Coding and noncoding drivers of mantle cell lymphoma identified through exome and genome sequencing
Mantle cell lymphoma (MCL) is an uncommon B-cell non-Hodgkin lymphoma (NHL) that is incurable with standard therapies. The genetic drivers of this cancer have not been firmly established, and the features that contribute to differences in clinical course remain limited. To extend our understanding o...
Gespeichert in:
Veröffentlicht in: | Blood 2020-07, Vol.136 (5), p.572-584 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 584 |
---|---|
container_issue | 5 |
container_start_page | 572 |
container_title | Blood |
container_volume | 136 |
creator | Pararajalingam, Prasath Coyle, Krysta M. Arthur, Sarah E. Thomas, Nicole Alcaide, Miguel Meissner, Barbara Boyle, Merrill Qureshi, Quratulain Grande, Bruno M. Rushton, Christopher Slack, Graham W. Mungall, Andrew J. Tam, Constantine S. Agarwal, Rishu Dawson, Sarah-Jane Lenz, Georg Balasubramanian, Sriram Gascoyne, Randy D. Steidl, Christian Connors, Joseph Villa, Diego Audas, Timothy E. Marra, Marco A. Johnson, Nathalie A. Scott, David W. Morin, Ryan D. |
description | Mantle cell lymphoma (MCL) is an uncommon B-cell non-Hodgkin lymphoma (NHL) that is incurable with standard therapies. The genetic drivers of this cancer have not been firmly established, and the features that contribute to differences in clinical course remain limited. To extend our understanding of the biological pathways involved in this malignancy, we performed a large-scale genomic analysis of MCL using data from 51 exomes and 34 genomes alongside previously published exome cohorts. To confirm our findings, we resequenced the genes identified in the exome cohort in 191 MCL tumors, each having clinical follow-up data. We confirmed the prognostic association of TP53 and NOTCH1 mutations. Our sequencing revealed novel recurrent noncoding mutations surrounding a single exon of the HNRNPH1gene. In RNA-seq data from 103 of these cases, MCL tumors with these mutations had a distinct imbalance of HNRNPH1 isoforms. This altered splicing of HNRNPH1 was associated with inferior outcomes in MCL and showed a significant increase in protein expression by immunohistochemistry. We describe a functional role for these recurrent noncoding mutations in disrupting an autoregulatory feedback mechanism, thereby deregulating HNRNPH1 protein expression. Taken together, these data strongly imply a role for aberrant regulation of messenger RNA processing in MCL pathobiology.
•RNA-binding proteins with roles in regulating alternative splicing, DAZAP1, EWSR1, HNRNPH1, are frequently mutated in MCL.•Most somatic HNRNPH1 mutations are intronic and disrupt regulation of HNRNPH1 through alternative splicing.
[Display omitted] |
doi_str_mv | 10.1182/blood.2019002385 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7440974</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0006497120618432</els_id><sourcerecordid>2376734607</sourcerecordid><originalsourceid>FETCH-LOGICAL-c513t-4f92b618d15f8c8027bd500f82a52af99efee91a3fc04593198e176693fb97a33</originalsourceid><addsrcrecordid>eNp1kc9vFCEUx4nR2LV692Q4epn6gJlh8GBiNv5Kmnhpz4SBxy5mBlaY3bT_vWy3VnvoCV74vs_78r6EvGVwwdjAP4xTSu6CA1MAXAzdM7JiHR-aWsFzsgKAvmmVZGfkVSm_AFgrePeSnAnOeuCKr4hdJxfihproaEzRniqXwwFzocnT2cRlQmpxmuh0O--2aTY0OIxL8AEdXbY57TdbijdpxjvMBuPxWvD3HqOtuNfkhTdTwTf35zm5_vrlav29ufz57cf682VjOyaWpvWKjz0bHOv8YAfgcnQdgB-46bjxSqFHVMwIb6HtlGBqQCb7Xgk_KmmEOCefTtzdfpzR2eoxm0nvcphNvtXJBP34JYat3qSDlm0LSrYV8P4ekFM1XxY9h3L8uYmY9kVzIXsp2h5klcJJanMqJaN_GMNAH7PRd9nof9nUlnf_23to-BtGFXw8CbAu6RAw62JDXSG6kNEu2qXwNP0PnNSg6w</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2376734607</pqid></control><display><type>article</type><title>Coding