Micro‐ and nano‐scale mineralogical characterization of Fe(II)‐oxidizing bacterial stalks
Neutrophilic, microaerobic Fe(II)‐oxidizing bacteria (FeOB) from marine and freshwater environments are known to generate twisted ribbon‐like organo‐mineral stalks. These structures, which are extracellularly precipitated, are susceptible to chemical influences in the environment once synthesized. I...
Gespeichert in:
Veröffentlicht in: | Geobiology 2020-09, Vol.18 (5), p.606-618 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 618 |
---|---|
container_issue | 5 |
container_start_page | 606 |
container_title | Geobiology |
container_volume | 18 |
creator | Vigliaturo, Ruggero Marengo, Alessandra Bittarello, Erica Pérez‐Rodríguez, Ileana Dražić, Goran Gieré, Reto |
description | Neutrophilic, microaerobic Fe(II)‐oxidizing bacteria (FeOB) from marine and freshwater environments are known to generate twisted ribbon‐like organo‐mineral stalks. These structures, which are extracellularly precipitated, are susceptible to chemical influences in the environment once synthesized. In this paper, we characterize the minerals associated with freshwater FeOB stalks in order to evaluate key organo‐mineral mechanisms involved in biomineral formation. Micro‐Raman spectroscopy and Field Emission Scanning Electron Microscopy revealed that FeOB isolated from drinking water wells in Sweden produced stalks with ferrihydrite, lepidocrocite and goethite as main mineral components. Based on our observations made by micro‐Raman Spectroscopy, field emission scanning electron microscopy and scanning transmission electron microscope combined with electron energy‐loss spectroscopy, we propose a model that describes the crystal‐growth mechanism, the Fe‐oxidation state, and the mineralogical state of the stalks, as well as the biogenic contribution to these features. Our study suggests that the main crystal‐growth mechanism in stalks includes nanoparticle aggregation and dissolution/re‐precipitation reactions, which are dominant near the organic exopolymeric material produced by the microorganism and in the peripheral region of the stalk, respectively. |
doi_str_mv | 10.1111/gbi.12398 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7442631</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2435350622</sourcerecordid><originalsourceid>FETCH-LOGICAL-a4668-8c2b605823bf585c36bb27d450df7cce159e6546ca4647f95375229d1917fa43</originalsourceid><addsrcrecordid>eNp1kb1OwzAUhS0EovwNvACKxEKHlPgvThYkQLREArGwW47jtC6pDXYKtBOPwDPyJLgEKhjw4mv5u-ce3QPAIUwGMJzTcakHEOE82wA7kDAUkzTNN9c1Yz2w6_00SRChGG6DHg5FnmVsB_BbLZ39eHuPhKkiI8yq9lI0Kpppo5xo7FiHZyQnwgnZKqeXotXWRLaOhuqkKPqhwb7qSi-1GUdlx4QG34rmwe-DrVo0Xh1833vgfnh1f3kd39yNisvzm1gEr1mcSVSmCc0QLmuaUYnTskSsIjSpaialgjRXKSWpDDhhdU4xowjlFcwhqwXBe-Csk32clzNVSWXaYJ0_Oj0TbsGt0Pzvj9ETPrbPnBGCUgyDwPG3gLNPc-VbPrVzZ4JljgimmCYpQoHqd1TYmfdO1esJMOGrKHiIgn9FEdij35bW5M_uA3DaAS-6UYv_lfjoougkPwF4qZZ4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2435350622</pqid></control><display><type>article</type><title>Micro‐ and nano‐scale mineralogical characterization of Fe(II)‐oxidizing bacterial stalks</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Vigliaturo, Ruggero ; Marengo, Alessandra ; Bittarello, Erica ; Pérez‐Rodríguez, Ileana ; Dražić, Goran ; Gieré, Reto</creator><creatorcontrib>Vigliaturo, Ruggero ; Marengo, Alessandra ; Bittarello, Erica ; Pérez‐Rodríguez, Ileana ; Dražić, Goran ; Gieré, Reto</creatorcontrib><description>Neutrophilic, microaerobic Fe(II)‐oxidizing bacteria (FeOB) from marine and freshwater environments are known to generate twisted ribbon‐like organo‐mineral stalks. These structures, which are extracellularly precipitated, are susceptible to chemical influences in the environment once synthesized. In this paper, we characterize the minerals associated with freshwater FeOB stalks in order to evaluate key organo‐mineral mechanisms involved in biomineral formation. Micro‐Raman spectroscopy and Field Emission Scanning Electron Microscopy