Process Analytical Technologies and Data Analytics for the Manufacture of Monoclonal Antibodies

Process analytical technology (PAT) for the manufacture of monoclonal antibodies (mAbs) is defined by an integrated set of advanced and automated methods that analyze the compositions and biophysical properties of cell culture fluids, cell-free product streams, and biotherapeutic molecules that are...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Trends in biotechnology (Regular ed.) 2020-10, Vol.38 (10), p.1169-1186
Hauptverfasser: Maruthamuthu, Murali K., Rudge, Scott R., Ardekani, Arezoo M., Ladisch, Michael R., Verma, Mohit S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1186
container_issue 10
container_start_page 1169
container_title Trends in biotechnology (Regular ed.)
container_volume 38
creator Maruthamuthu, Murali K.
Rudge, Scott R.
Ardekani, Arezoo M.
Ladisch, Michael R.
Verma, Mohit S.
description Process analytical technology (PAT) for the manufacture of monoclonal antibodies (mAbs) is defined by an integrated set of advanced and automated methods that analyze the compositions and biophysical properties of cell culture fluids, cell-free product streams, and biotherapeutic molecules that are ultimately formulated into concentrated products. In-line or near-line probes and systems are remarkably well developed, although challenges remain in the determination of the absence of viral loads, detecting microbial or mycoplasma contamination, and applying data-driven deep learning to process monitoring and soft sensors. In this review, we address the current status of PAT for both batch and continuous processing steps and discuss its potential impact on facilitating the continuous manufacture of biotherapeutics. Process analytical technology (PAT) has evolved from hardware-based analyses for defined biological, biomolecular, and biochemical analytes to a toolbox that encompasses data analytics and soft sensors to monitor and control monoclonal antibody (mAb) manufacture.Engineered cell lines used in batch processes and continuous manufacturing have helped improve qualities and production rates for mAbs.Data analytics has become increasingly important as sensors become smaller, more robust, and increasingly ubiquitous, with soft sensors enabling determination of a rolling baseline of process conditions and consequences during the production of biologics.In-line sensors utilized for downstream processes provide a template for how such sensors might be used as part of PAT in the real-time monitoring of the manufacture of biotherapeutic proteins in both upstream and downstream unit operations.
doi_str_mv 10.1016/j.tibtech.2020.07.004
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7442002</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0167779920301852</els_id><sourcerecordid>2443487478</sourcerecordid><originalsourceid>FETCH-LOGICAL-c561t-11602a10ebd03f99f2dea3283812d7197099e0a2a6f9a14128b572333d624f883</originalsourceid><addsrcrecordid>eNqFkUtvFDEQhC0EIkvgJ4BG4sJlhvZjx-MLKApPKREcwtny2u2sV7PjYHsi5d_j0S4r4MKpD_6qutpFyEsKHQXav911JWwK2m3HgEEHsgMQj8iKDlK1HFT_mKwqJ1splTojz3LeAQCXij4lZ5wNXAGHFdHfU7SYc3MxmfGhBGvG5qa6TnGMtwFzYybXfDDFnIDc-JiassXm2kyzN7bMCZvom-s4RTvGilW2houu6p-TJ96MGV8c5zn58enjzeWX9urb56-XF1etXfe0tJT2wAwF3DjgXinPHJol5UCZk1RJUArBMNN7ZaigbNisJeOcu54JPwz8nLw7-N7Nmz06i1NJZtR3KexNetDRBP33yxS2-jbeaykEA2DV4M3RIMWfM-ai9yFbHEczYZyzZoJLSqXitKKv_0F3cU717oUSXAxSyCXR-kDZFHNO6E9hKOilQr3Txwr1UqEGqWuFVffqz0tOqt-dVeD9AcD6n_cBk8424GTRhYS2aBfDf1b8AkRzr64</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2443487478</pqid></control><display><type>article</type><title>Process Analytical Technologies and Data Analytics for the Manufacture of Monoclonal Antibodies</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Maruthamuthu, Murali K. ; Rudge, Scott R. ; Ardekani, Arezoo M. ; Ladisch, Michael R. ; Verma, Mohit S.</creator><creatorcontrib>Maruthamuthu, Murali K. ; Rudge, Scott R. ; Ardekani, Arezoo M. ; Ladisch, Michael R. ; Verma, Mohit S.