A Non-canonical BRCT-Phosphopeptide Recognition Mechanism Underlies RhoA Activation in Cytokinesis

Cytokinesis partitions the cell contents to complete mitosis. During cytokinesis, polo-like kinase 1 (PLK1) activates the small GTPase RhoA to assemble a contractile actomyosin ring. PLK1 is proposed to pattern RhoA activation by creating a docking site on the central spindle that concentrates the R...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Current biology 2020-08, Vol.30 (16), p.3101-3115.e11
Hauptverfasser: Gómez-Cavazos, J. Sebastián, Lee, Kian-Yong, Lara-González, Pablo, Li, Yanchi, Desai, Arshad, Shiau, Andrew K., Oegema, Karen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3115.e11
container_issue 16
container_start_page 3101
container_title Current biology
container_volume 30
creator Gómez-Cavazos, J. Sebastián
Lee, Kian-Yong
Lara-González, Pablo
Li, Yanchi
Desai, Arshad
Shiau, Andrew K.
Oegema, Karen
description Cytokinesis partitions the cell contents to complete mitosis. During cytokinesis, polo-like kinase 1 (PLK1) activates the small GTPase RhoA to assemble a contractile actomyosin ring. PLK1 is proposed to pattern RhoA activation by creating a docking site on the central spindle that concentrates the RhoA guanine nucleotide exchange factor ECT2. However, ECT2 targeting to the central spindle is dispensable for cytokinesis, indicating that how PLK1 controls RhoA activation remains unresolved. To address this question, we employed an unbiased approach targeting ∼100 predicted PLK1 sites in two RhoA regulators: ECT2 and the centralspindlin complex, composed of CYK4 and kinesin-6. This comprehensive approach suggested that the only functionally critical PLK1 target sites are in a single cluster in the CYK4 N terminus. Phosphorylation of this cluster promoted direct interaction of CYK4 with the BRCT repeat module of ECT2. However, mutational analysis in vitro and in vivo led to the surprising finding that the interaction was independent of the conserved “canonical” residues in ECT2’s BRCT repeat module that, based on structurally characterized BRCT-phosphopeptide interactions, were presumed critical for binding. Instead, we show that the ECT2 BRCT module binds phosphorylated CYK4 via a distinct conserved basic surface. Basic surface mutations mimic the effects on cytokinesis of loss of CYK4 cluster phosphorylation or inhibition of PLK1 activity. Together with evidence for ECT2 autoinhibition limiting interaction with CYK4 in the cytoplasm, these results suggest that a spatial gradient of phosphorylated CYK4 around the central spindle patterns RhoA activation by interacting with ECT2 on the adjacent plasma membrane. [Display omitted] •RhoA regulator screen identifies a single essential PLK1 target site cluster in CYK4•Phosphorylation by PLK1 of CYK4 enables binding to a conserved basic surface in ECT2•ECT2 basic surface is distinct from the canonical BRCT phosphopeptide binding site•Autoinhibition prevents C. elegans ECT2 from binding to P-CYK4 at the central spindle Gómez-Cavazos et al. show that the key function of PLK1 kinase in RhoA activation during cytokinesis is phosphorylation of the CYK4 N terminus. Phospho-CYK4 binds to a conserved basic surface in the guanine nucleotide exchange factor ECT2. This site is essential for cytokinesis and is distinct from the canonical BRCT phospho-peptide binding site.
doi_str_mv 10.1016/j.cub.2020.05.090
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7438317</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0960982220307776</els_id><sourcerecordid>2420143222</sourcerecordid><originalsourceid>FETCH-LOGICAL-c451t-7a3e0ea3961affadd9aa4d1714330e8fc704e22e766a78e1cc7e084049fe80363</originalsourceid><addsrcrecordid>eNp9kU1v1DAQhi0EokvhB3BBOXJJGH9sbAsJaVnxJZUPrdqz5XUmzSxZO42zK_Xfk7KlggunOcwz74zmYewlh4oDr9_sqnDYVgIEVLCswMIjtuBG2xKUWj5mC7A1lNYIccae5bwD4MLY-ik7k6LmVhm-YNtV8S3FMviYIgXfF-8368vyR5fy0KUBh4kaLDYY0nWkiVIsvmLofKS8L65ig2NPmItNl1bFKkx09L8ZisX6dko_KWKm_Jw9aX2f8cV9PWdXHz9crj-XF98_fVmvLsqglnwqtZcI6KWtuW9b3zTWe9VwzZWUgKYNGhQKgbquvTbIQ9AIRoGyLRqQtTxn7065w2G7xyZgnEbfu2GkvR9vXfLk_u1E6tx1OjqtpJFczwGv7wPGdHPAPLk95YB97yOmQ3ZCCZivEULMKD-hYUw5j9g-rOHg7ty4nZvduDs3DpZudjPPvPr7voeJPzJm4O0JwPlLR8LR5UAYAzY0Yphck-g_8b8AgzehGQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2420143222</pqid></control><display><type>article</type><title>A Non-canonical BRCT-Phosphopeptide Recognition Mechanism Underlies RhoA Activation in Cytokinesis</title><source>MEDLINE</source><source>Cell Press Free Archives</source><source>Elsevier ScienceDirect Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Gómez-Cavazos, J. Sebastián ; Lee, Kian-Yong ; Lara-González, Pablo ; Li, Yanchi ; Desai, Arshad ; Shiau, Andrew K. ; Oegema, Karen</creator><creatorcontrib>Gómez-Cavazos, J. Sebastián ; Lee, Kian-Yong ; Lara-González, Pablo ; Li, Yanchi ; Desai, Arshad ; Shiau, Andrew K. ; Oegema, Karen</creatorcontrib><description>Cytokinesis partitions the cell contents to complete mitosis. During cytokinesis, polo-like kinase 