revealed that FeOB isolated from drinking water wells in Sweden produced stalks with ferrihydrite, lepidocrocite and goethite as main mineral components. Based on our observations made by micro‐Raman Spectroscopy, field emission scanning electron microscopy and scanning transmission electron microscope combined with electron energy‐loss spectroscopy, we propose a model that describes the crystal‐growth mechanism, the Fe‐oxidation state, and the mineralogical state of the stalks, as well as the biogenic contribution to these features. Our study suggests that the main crystal‐growth mechanism in stalks includes nanoparticle aggregation and dissolution/re‐precipitation reactions, which are dominant near the organic exopolymeric material produced by the microorganism and in the peripheral region of the stalk, respectively.</description><identifier>ISSN: 1472-4677</identifier><identifier>EISSN: 1472-4669</identifier><identifier>DOI: 10.1111/gbi.12398</identifier><identifier>PMID: 32459887</identifier><language>eng</language><publisher>England: Wiley Subscription Services, Inc</publisher><subject>Aggregation ; Analytical methods ; Bacteria ; Chemical precipitation ; Drinking water ; EELS ; Electron microscopes ; Electron microscopy ; Emissions ; Fe redox state ; Ferric Compounds ; Ferrous Compounds ; Freshwater ; Freshwater environments ; Goethite ; Inland water environment ; Iron ; Leukocytes (neutrophilic) ; Mineralogy ; Minerals ; Nanoparticles ; Nanostructures ; organo‐mineral stalk ; Oxidation ; Oxidation-Reduction ; Raman spectroscopy ; Scanning electron microscopy ; Spectroscopy ; Spectrum analysis ; stalk mineral speciation ; STEM ; Sweden ; Water wells</subject><ispartof>Geobiology, 2020-09, Vol.18 (5), p.606-618</ispartof><rights>2020 John Wiley & Sons Ltd</rights><rights>2020 John Wiley & Sons Ltd.</rights><rights>Copyright © 2020 John Wiley & Sons Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a4668-8c2b605823bf585c36bb27d450df7cce159e6546ca4647f95375229d1917fa43</citedby><cites>FETCH-LOGICAL-a4668-8c2b605823bf585c36bb27d450df7cce159e6546ca4647f95375229d1917fa43</cites><orcidid>0000-0001-6957-5396 ; 0000-0001-8507-1956</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fgbi.12398$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fgbi.12398$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,776,780,881,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32459887$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Vigliaturo, Ruggero</creatorcontrib><creatorcontrib>Marengo, Alessandra</creatorcontrib><creatorcontrib>Bittarello, Erica</creatorcontrib><creatorcontrib>Pérez‐Rodríguez, Ileana</creatorcontrib><creatorcontrib>Dražić, Goran</creatorcontrib><creatorcontrib>Gieré, Reto</creatorcontrib><title>Micro‐ and nano‐scale mineralogical characterization of Fe(II)‐oxidizing bacterial stalks</title><title>Geobiology</title><addtitle>Geobiology</addtitle><description>Neutrophilic, microaerobic Fe(II)‐oxidizing bacteria (FeOB) from marine and freshwater environments are known to generate twisted ribbon‐like organo‐mineral stalks. These structures, which are extracellularly precipitated, are susceptible to chemical influences in the environment once synthesized. In this paper, we characterize the minerals associated with freshwater FeOB stalks in order to evaluate key organo‐mineral mechanisms involved in biomineral formation. Micro‐Raman spectroscopy and Field Emission Scanning Electron Microscopy revealed that FeOB isolated from drinking water wells in Sweden produced stalks with ferrihydrite, lepidocrocite and goethite as main mineral components. Based on our observations made by micro‐Raman Spectroscopy, field emission scanning electron microscopy and scanning transmission electron microscope combined with electron energy‐loss spectroscopy, we propose a model that describes the crystal‐growth mechanism, the Fe‐oxidation state, and the mineralogical state of the stalks, as well as the biogenic contribution to these features. Our study suggests that the main crystal‐growth mechanism in stalks includes nanoparticle aggregation and dissolution/re‐precipitation reactions, which are dominant near the organic exopolymeric material produced by the microorganism and in the peripheral region of the stalk, respectively.