and noncoding drivers of mantle cell lymphoma identified through exome and genome sequencing</title><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Pararajalingam, Prasath ; Coyle, Krysta M. ; Arthur, Sarah E. ; Thomas, Nicole ; Alcaide, Miguel ; Meissner, Barbara ; Boyle, Merrill ; Qureshi, Quratulain ; Grande, Bruno M. ; Rushton, Christopher ; Slack, Graham W. ; Mungall, Andrew J. ; Tam, Constantine S. ; Agarwal, Rishu ; Dawson, Sarah-Jane ; Lenz, Georg ; Balasubramanian, Sriram ; Gascoyne, Randy D. ; Steidl, Christian ; Connors, Joseph ; Villa, Diego ; Audas, Timothy E. ; Marra, Marco A. ; Johnson, Nathalie A. ; Scott, David W. ; Morin, Ryan D.</creator><creatorcontrib>Pararajalingam, Prasath ; Coyle, Krysta M. ; Arthur, Sarah E. ; Thomas, Nicole ; Alcaide, Miguel ; Meissner, Barbara ; Boyle, Merrill ; Qureshi, Quratulain ; Grande, Bruno M. ; Rushton, Christopher ; Slack, Graham W. ; Mungall, Andrew J. ; Tam, Constantine S. ; Agarwal, Rishu ; Dawson, Sarah-Jane ; Lenz, Georg ; Balasubramanian, Sriram ; Gascoyne, Randy D. ; Steidl, Christian ; Connors, Joseph ; Villa, Diego ; Audas, Timothy E. ; Marra, Marco A. ; Johnson, Nathalie A. ; Scott, David W. ; Morin, Ryan D.</creatorcontrib><description>Mantle cell lymphoma (MCL) is an uncommon B-cell non-Hodgkin lymphoma (NHL) that is incurable with standard therapies. The genetic drivers of this cancer have not been firmly established, and the features that contribute to differences in clinical course remain limited. To extend our understanding of the biological pathways involved in this malignancy, we performed a large-scale genomic analysis of MCL using data from 51 exomes and 34 genomes alongside previously published exome cohorts. To confirm our findings, we resequenced the genes identified in the exome cohort in 191 MCL tumors, each having clinical follow-up data. We confirmed the prognostic association of TP53 and NOTCH1 mutations. Our sequencing revealed novel recurrent noncoding mutations surrounding a single exon of the HNRNPH1gene. In RNA-seq data from 103 of these cases, MCL tumors with these mutations had a distinct imbalance of HNRNPH1 isoforms. This altered splicing of HNRNPH1 was associated with inferior outcomes in MCL and showed a significant increase in protein expression by immunohistochemistry. We describe a functional role for these recurrent noncoding mutations in disrupting an autoregulatory feedback mechanism, thereby deregulating HNRNPH1 protein expression. Taken together, these data strongly imply a role for aberrant regulation of messenger RNA processing in MCL pathobiology.
•RNA-binding proteins with roles in regulating alternative splicing, DAZAP1, EWSR1, HNRNPH1, are frequently mutated in MCL.•Most somatic HNRNPH1 mutations are intronic and disrupt regulation of HNRNPH1 through alternative splicing.