</creatorcontrib><description>Process analytical technology (PAT) for the manufacture of monoclonal antibodies (mAbs) is defined by an integrated set of advanced and automated methods that analyze the compositions and biophysical properties of cell culture fluids, cell-free product streams, and biotherapeutic molecules that are ultimately formulated into concentrated products. In-line or near-line probes and systems are remarkably well developed, although challenges remain in the determination of the absence of viral loads, detecting microbial or mycoplasma contamination, and applying data-driven deep learning to process monitoring and soft sensors. In this review, we address the current status of PAT for both batch and continuous processing steps and discuss its potential impact on facilitating the continuous manufacture of biotherapeutics. Process analytical technology (PAT) has evolved from hardware-based analyses for defined biological, biomolecular, and biochemical analytes to a toolbox that encompasses data analytics and soft sensors to monitor and control monoclonal antibody (mAb) manufacture.Engineered cell lines used in batch processes and continuous manufacturing have helped improve qualities and production rates for mAbs.Data analytics has become increasingly important as sensors become smaller, more robust, and increasingly ubiquitous, with soft sensors enabling determination of a rolling baseline of process conditions and consequences during the production of biologics.In-line sensors utilized for downstream processes provide a template for how such sensors might be used as part of PAT in the real-time monitoring of the manufacture of biotherapeutic proteins in both upstream and downstream unit operations.</description><identifier>ISSN: 0167-7799</identifier><identifier>EISSN: 1879-3096</identifier><identifier>DOI: 10.1016/j.tibtech.2020.07.004</identifier><identifier>PMID: 32839030</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Animals ; Antibodies, Monoclonal - analysis ; Antibodies, Monoclonal - chemistry ; Automation ; Biological products ; Bioreactors ; Cell culture ; Cell Culture Techniques ; CHO Cells ; Computational Biology - methods ; continuous manufacturing ; Coronaviruses ; COVID-19 ; Cricetinae ; Cricetulus ; Data analysis ; Drug Contamination - prevention &amp; control ; Humans ; Machine learning ; Mathematical analysis ; Microbial contamination ; Microorganisms ; Monoclonal antibodies ; Pharmaceuticals ; process analytical technology ; Productivity ; Review ; sensors ; spectrometry ; spectroscopy ; Technology assessment ; Technology, Pharmaceutical</subject><ispartof>Trends in biotechnology (Regular ed.), 2020-10, Vol.38 (10), p.1169-1186</ispartof><rights>2020 Elsevier Ltd</rights><rights>Copyright © 2020 Elsevier Ltd. All rights reserved.</rights><rights>2020. Elsevier Ltd</rights><rights>2020 Elsevier Ltd. All rights reserved. 2020 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c561t-11602a10ebd03f99f2dea3283812d7197099e0a2a6f9a14128b572333d624f883</citedby><cites>FETCH-LOGICAL-c561t-11602a10ebd03f99f2dea3283812d7197099e0a2a6f9a14128b572333d624f883</cites><orcidid>0000-0003-3301-3193 ; 0000-0001-9953-9599 ; 0000-0001-9419-1925 ; 0000-0002-6374-3333</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0167779920301852$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32839030$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Maruthamuthu, Murali K.</creatorcontrib><creatorcontrib>Rudge, Scott R.</creatorcontrib><creatorcontrib>Ardekani, Arezoo M.</creatorcontrib><creatorcontrib>Ladisch, Michael R.</creatorcontrib><creatorcontrib>Verma, Mohit S.</creatorcontrib><title>Process Analytical Technologies and Data Analytics for the Manufacture of Monoclonal Antibodies</title><title>Trends in biotechnology (Regular ed.)</title><addtitle>Trends Biotechnol</addtitle><description>Process analytical technology (PAT) for the manufacture of monoclonal antibodies (mAbs) is defined by an integrated set of advanced and automated methods that analyze the compositions and biophysical properties of cell culture fluids, cell-free product streams, and biotherapeutic molecules that are ultimately formulated into concentrated products. In-line or near-line probes and systems are remarkably well developed, although challenges remain in the determination of the absence of viral loads, detecting microbial or mycoplasma contamination, and applying data-driven deep learning to process monitoring and soft sensors. In this review, we address the current status of PAT for both batch and continuous processing steps and discuss its potential impact on facilitating the continuous manufacture of biotherapeutics. Process analytical technology (PAT) has evolved from hardware-based analyses for defined biological, biomolecular, and biochemical analytes to a toolbox that encompasses data analytics and soft sensors to monitor and control monoclonal antibody (mAb) manufacture.Engineered cell lines used in batch processes and continuous manufacturing have helped improve qualities and production rates for mAbs.Data analytics has become increasingly important as sensors become smaller, more robust, and increasingly ubiquitous, with soft sensors enabling determination of a rolling baseline of process conditions and consequences during the production of biologics.In-line sensors utilized for downstream processes provide a template for how such sensors might be used as part of PAT in the real-time monitoring of the manufacture of biotherapeutic proteins in both upstream and downstream unit operations.