Octupole corner state in a three-dimensional topological circuit

Higher-order topological insulators (HOTIs) represent a new family of topological materials featuring quantized bulk polarizations and zero-dimensional corner states. In recent years, zero-dimensional corner states have been demonstrated in two-dimensional systems in the form of quadrupole modes or...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Light, science & applications science & applications, 2020-08, Vol.9 (1), p.145-145, Article 145
Hauptverfasser: Liu, Shuo, Ma, Shaojie, Zhang, Qian, Zhang, Lei, Yang, Cheng, You, Oubo, Gao, Wenlong, Xiang, Yuanjiang, Cui, Tie Jun, Zhang, Shuang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 145
container_issue 1
container_start_page 145
container_title Light, science & applications
container_volume 9
creator Liu, Shuo
Ma, Shaojie
Zhang, Qian
Zhang, Lei
Yang, Cheng
You, Oubo
Gao, Wenlong
Xiang, Yuanjiang
Cui, Tie Jun
Zhang, Shuang
description Higher-order topological insulators (HOTIs) represent a new family of topological materials featuring quantized bulk polarizations and zero-dimensional corner states. In recent years, zero-dimensional corner states have been demonstrated in two-dimensional systems in the form of quadrupole modes or dipole modes. Due to the challenges in designing and constructing three-dimensional systems, octupole corner modes in 3D have not been observed. In this work, we experimentally investigate octupole topological phases in a three-dimensional electrical circuit, which can be viewed as a cubic lattice version of the Hofstadter model with a π -flux threading each plaquette. We experimentally observe in our higher-order topological circuit a 0D corner state manifested as a localized impedance peak. The observed corner state in the electrical circuit is induced by the octupole moment of the bulk circuit and is topologically protected by anticommuting spatial symmetries of the circuit lattice. Our work provides a platform for investigating higher-order topological effects in three-dimensional electrical circuits. Viewing topological effects in a 3D electrical circuit An electrical circuit mimicking the characteristics of a topological insulator (TI) allows the experimental realization of exotic quantum conducting states. TIs, which have applications in the burgeoning fields of spintronics and quantum computing, act as conductors in their bulk but have two-dimensional conducting states on their surfaces. Shuang Zhang at the University of Birmingham, UK and co-workers are using electrical components to mimic the atoms in higher-order TIs, which feature zero-dimensional corner states topologically protected by three anticommuting reflection symmetries of the bulk lattice. The researchers built a 3D topological circuit comprising a cubic lattice of capacitors and inductors and observed a localized peak in impedance spectrum caused by an ‘octupole’ zero-dimensional corner state. Their circuit, which imitates the famous Hofstadter butterfly model of interacting electrons, opens up a new platform for investigating higher-order topological effects.
doi_str_mv 10.1038/s41377-020-00381-w
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7438484</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2438991877</sourcerecordid><originalsourceid>FETCH-LOGICAL-c517t-93c49c2dda520378105f09d275afcbbb0a89e87c941e93713657536093aa98863</originalsourceid><addsrcrecordid>eNp9kUtLAzEUhYMottT-AVcDbtyM5jVNshGl-IJCN7oOmUymTZlOapKx-O9NO8XXwmxyL_nO4ZADwDmCVwgSfh0oIozlEMMcph3l2yMwxJCynBWEH_-YB2AcwgqmIyiCnJ2CAcF8QhGGQ3A717HbuMZk2vnW-CxEFU1m20xlcemNySu7Nm2wrlVNFl1C3cLqNGvrdWfjGTipVRPM-HCPwOvD_cv0KZ_NH5-nd7NcF4jFXBBNhcZVpQoMCeMIFjUUFWaFqnVZllBxYTjTKaIRhCEyKVL2CRREKcH5hIzATe-76cq1qbRpo1eN3Hi7Vv5DOmXl75fWLuXCvUtGCaecJoPLg4F3b50JUa5t0KZpVGtcFyROnBCIM5bQiz_oynU-fcCeKgjBiO4McU9p70Lwpv4Kg6DcdST7jmTqSO47ktskIr0oJLhdGP9t_Y_qE549kqY</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2435332144</pqid></control><display><type>article</type><title>Octupole corner state in a three-dimensional topological circuit</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Springer Nature OA Free Journals</source><source>Nature Free</source><source>PubMed Central</source><creator>Liu, Shuo ; Ma, Shaojie ; Zhang, Qian ; Zhang, Lei ; Yang, Cheng ; You, Oubo ; Gao, Wenlong ; Xiang, Yuanjiang ; Cui, Tie Jun ; Zhang, Shuang</creator><creatorcontrib>Liu, Shuo ; Ma, Shaojie ; Zhang, Qian ; Zhang, Lei ; Yang, Cheng ; You, Oubo ; Gao, Wenlong ; Xiang, Yuanjiang ; Cui, Tie