[Display omitted]</description><identifier>ISSN: 0006-4971</identifier><identifier>EISSN: 1528-0020</identifier><identifier>DOI: 10.1182/blood.2019002385</identifier><identifier>PMID: 32160292</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Adult ; Aged ; Aged, 80 and over ; Female ; Genetic Predisposition to Disease - genetics ; Genotype ; Heterogeneous-Nuclear Ribonucleoproteins - genetics ; Humans ; Lymphoid Neoplasia ; Lymphoma, Mantle-Cell - genetics ; Male ; Middle Aged ; Mutation ; Whole Genome Sequencing</subject><ispartof>Blood, 2020-07, Vol.136 (5), p.572-584</ispartof><rights>2020 American Society of Hematology</rights><rights>2020 by The American Society of Hematology.</rights><rights>2020 by The American Society of Hematology 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c513t-4f92b618d15f8c8027bd500f82a52af99efee91a3fc04593198e176693fb97a33</citedby><cites>FETCH-LOGICAL-c513t-4f92b618d15f8c8027bd500f82a52af99efee91a3fc04593198e176693fb97a33</cites><orcidid>0000-0002-1309-4873 ; 0000-0001-6306-9361 ; 0000-0002-0905-2742 ; 0000-0002-8342-2713 ; 0000-0002-4621-1589 ; 0000-0003-2932-7800 ; 0000-0002-4625-3009 ; 0000-0003-3945-3552</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32160292$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Pararajalingam, Prasath</creatorcontrib><creatorcontrib>Coyle, Krysta M.</creatorcontrib><creatorcontrib>Arthur, Sarah E.</creatorcontrib><creatorcontrib>Thomas, Nicole</creatorcontrib><creatorcontrib>Alcaide, Miguel</creatorcontrib><creatorcontrib>Meissner, Barbara</creatorcontrib><creatorcontrib>Boyle, Merrill</creatorcontrib><creatorcontrib>Qureshi, Quratulain</creatorcontrib><creatorcontrib>Grande, Bruno M.</creatorcontrib><creatorcontrib>Rushton, Christopher</creatorcontrib><creatorcontrib>Slack, Graham W.</creatorcontrib><creatorcontrib>Mungall, Andrew J.</creatorcontrib><creatorcontrib>Tam, Constantine S.</creatorcontrib><creatorcontrib>Agarwal, Rishu</creatorcontrib><creatorcontrib>Dawson, Sarah-Jane</creatorcontrib><creatorcontrib>Lenz, Georg</creatorcontrib><creatorcontrib>Balasubramanian, Sriram</creatorcontrib><creatorcontrib>Gascoyne, Randy D.</creatorcontrib><creatorcontrib>Steidl, Christian</creatorcontrib><creatorcontrib>Connors, Joseph</creatorcontrib><creatorcontrib>Villa, Diego</creatorcontrib><creatorcontrib>Audas, Timothy E.</creatorcontrib><creatorcontrib>Marra, Marco A.</creatorcontrib><creatorcontrib>Johnson, Nathalie A.</creatorcontrib><creatorcontrib>Scott, David W.</creatorcontrib><creatorcontrib>Morin, Ryan D.</creatorcontrib><title>Coding and noncoding drivers of mantle cell lymphoma identified through exome and genome sequencing</title><title>Blood</title><addtitle>Blood</addtitle><description>Mantle cell lymphoma (MCL) is an uncommon B-cell non-Hodgkin lymphoma (NHL) that is incurable with standard therapies. The genetic drivers of this cancer have not been firmly established, and the features that contribute to differences in clinical course remain limited. To extend our understanding of the biological pathways involved in this malignancy, we performed a large-scale genomic analysis of MCL using data from 51 exomes and 34 genomes alongside previously published exome cohorts. To confirm our findings, we resequenced the genes identified in the exome cohort in 191 MCL tumors, each having clinical follow-up data. We confirmed the prognostic association of TP53 and NOTCH1 mutations. Our sequencing revealed novel recurrent noncoding mutations surrounding a single exon of the HNRNPH1gene. In RNA-seq data from 103 of these cases, MCL tumors with these mutations had a distinct imbalance of HNRNPH1 isoforms. This altered splicing of HNRNPH1 was associated with inferior outcomes in MCL and showed a significant increase in protein expression by immunohistochemistry. We describe a functional role for these recurrent noncoding mutations in disrupting an autoregulatory feedback mechanism, thereby deregulating HNRNPH1 protein expression. Taken together, these data strongly imply a role for aberrant regulation of messenger RNA processing in MCL pathobiology.
