677&rft.eissn=1472-4669&rft_id=info:doi/10.1111/gbi.12398&rft_dat=%3Cproquest_pubme%3E2435350622%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2435350622&rft_id=info:pmid/32459887&rfr_iscdi=true