Jun ; Zhang, Shuang</creatorcontrib><description>Higher-order topological insulators (HOTIs) represent a new family of topological materials featuring quantized bulk polarizations and zero-dimensional corner states. In recent years, zero-dimensional corner states have been demonstrated in two-dimensional systems in the form of quadrupole modes or dipole modes. Due to the challenges in designing and constructing three-dimensional systems, octupole corner modes in 3D have not been observed. In this work, we experimentally investigate octupole topological phases in a three-dimensional electrical circuit, which can be viewed as a cubic lattice version of the Hofstadter model with a π -flux threading each plaquette. We experimentally observe in our higher-order topological circuit a 0D corner state manifested as a localized impedance peak. The observed corner state in the electrical circuit is induced by the octupole moment of the bulk circuit and is topologically protected by anticommuting spatial symmetries of the circuit lattice. Our work provides a platform for investigating higher-order topological effects in three-dimensional electrical circuits. Viewing topological effects in a 3D electrical circuit An electrical circuit mimicking the characteristics of a topological insulator (TI) allows the experimental realization of exotic quantum conducting states. TIs, which have applications in the burgeoning fields of spintronics and quantum computing, act as conductors in their bulk but have two-dimensional conducting states on their surfaces. Shuang Zhang at the University of Birmingham, UK and co-workers are using electrical components to mimic the atoms in higher-order TIs, which feature zero-dimensional corner states topologically protected by three anticommuting reflection symmetries of the bulk lattice. The researchers built a 3D topological circuit comprising a cubic lattice of capacitors and inductors and observed a localized peak in impedance spectrum caused by an ‘octupole’ zero-dimensional corner state. Their circuit, which imitates the famous Hofstadter butterfly model of interacting electrons, opens up a new platform for investigating higher-order topological effects.</description><identifier>ISSN: 2047-7538</identifier><identifier>ISSN: 2095-5545</identifier><identifier>EISSN: 2047-7538</identifier><identifier>DOI: 10.1038/s41377-020-00381-w</identifier><identifier>PMID: 32864120</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/624/399/1015 ; 639/766/1130/2799 ; Applied and Technical Physics ; Atomic ; Classical and Continuum Physics ; Conductors ; Lasers ; Mimicry ; Molecular ; Optical and Plasma Physics ; Optical Devices ; Optics ; Photonics ; Physics ; Physics and Astronomy</subject><ispartof>Light, science &amp; applications, 2020-08, Vol.9 (1), p.145-145, Article 145</ispartof><rights>The Author(s) 2020</rights><rights>The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c517t-93c49c2dda520378105f09d275afcbbb0a89e87c941e93713657536093aa98863</citedby><cites>FETCH-LOGICAL-c517t-93c49c2dda520378105f09d275afcbbb0a89e87c941e93713657536093aa98863</cites><orcidid>0000-0002-3534-1599 ; 0000-0002-8791-6374 ; 0000-0002-5862-1497</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7438484/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7438484/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,27922,27923,41118,42187,51574,53789,53791</link.rule.ids></links><search><creatorcontrib>Liu, Shuo</creatorcontrib><creatorcontrib>Ma, Shaojie</creatorcontrib><creatorcontrib>Zhang, Qian</creatorcontrib><creatorcontrib>Zhang, Lei</creatorcontrib><creatorcontrib>Yang, Cheng</creatorcontrib><creatorcontrib>You, Oubo</creatorcontrib><creatorcontrib>Gao, Wenlong</creatorcontrib><creatorcontrib>Xiang, Yuanjiang</creatorcontrib><creatorcontrib>Cui, Tie Jun</creatorcontrib><creatorcontrib>Zhang, Shuang</creatorcontrib><title>Octupole corner state in a three-dimensional topological circuit</title><title>Light, science &amp; applications</title><addtitle>Light Sci Appl</addtitle><description>Higher-order topological insulators (HOTIs) represent a new family of topological materials featuring quantized bulk polarizations and zero-dimensional corner states. In recent years, zero-dimensional corner states have been demonstrated in two-dimensional systems in the form of quadrupole modes or dipole modes. Due to the challenges in designing and constructing three-dimensional systems, octupole corner modes in 3D have not been observed. In this work, we experimentally