</description><subject>Animals</subject><subject>Antibodies, Monoclonal - analysis</subject><subject>Antibodies, Monoclonal - chemistry</subject><subject>Automation</subject><subject>Biological products</subject><subject>Bioreactors</subject><subject>Cell culture</subject><subject>Cell Culture Techniques</subject><subject>CHO Cells</subject><subject>Computational Biology - methods</subject><subject>continuous manufacturing</subject><subject>Coronaviruses</subject><subject>COVID-19</subject><subject>Cricetinae</subject><subject>Cricetulus</subject><subject>Data analysis</subject><subject>Drug Contamination - prevention &amp; control</subject><subject>Humans</subject><subject>Machine learning</subject><subject>Mathematical analysis</subject><subject>Microbial contamination</subject><subject>Microorganisms</subject><subject>Monoclonal antibodies</subject><subject>Pharmaceuticals</subject><subject>process analytical technology</subject><subject>Productivity</subject><subject>Review</subject><subject>sensors</subject><subject>spectrometry</subject><subject>spectroscopy</subject><subject>Technology assessment</subject><subject>Technology, Pharmaceutical</subject><issn>0167-7799</issn><issn>1879-3096</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqFkUtvFDEQhC0EIkvgJ4BG4sJlhvZjx-MLKApPKREcwtny2u2sV7PjYHsi5d_j0S4r4MKpD_6qutpFyEsKHQXav911JWwK2m3HgEEHsgMQj8iKDlK1HFT_mKwqJ1splTojz3LeAQCXij4lZ5wNXAGHFdHfU7SYc3MxmfGhBGvG5qa6TnGMtwFzYybXfDDFnIDc-JiassXm2kyzN7bMCZvom-s4RTvGilW2houu6p-TJ96MGV8c5zn58enjzeWX9urb56-XF1etXfe0tJT2wAwF3DjgXinPHJol5UCZk1RJUArBMNN7ZaigbNisJeOcu54JPwz8nLw7-N7Nmz06i1NJZtR3KexNetDRBP33yxS2-jbeaykEA2DV4M3RIMWfM-ai9yFbHEczYZyzZoJLSqXitKKv_0F3cU717oUSXAxSyCXR-kDZFHNO6E9hKOilQr3Txwr1UqEGqWuFVffqz0tOqt-dVeD9AcD6n_cBk8424GTRhYS2aBfDf1b8AkRzr64</recordid><startdate>20201001</startdate><enddate>20201001</enddate><creator>Maruthamuthu, Murali K.</creator><creator>Rudge, Scott R.</creator><creator>Ardekani, Arezoo M.</creator><creator>Ladisch, Michael R.</creator><creator>Verma, Mohit S.</creator><general>Elsevier Ltd</general><general>Elsevier Limited</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QF</scope><scope>7QO</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7U5</scope><scope>7X7</scope><scope>7XB</scope><scope>88C</scope><scope>88E</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>LK8</scope><scope>L~C</scope><scope>L~D</scope><scope>M0S</scope><scope>M0T</scope><scope>M1P</scope><scope>M2O</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-3301-3193</orcidid><orcidid>https://orcid.org/0000-0001-9953-9599</orcidid><orcidid>https://orcid.org/0000-0001-9419-1925</orcidid><orcidid>https://orcid.org/0000-0002-6374-3333</orcidid></search><sort><creationdate>20201001</creationdate><title>Process Analytical Technologies and Data Analytics for the Manufacture of Monoclonal Antibodies</title><author>Maruthamuthu, Murali K. ; Rudge, Scott R. ; Ardekani, Arezoo M. ; Ladisch, Michael R. ; Verma, Mohit S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c561t-11602a10ebd03f99f2dea3283812d7197099e0a2a6f9a14128b572333d624f883</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Animals</topic><topic>Antibodies, Monoclonal - analysis</topic><topic>Antibodies, Monoclonal - chemistry</topic><topic>Automation</topic><topic>Biological products</topic><topic>Bioreactors</topic><topic>Cell culture</topic><topic>Cell Culture Techniques</topic><topic>CHO Cells</topic><topic>Computational Biology - methods</topic><topic>continuous manufacturing</topic><topic>Coronaviruses</topic><topic>COVID-19</topic><topic>Cricetinae</topic><topic>Cricetulus</topic><topic>Data analysis</topic><topic>Drug Contamination - prevention &amp; control</topic><topic>Humans</topic><topic>Machine learning</topic><topic>Mathematical analysis</topic><topic>Microbial contamination</topic><topic>Microorganisms</topic><topic>Monoclonal antibodies</topic><topic>Pharmaceuticals</topic><topic>process analytical technology</topic><topic>Productivity</topic><topic>Review</topic><topic>sensors</topic><topic>spectrometry</topic><topic>spectroscopy</topic><topic>Technology assessment</topic><topic>Technology, Pharmaceutical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Maruthamuthu, Murali K.</creatorcontrib><creatorcontrib>Rudge, Scott R.</creatorcontrib><creatorcontrib>Ardekani, Arezoo M.</creatorcontrib><creatorcontrib>Ladisch, Michael R.