</description><subject>Aggregation</subject><subject>Analytical methods</subject><subject>Bacteria</subject><subject>Chemical precipitation</subject><subject>Drinking water</subject><subject>EELS</subject><subject>Electron microscopes</subject><subject>Electron microscopy</subject><subject>Emissions</subject><subject>Fe redox state</subject><subject>Ferric Compounds</subject><subject>Ferrous Compounds</subject><subject>Freshwater</subject><subject>Freshwater environments</subject><subject>Goethite</subject><subject>Inland water environment</subject><subject>Iron</subject><subject>Leukocytes (neutrophilic)</subject><subject>Mineralogy</subject><subject>Minerals</subject><subject>Nanoparticles</subject><subject>Nanostructures</subject><subject>organo‐mineral stalk</subject><subject>Oxidation</subject><subject>Oxidation-Reduction</subject><subject>Raman spectroscopy</subject><subject>Scanning electron microscopy</subject><subject>Spectroscopy</subject><subject>Spectrum analysis</subject><subject>stalk mineral speciation</subject><subject>STEM</subject><subject>Sweden</subject><subject>Water wells</subject><issn>1472-4677</issn><issn>1472-4669</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kb1OwzAUhS0EovwNvACKxEKHlPgvThYkQLREArGwW47jtC6pDXYKtBOPwDPyJLgEKhjw4mv5u-ce3QPAIUwGMJzTcakHEOE82wA7kDAUkzTNN9c1Yz2w6_00SRChGG6DHg5FnmVsB_BbLZ39eHuPhKkiI8yq9lI0Kpppo5xo7FiHZyQnwgnZKqeXotXWRLaOhuqkKPqhwb7qSi-1GUdlx4QG34rmwe-DrVo0Xh1833vgfnh1f3kd39yNisvzm1gEr1mcSVSmCc0QLmuaUYnTskSsIjSpaialgjRXKSWpDDhhdU4xowjlFcwhqwXBe-Csk32clzNVSWXaYJ0_Oj0TbsGt0Pzvj9ETPrbPnBGCUgyDwPG3gLNPc-VbPrVzZ4JljgimmCYpQoHqd1TYmfdO1esJMOGrKHiIgn9FEdij35bW5M_uA3DaAS-6UYv_lfjoougkPwF4qZZ4</recordid><startdate>202009</startdate><enddate>202009</enddate><creator>Vigliaturo, Ruggero</creator><creator>Marengo, Alessandra</creator><creator>Bittarello, Erica</creator><creator>Pérez‐Rodríguez, Ileana</creator><creator>Dražić, Goran</creator><creator>Gieré, Reto</creator><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>F1W</scope><scope>FR3</scope><scope>H95</scope><scope>L.G</scope><scope>P64</scope><scope>RC3</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-6957-5396</orcidid><orcidid>https://orcid.org/0000-0001-8507-1956</orcidid></search><sort><creationdate>202009</creationdate><title>Micro‐ and nano‐scale mineralogical characterization of Fe(II)‐oxidizing bacterial stalks</title><author>Vigliaturo, Ruggero ; Marengo, Alessandra ; Bittarello, Erica ; Pérez‐Rodríguez, Ileana ; Dražić, Goran ; Gieré, Reto</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a4668-8c2b605823bf585c36bb27d450df7cce159e6546ca4647f95375229d1917fa43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Aggregation</topic><topic>Analytical methods</topic><topic>Bacteria</topic><topic>Chemical precipitation</topic><topic>Drinking water</topic><topic>EELS</topic><topic>Electron microscopes</topic><topic>Electron microscopy</topic><topic>Emissions</topic><topic>Fe redox state</topic><topic>Ferric Compounds</topic><topic>Ferrous Compounds</topic><topic>Freshwater</topic><topic>Freshwater environments</topic><topic>Goethite</topic><topic>Inland water environment</topic><topic>Iron</topic><topic>Leukocytes (neutrophilic)</topic><topic>Mineralogy</topic><topic>Minerals</topic><topic>Nanoparticles</topic><topic>Nanostructures</topic><topic>organo‐mineral stalk</topic><topic>Oxidation</topic><topic>Oxidation-Reduction</topic><topic>Raman spectroscopy</topic><topic>Scanning electron microscopy</topic><topic>Spectroscopy</topic><topic>Spectrum analysis</topic><topic>stalk mineral speciation</topic><topic>STEM</topic><topic>Sweden</topic><topic>Water