investigate octupole topological phases in a three-dimensional electrical circuit, which can be viewed as a cubic lattice version of the Hofstadter model with a π -flux threading each plaquette. We experimentally observe in our higher-order topological circuit a 0D corner state manifested as a localized impedance peak. The observed corner state in the electrical circuit is induced by the octupole moment of the bulk circuit and is topologically protected by anticommuting spatial symmetries of the circuit lattice. Our work provides a platform for investigating higher-order topological effects in three-dimensional electrical circuits. Viewing topological effects in a 3D electrical circuit An electrical circuit mimicking the characteristics of a topological insulator (TI) allows the experimental realization of exotic quantum conducting states. TIs, which have applications in the burgeoning fields of spintronics and quantum computing, act as conductors in their bulk but have two-dimensional conducting states on their surfaces. Shuang Zhang at the University of Birmingham, UK and co-workers are using electrical components to mimic the atoms in higher-order TIs, which feature zero-dimensional corner states topologically protected by three anticommuting reflection symmetries of the bulk lattice. The researchers built a 3D topological circuit comprising a cubic lattice of capacitors and inductors and observed a localized peak in impedance spectrum caused by an ‘octupole’ zero-dimensional corner state. Their circuit, which imitates the famous Hofstadter butterfly model of interacting electrons, opens up a new platform for investigating higher-order topological effects.</description><subject>639/624/399/1015</subject><subject>639/766/1130/2799</subject><subject>Applied and Technical Physics</subject><subject>Atomic</subject><subject>Classical and Continuum Physics</subject><subject>Conductors</subject><subject>Lasers</subject><subject>Mimicry</subject><subject>Molecular</subject><subject>Optical and Plasma Physics</subject><subject>Optical Devices</subject><subject>Optics</subject><subject>Photonics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><issn>2047-7538</issn><issn>2095-5545</issn><issn>2047-7538</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kUtLAzEUhYMottT-AVcDbtyM5jVNshGl-IJCN7oOmUymTZlOapKx-O9NO8XXwmxyL_nO4ZADwDmCVwgSfh0oIozlEMMcph3l2yMwxJCynBWEH_-YB2AcwgqmIyiCnJ2CAcF8QhGGQ3A717HbuMZk2vnW-CxEFU1m20xlcemNySu7Nm2wrlVNFl1C3cLqNGvrdWfjGTipVRPM-HCPwOvD_cv0KZ_NH5-nd7NcF4jFXBBNhcZVpQoMCeMIFjUUFWaFqnVZllBxYTjTKaIRhCEyKVL2CRREKcH5hIzATe-76cq1qbRpo1eN3Hi7Vv5DOmXl75fWLuXCvUtGCaecJoPLg4F3b50JUa5t0KZpVGtcFyROnBCIM5bQiz_oynU-fcCeKgjBiO4McU9p70Lwpv4Kg6DcdST7jmTqSO47ktskIr0oJLhdGP9t_Y_qE549kqY</recordid><startdate>20200819</startdate><enddate>20200819</enddate><creator>Liu, Shuo</creator><creator>Ma, Shaojie</creator><creator>Zhang, Qian</creator><creator>Zhang, Lei</creator><creator>Yang, Cheng</creator><creator>You, Oubo</creator><creator>Gao, Wenlong</creator><creator>Xiang, Yuanjiang</creator><creator>Cui, Tie Jun</creator><creator>Zhang, Shuang</creator><general>Nature Publishing Group UK</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-3534-1599</orcidid><orcidid>https://orcid.org/0000-0002-8791-6374</orcidid><orcidid>https://orcid.org/0000-0002-5862-1497</orcidid></search><sort><creationdate>20200819</creationdate><title>Octupole corner state in a three-dimensional topological circuit</title><author>Liu, Shuo ; Ma, Shaojie ; Zhang, Qian ; Zhang, Lei ; Yang, Cheng ; You, Oubo ; Gao, Wenlong ; Xiang, Yuanjiang ; Cui, Tie Jun ; Zhang, Shuang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c517t-93c49c2dda520378105f09d275afcbbb0a89e87c941e93713657536093aa98863</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>639/624/399/1015</topic><topic>639/766/1130/2799</topic><topic>Applied and Technical Physics</topic><topic>Atomic</topic><topic>Classical and Continuum Physics</topic><topic>Conductors</topic><topic>Lasers</topic><topic>Mimicry</topic><topic>Molecular</topic><topic>Optical and Plasma Physics</topic><topic>Optical Devices</topic><topic>Optics</topic><topic>Photonics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Shuo</creatorcontrib><creatorcontrib>Ma, Shaojie</creatorcontrib><creatorcontrib>Zhang, Qian</creatorcontrib><creatorcontrib>Zhang, Lei</creatorcontrib><creatorcontrib>Yang, Cheng</creatorcontrib><creatorcontrib>You, Oubo</creatorcontrib><creatorcontrib>Gao, Wenlong</creatorcontrib><creatorcontrib>Xiang, Yuanjiang</creatorcontrib><creatorcontrib>Cui, Tie