•RNA-binding proteins with roles in regulating alternative splicing, DAZAP1, EWSR1, HNRNPH1, are frequently mutated in MCL.•Most somatic HNRNPH1 mutations are intronic and disrupt regulation of HNRNPH1 through alternative splicing.
[Display omitted]</description><subject>Adult</subject><subject>Aged</subject><subject>Aged, 80 and over</subject><subject>Female</subject><subject>Genetic Predisposition to Disease - genetics</subject><subject>Genotype</subject><subject>Heterogeneous-Nuclear Ribonucleoproteins - genetics</subject><subject>Humans</subject><subject>Lymphoid Neoplasia</subject><subject>Lymphoma, Mantle-Cell - genetics</subject><subject>Male</subject><subject>Middle Aged</subject><subject>Mutation</subject><subject>Whole Genome Sequencing</subject><issn>0006-4971</issn><issn>1528-0020</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kc9vFCEUx4nR2LV692Q4epn6gJlh8GBiNv5Kmnhpz4SBxy5mBlaY3bT_vWy3VnvoCV74vs_78r6EvGVwwdjAP4xTSu6CA1MAXAzdM7JiHR-aWsFzsgKAvmmVZGfkVSm_AFgrePeSnAnOeuCKr4hdJxfihproaEzRniqXwwFzocnT2cRlQmpxmuh0O--2aTY0OIxL8AEdXbY57TdbijdpxjvMBuPxWvD3HqOtuNfkhTdTwTf35zm5_vrlav29ufz57cf682VjOyaWpvWKjz0bHOv8YAfgcnQdgB-46bjxSqFHVMwIb6HtlGBqQCb7Xgk_KmmEOCefTtzdfpzR2eoxm0nvcphNvtXJBP34JYat3qSDlm0LSrYV8P4ekFM1XxY9h3L8uYmY9kVzIXsp2h5klcJJanMqJaN_GMNAH7PRd9nof9nUlnf_23to-BtGFXw8CbAu6RAw62JDXSG6kNEu2qXwNP0PnNSg6w</recordid><startdate>20200730</startdate><enddate>20200730</enddate><creator>Pararajalingam, Prasath</creator><creator>Coyle, Krysta M.</creator><creator>Arthur, Sarah E.</creator><creator>Thomas, Nicole</creator><creator>Alcaide, Miguel</creator><creator>Meissner, Barbara</creator><creator>Boyle, Merrill</creator><creator>Qureshi, Quratulain</creator><creator>Grande, Bruno M.</creator><creator>Rushton, Christopher</creator><creator>Slack, Graham W.</creator><creator>Mungall, Andrew J.</creator><creator>Tam, Constantine S.</creator><creator>Agarwal, Rishu</creator><creator>Dawson, Sarah-Jane</creator><creator>Lenz, Georg</creator><creator>Balasubramanian, Sriram</creator><creator>Gascoyne, Randy D.</creator><creator>Steidl, Christian</creator><creator>Connors, Joseph</creator><creator>Villa, Diego</creator><creator>Audas, Timothy E.</creator><creator>Marra, Marco A.</creator><creator>Johnson, Nathalie A.</creator><creator>Scott, David W.</creator><creator>Morin, Ryan D.</creator><general>Elsevier Inc</general><general>American Society of Hematology</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-1309-4873</orcidid><orcidid>https://orcid.org/0000-0001-6306-9361</orcidid><orcidid>https://orcid.org/0000-0002-0905-2742</orcidid><orcidid>https://orcid.org/0000-0002-8342-2713</orcidid><orcidid>https://orcid.org/0000-0002-4621-1589</orcidid><orcidid>https://orcid.org/0000-0003-2932-7800</orcidid><orcidid>https://orcid.org/0000-0002-4625-3009</orcidid><orcidid>https://orcid.org/0000-0003-3945-3552</orcidid></search><sort><creationdate>20200730</creationdate><title>Coding and noncoding drivers of mantle cell lymphoma identified through exome and genome sequencing</title><author>Pararajalingam, Prasath ; Coyle, Krysta M. ; Arthur, Sarah E. ; Thomas, Nicole ; Alcaide, Miguel ; Meissner, Barbara ; Boyle, Merrill ; Qureshi, Quratulain ; Grande, Bruno M. ; Rushton, Christopher ; Slack, Graham W. ; Mungall, Andrew J. ; Tam, Constantine S. ; Agarwal, Rishu ; Dawson, Sarah-Jane ; Lenz, Georg ; Balasubramanian, Sriram ; Gascoyne, Randy D. ; Steidl, Christian ; Connors, Joseph ; Villa, Diego ; Audas, Timothy E. ; Marra, Marco A. ; Johnson, Nathalie A. ; Scott, David W. ; Morin, Ryan D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c513t-4f92b618d15f8c8027bd500f82a52af99efee91a3fc04593198e176693fb97a33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Adult</topic><topic>Aged</topic><topic>Aged, 80 and over</topic><topic>Female</topic><topic>Genetic Predisposition to Disease - genetics</topic><topic>Genotype</topic><topic>Heterogeneous-Nuclear Ribonucleoproteins - genetics</topic><topic>Humans</topic><topic>Lymphoid Neoplasia</topic><topic>Lymphoma, Mantle-Cell - genetics</topic><topic>Male</topic><topic>Middle Aged</topic><topic>Mutation</topic><topic>Whole Genome Sequencing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pararajalingam, Prasath</creatorcontrib><creatorcontrib>Coyle, Krysta M.</creatorcontrib><creatorcontrib>Arthur, Sarah E.</creatorcontrib><creatorcontrib>Thomas, Nicole</creatorcontrib><creatorcontrib>Alcaide, Miguel</creatorcontrib><creatorcontrib>Meissner, Barbara</creatorcontrib><creatorcontrib>Boyle, Merrill</creatorcontrib><creatorcontrib>Qureshi, Quratulain</creatorcontrib><creatorcontrib>Grande, Bruno M.</creatorcontrib><creatorcontrib>Rushton, Christopher</creatorcontrib><creatorcontrib>Slack, Graham W.</creatorcontrib><creatorcontrib>Mungall, Andrew J.</creatorcontrib><creatorcontrib>Tam, Constantine S.</creatorcontrib><creatorcontrib>Agarwal, Rishu</creatorcontrib><creatorcontrib>Dawson, Sarah-Jane</creatorcontrib><creatorcontrib>Lenz, Georg</creatorcontrib><creatorcontrib>Balasubramanian, Sriram</creatorcontrib><creatorcontrib>Gascoyne, Randy D.</creatorcontrib><creatorcontrib>Steidl, Christian</creatorcontrib><creatorcontrib>Connors, Joseph</creatorcontrib><creatorcontrib>Villa, Diego</creatorcontrib><creatorcontrib>Audas, Timothy E.</creatorcontrib><creatorcontrib>Marra, Marco A.</creatorcontrib><creatorcontrib>Johnson, Nathalie A.</creatorcontrib><creatorcontrib>Scott, David W.</creatorcontrib><creatorcontrib>Morin, Ryan D.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Blood</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pararajalingam, Prasath</au><au>Coyle, Krysta M.</au><au>Arthur, Sarah E.</au><au>Thomas, Nicole</au><au>Alcaide, Miguel</au><au>Meissner, Barbara</au><au>Boyle, Merrill</au><au>Qureshi, Quratulain</au><au>Grande, Bruno M.</au><au>Rushton, Christopher</au><au>Slack, Graham W.</au><au>Mungall, Andrew J.</au><au>Tam, Constantine S.</au><au>Agarwal, Rishu</au><au>Dawson, Sarah-Jane</au><au>Lenz, Georg</au><au>Balasubramanian, Sriram</au><au>Gascoyne, Randy D.</au><au>Steidl, Christian</au><au>Connors, Joseph</au><au>Villa, Diego</au><au>Audas, Timothy E.</au><au>Marra, Marco A.</au><au>Johnson, Nathalie A.</au><au>Scott, David W.</au><au>Morin, Ryan D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Coding and noncoding drivers of mantle cell lymphoma identified through exome and genome sequencing</atitle><jtitle>Blood</jtitle><addtitle>Blood</addtitle><date>2020-07-30</date><risdate>2020</risdate><volume>136</volume><issue>5</issue><spage>572</spage><epage>584</epage><pages>572-584</pages><issn>0006-4971</issn><eissn>1528-0020</eissn><abstract>Mantle cell lymphoma (MCL) is an uncommon B-cell non-Hodgkin lymphoma (NHL) that is incurable with standard