wells</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vigliaturo, Ruggero</creatorcontrib><creatorcontrib>Marengo, Alessandra</creatorcontrib><creatorcontrib>Bittarello, Erica</creatorcontrib><creatorcontrib>Pérez‐Rodríguez, Ileana</creatorcontrib><creatorcontrib>Dražić, Goran</creatorcontrib><creatorcontrib>Gieré, Reto</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Geobiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vigliaturo, Ruggero</au><au>Marengo, Alessandra</au><au>Bittarello, Erica</au><au>Pérez‐Rodríguez, Ileana</au><au>Dražić, Goran</au><au>Gieré, Reto</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Micro‐ and nano‐scale mineralogical characterization of Fe(II)‐oxidizing bacterial stalks</atitle><jtitle>Geobiology</jtitle><addtitle>Geobiology</addtitle><date>2020-09</date><risdate>2020</risdate><volume>18</volume><issue>5</issue><spage>606</spage><epage>618</epage><pages>606-618</pages><issn>1472-4677</issn><eissn>1472-4669</eissn><abstract>Neutrophilic, microaerobic Fe(II)‐oxidizing bacteria (FeOB) from marine and freshwater environments are known to generate twisted ribbon‐like organo‐mineral stalks. These structures, which are extracellularly precipitated, are susceptible to chemical influences in the environment once synthesized. In this paper, we characterize the minerals associated with freshwater FeOB stalks in order to evaluate key organo‐mineral mechanisms involved in biomineral formation. Micro‐Raman spectroscopy and Field Emission Scanning Electron Microscopy revealed that FeOB isolated from drinking water wells in Sweden produced stalks with ferrihydrite, lepidocrocite and goethite as main mineral components. Based on our observations made by micro‐Raman Spectroscopy, field emission scanning electron microscopy and scanning transmission electron microscope combined with electron energy‐loss spectroscopy, we propose a model that describes the crystal‐growth mechanism, the Fe‐oxidation state, and the mineralogical state of the stalks, as well as the biogenic contribution to these features. Our study suggests that the main crystal‐growth mechanism in stalks includes nanoparticle aggregation and dissolution/re‐precipitation reactions, which are dominant near the organic exopolymeric material produced by the microorganism and in the peripheral region of the stalk, respectively.</abstract><cop>England</cop><pub>Wiley Subscription Services, Inc</pub><pmid>32459887</pmid><doi>10.1111/gbi.12398</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-6957-5396</orcidid><orcidid>https://orcid.org/0000-0001-8507-1956</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1472-4677 |
ispartof | Geobiology, 2020-09, Vol.18 (5), p.606-618 |
issn | 1472-4677 1472-4669 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7442631 |
source | MEDLINE; Wiley Online Library Journals Frontfile Complete |
subjects | Aggregation Analytical methods Bacteria Chemical precipitation Drinking water EELS Electron microscopes Electron microscopy Emissions Fe redox state Ferric Compounds Ferrous Compounds Freshwater Freshwater environments Goethite Inland water environment Iron Leukocytes (neutrophilic) Mineralogy Minerals Nanoparticles Nanostructures organo‐mineral stalk Oxidation Oxidation-Reduction Raman spectroscopy Scanning electron microscopy Spectroscopy Spectrum analysis stalk mineral speciation STEM Sweden Water wells |
title | Micro‐ and nano‐scale mineralogical characterization of Fe(II)‐oxidizing bacterial stalks |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T18%3A04%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Micro%E2%80%90%20and%20nano%E2%80%90scale%20mineralogical%20characterization%20of%20Fe(II)%E2%80%90oxidizing%20bacterial%20stalks&rft.jtitle=Geobiology&rft.au=Vigliaturo,%20Ruggero&rft.date=2020-09&rft.volume=18&rft.issue=5&rft.spage=606&rft.epage=618&rft.pages=606-618&rft.issn=1472-4677&rft.eissn=1472-4669&rft_id=info:doi/10.1111/gbi.12398&rft_dat=%3Cproquest_pubme%3E2435350622%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2435350622&rft_id=info:pmid/32459887&rfr_iscdi=true |