Jun</creatorcontrib><creatorcontrib>Zhang, Shuang</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Light, science &amp; applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Shuo</au><au>Ma, Shaojie</au><au>Zhang, Qian</au><au>Zhang, Lei</au><au>Yang, Cheng</au><au>You, Oubo</au><au>Gao, Wenlong</au><au>Xiang, Yuanjiang</au><au>Cui, Tie Jun</au><au>Zhang, Shuang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Octupole corner state in a three-dimensional topological circuit</atitle><jtitle>Light, science &amp; applications</jtitle><stitle>Light Sci Appl</stitle><date>2020-08-19</date><risdate>2020</risdate><volume>9</volume><issue>1</issue><spage>145</spage><epage>145</epage><pages>145-145</pages><artnum>145</artnum><issn>2047-7538</issn><issn>2095-5545</issn><eissn>2047-7538</eissn><abstract>Higher-order topological insulators (HOTIs) represent a new family of topological materials featuring quantized bulk polarizations and zero-dimensional corner states. In recent years, zero-dimensional corner states have been demonstrated in two-dimensional systems in the form of quadrupole modes or dipole modes. Due to the challenges in designing and constructing three-dimensional systems, octupole corner modes in 3D have not been observed. In this work, we experimentally investigate octupole topological phases in a three-dimensional electrical circuit, which can be viewed as a cubic lattice version of the Hofstadter model with a π -flux threading each plaquette. We experimentally observe in our higher-order topological circuit a 0D corner state manifested as a localized impedance peak. The observed corner state in the electrical circuit is induced by the octupole moment of the bulk circuit and is topologically protected by anticommuting spatial symmetries of the circuit lattice. Our work provides a platform for investigating higher-order topological effects in three-dimensional electrical circuits. Viewing topological effects in a 3D electrical circuit An electrical circuit mimicking the characteristics of a topological insulator (TI) allows the experimental realization of exotic quantum conducting states. TIs, which have applications in the burgeoning fields of spintronics and quantum computing, act as conductors in their bulk but have two-dimensional conducting states on their surfaces. Shuang Zhang at the University of Birmingham, UK and co-workers are using electrical components to mimic the atoms in higher-order TIs, which feature zero-dimensional corner states topologically protected by three anticommuting reflection symmetries of the bulk lattice. The researchers built a 3D topological circuit comprising a cubic lattice of capacitors and inductors and observed a localized peak in impedance spectrum caused by an ‘octupole’ zero-dimensional corner state. Their circuit, which imitates the famous Hofstadter butterfly model of interacting electrons, opens up a new platform for investigating higher-order topological effects.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>32864120</pmid><doi>10.1038/s41377-020-00381-w</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-3534-1599</orcidid><orcidid>https://orcid.org/0000-0002-8791-6374</orcidid><orcidid>https://orcid.org/0000-0002-5862-1497</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2047-7538
ispartof Light, science & applications, 2020-08, Vol.9 (1), p.145-145, Article 145
issn 2047-7538
2095-5545
2047-7538
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7438484
source DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Springer Nature OA Free Journals; Nature Free; PubMed Central
subjects 639/624/399/1015
639/766/1130/2799
Applied and Technical Physics
Atomic
Classical and Continuum Physics
Conductors
Lasers
Mimicry
Molecular
Optical and Plasma Physics
Optical Devices
Optics
Photonics
Physics
Physics and Astronomy
title Octupole corner state in a three-dimensional topological circuit
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T20%3A44%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Octupole%20corner%20state%20in%20a%20three-dimensional%20topological%20circuit&rft.jtitle=Light,%20science%20&%20applications&rft.au=Liu,%20Shuo&rft.date=2020-08-19&rft.volume=9&rft.issue=1&rft.spage=145&rft.epage=145&rft.pages=145-145&rft.artnum=145&rft.issn=2047-7538&rft.eissn=2047-7538&rft_id=info:doi/10.1038/s41377-020-00381-w&rft_dat=%3Cproquest_pubme%3E2438991877%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2435332144&rft_id=info:pmid/32864120&rfr_iscdi=true