</creatorcontrib><creatorcontrib>Verma, Mohit S.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Healthcare Administration Database (Alumni)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Healthcare Administration Database</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Trends in biotechnology (Regular ed.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Maruthamuthu, Murali K.</au><au>Rudge, Scott R.</au><au>Ardekani, Arezoo M.</au><au>Ladisch, Michael R.</au><au>Verma, Mohit S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Process Analytical Technologies and Data Analytics for the Manufacture of Monoclonal Antibodies</atitle><jtitle>Trends in biotechnology (Regular ed.)</jtitle><addtitle>Trends Biotechnol</addtitle><date>2020-10-01</date><risdate>2020</risdate><volume>38</volume><issue>10</issue><spage>1169</spage><epage>1186</epage><pages>1169-1186</pages><issn>0167-7799</issn><eissn>1879-3096</eissn><abstract>Process analytical technology (PAT) for the manufacture of monoclonal antibodies (mAbs) is defined by an integrated set of advanced and automated methods that analyze the compositions and biophysical properties of cell culture fluids, cell-free product streams, and biotherapeutic molecules that are ultimately formulated into concentrated products. In-line or near-line probes and systems are remarkably well developed, although challenges remain in the determination of the absence of viral loads, detecting microbial or mycoplasma contamination, and applying data-driven deep learning to process monitoring and soft sensors. In this review, we address the current status of PAT for both batch and continuous processing steps and discuss its potential impact on facilitating the continuous manufacture of biotherapeutics. Process analytical technology (PAT) has evolved from hardware-based analyses for defined biological, biomolecular, and biochemical analytes to a toolbox that encompasses data analytics and soft sensors to monitor and control monoclonal antibody (mAb) manufacture.Engineered cell lines used in batch processes and continuous manufacturing have helped improve qualities and production rates for mAbs.Data analytics has become increasingly important as sensors become smaller, more robust, and increasingly ubiquitous, with soft sensors enabling determination of a rolling baseline of process conditions and consequences during the production of biologics.In-line sensors utilized for downstream processes provide a template for how such sensors might be used as part of PAT in the real-time monitoring of the manufacture of biotherapeutic proteins in both upstream and downstream unit operations.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>32839030</pmid><doi>10.1016/j.tibtech.2020.07.004</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0003-3301-3193</orcidid><orcidid>https://orcid.org/0000-0001-9953-9599</orcidid><orcidid>https://orcid.org/0000-0001-9419-1925</orcidid><orcidid>https://orcid.org/0000-0002-6374-3333</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0167-7799
ispartof Trends in biotechnology (Regular ed.), 2020-10, Vol.38 (10), p.1169-1186
issn 0167-7799
1879-3096
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7442002
source MEDLINE; Elsevier ScienceDirect Journals
subjects Animals
Antibodies, Monoclonal - analysis
Antibodies, Monoclonal - chemistry
Automation
Biological products
Bioreactors
Cell culture
Cell Culture Techniques
CHO Cells
Computational Biology - methods
continuous manufacturing
Coronaviruses
COVID-19
Cricetinae
Cricetulus
Data analysis
Drug Contamination - prevention & control
Humans
Machine learning
Mathematical analysis
Microbial contamination
Microorganisms
Monoclonal antibodies
Pharmaceuticals
process analytical technology
Productivity
Review
sensors
spectrometry
spectroscopy
Technology assessment
Technology, Pharmaceutical
title Process Analytical Technologies and Data Analytics for the Manufacture of Monoclonal Antibodies
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T12%3A03%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Process%20Analytical%20Technologies%20and%20Data%20Analytics%20for%20the%20Manufacture%20of%20Monoclonal%20Antibodies&rft.jtitle=Trends%20in%20biotechnology%20(Regular%20ed.)&rft.au=Maruthamuthu,%20Murali%20K.&rft.date=2020-10-01&rft.volume=38&rft.issue=10&rft.spage=1169&rft.epage=1186&rft.pages=1169-1186&rft.issn=0167-7799&rft.eissn=1879-3096&rft_id=info:doi/10.1016/j.tibtech.2020.07.004&rft_dat=%3Cproquest_pubme%3E2443487478%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2443487478&rft_id=info:pmid/32839030&rft_els_id=S0167779920301852&rfr_iscdi=true