therapies. The genetic drivers of this cancer have not been firmly established, and the features that contribute to differences in clinical course remain limited. To extend our understanding of the biological pathways involved in this malignancy, we performed a large-scale genomic analysis of MCL using data from 51 exomes and 34 genomes alongside previously published exome cohorts. To confirm our findings, we resequenced the genes identified in the exome cohort in 191 MCL tumors, each having clinical follow-up data. We confirmed the prognostic association of TP53 and NOTCH1 mutations. Our sequencing revealed novel recurrent noncoding mutations surrounding a single exon of the HNRNPH1gene. In RNA-seq data from 103 of these cases, MCL tumors with these mutations had a distinct imbalance of HNRNPH1 isoforms. This altered splicing of HNRNPH1 was associated with inferior outcomes in MCL and showed a significant increase in protein expression by immunohistochemistry. We describe a functional role for these recurrent noncoding mutations in disrupting an autoregulatory feedback mechanism, thereby deregulating HNRNPH1 protein expression. Taken together, these data strongly imply a role for aberrant regulation of messenger RNA processing in MCL pathobiology.
•RNA-binding proteins with roles in regulating alternative splicing, DAZAP1, EWSR1, HNRNPH1, are frequently mutated in MCL.•Most somatic HNRNPH1 mutations are intronic and disrupt regulation of HNRNPH1 through alternative splicing.
[Display omitted]</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>32160292</pmid><doi>10.1182/blood.2019002385</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-1309-4873</orcidid><orcidid>https://orcid.org/0000-0001-6306-9361</orcidid><orcidid>https://orcid.org/0000-0002-0905-2742</orcidid><orcidid>https://orcid.org/0000-0002-8342-2713</orcidid><orcidid>https://orcid.org/0000-0002-4621-1589</orcidid><orcidid>https://orcid.org/0000-0003-2932-7800</orcidid><orcidid>https://orcid.org/0000-0002-4625-3009</orcidid><orcidid>https://orcid.org/0000-0003-3945-3552</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0006-4971 |
ispartof | Blood, 2020-07, Vol.136 (5), p.572-584 |
issn | 0006-4971 1528-0020 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7440974 |
source | MEDLINE; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection |
subjects | Adult Aged Aged, 80 and over Female Genetic Predisposition to Disease - genetics Genotype Heterogeneous-Nuclear Ribonucleoproteins - genetics Humans Lymphoid Neoplasia Lymphoma, Mantle-Cell - genetics Male Middle Aged Mutation Whole Genome Sequencing |
title | Coding and noncoding drivers of mantle cell lymphoma identified through exome and genome sequencing |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T04%3A34%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Coding%20and%20noncoding%20drivers%20of%20mantle%20cell%20lymphoma%20identified%20through%20exome%20and%20genome%20sequencing&rft.jtitle=Blood&rft.au=Pararajalingam,%20Prasath&rft.date=2020-07-30&rft.volume=136&rft.issue=5&rft.spage=572&rft.epage=584&rft.pages=572-584&rft.issn=0006-4971&rft.eissn=1528-0020&rft_id=info:doi/10.1182/blood.2019002385&rft_dat=%3Cproquest_pubme%3E2376734607%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2376734607&rft_id=info:pmid/32160292&rft_els_id=S0006497120618432&rfr_iscdi=true |