1 (PLK1) activates the small GTPase RhoA to assemble a contractile actomyosin ring. PLK1 is proposed to pattern RhoA activation by creating a docking site on the central spindle that concentrates the RhoA guanine nucleotide exchange factor ECT2. However, ECT2 targeting to the central spindle is dispensable for cytokinesis, indicating that how PLK1 controls RhoA activation remains unresolved. To address this question, we employed an unbiased approach targeting ∼100 predicted PLK1 sites in two RhoA regulators: ECT2 and the centralspindlin complex, composed of CYK4 and kinesin-6. This comprehensive approach suggested that the only functionally critical PLK1 target sites are in a single cluster in the CYK4 N terminus. Phosphorylation of this cluster promoted direct interaction of CYK4 with the BRCT repeat module of ECT2. However, mutational analysis in vitro and in vivo led to the surprising finding that the interaction was independent of the conserved “canonical” residues in ECT2’s BRCT repeat module that, based on structurally characterized BRCT-phosphopeptide interactions, were presumed critical for binding. Instead, we show that the ECT2 BRCT module binds phosphorylated CYK4 via a distinct conserved basic surface. Basic surface mutations mimic the effects on cytokinesis of loss of CYK4 cluster phosphorylation or inhibition of PLK1 activity. Together with evidence for ECT2 autoinhibition limiting interaction with CYK4 in the cytoplasm, these results suggest that a spatial gradient of phosphorylated CYK4 around the central spindle patterns RhoA activation by interacting with ECT2 on the adjacent plasma membrane. [Display omitted] •RhoA regulator screen identifies a single essential PLK1 target site cluster in CYK4•Phosphorylation by PLK1 of CYK4 enables binding to a conserved basic surface in ECT2•ECT2 basic surface is distinct from the canonical BRCT phosphopeptide binding site•Autoinhibition prevents C. elegans ECT2 from binding to P-CYK4 at the central spindle Gómez-Cavazos et al. show that the key function of PLK1 kinase in RhoA activation during cytokinesis is phosphorylation of the CYK4 N terminus. Phospho-CYK4 binds to a conserved basic surface in the guanine nucleotide exchange factor ECT2. This site is essential for cytokinesis and is distinct from the canonical BRCT phospho-peptide binding site.</description><identifier>ISSN: 0960-9822</identifier><identifier>EISSN: 1879-0445</identifier><identifier>DOI: 10.1016/j.cub.2020.05.090</identifier><identifier>PMID: 32619481</identifier><language>eng</language><publisher>England: Elsevier Inc</publisher><subject>Animals ; BRCA1 Protein - genetics ; BRCA1 Protein - metabolism ; BRCT domain ; Caenorhabditis elegans ; Caenorhabditis elegans Proteins - genetics ; Caenorhabditis elegans Proteins - metabolism ; Cell Cycle Proteins - genetics ; Cell Cycle Proteins - metabolism ; cell division ; centralspindlin ; Cytokinesis ; Ect2 ; GTPase-Activating Proteins - genetics ; GTPase-Activating Proteins - metabolism ; Guanine Nucleotide Exchange Factors - genetics ; Guanine Nucleotide Exchange Factors - metabolism ; HeLa Cells ; Humans ; MgcRacGAP ; Phosphopeptides - genetics ; Phosphopeptides - metabolism ; Phosphorylation ; Plk1 ; Polo-Like Kinase 1 ; Protein Serine-Threonine Kinases - genetics ; Protein Serine-Threonine Kinases - metabolism ; Proto-Oncogene Proteins - genetics ; Proto-Oncogene Proteins - metabolism ; RACGAP1 ; RhoA ; rhoA GTP-Binding Protein - genetics ; rhoA GTP-Binding Protein - metabolism ; small GTPase ; Spindle Apparatus</subject><ispartof>Current biology, 2020-08, Vol.30 (16), p.3101-3115.e11</ispartof><rights>2020 Elsevier Inc.</rights><rights>Copyright © 2020 Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c451t-7a3e0ea3961affadd9aa4d1714330e8fc704e22e766a78e1cc7e084049fe80363</citedby><cites>FETCH-LOGICAL-c451t-7a3e0ea3961affadd9aa4d1714330e8fc704e22e766a78e1cc7e084049fe80363</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0960982220307776$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32619481$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gómez-Cavazos, J. Sebastián</creatorcontrib><creatorcontrib>Lee, Kian-Yong</creatorcontrib><creatorcontrib>Lara-González, Pablo</creatorcontrib><creatorcontrib>Li, Yanchi</creatorcontrib><creatorcontrib>Desai, Arshad</creatorcontrib><creatorcontrib>Shiau, Andrew K.</creatorcontrib><creatorcontrib>Oegema, Karen</creatorcontrib><title>A Non-canonical BRCT-Phosphopeptide Recognition Mechanism Underlies RhoA Activation in Cytokinesis</title><title>Current biology</title><addtitle>Curr Biol</addtitle><description>Cytokinesis partitions the cell contents to complete mitosis. During cytokinesis, polo-like kinase 1 (PLK1) activates the small GTPase RhoA to assemble a contractile actomyosin ring. PLK1 is proposed to pattern RhoA activation by creating a docking site on the central spindle that concentrates the RhoA guanine nucleotide exchange factor ECT2. However, ECT2 targeting to the central spindle is dispensable for cytokinesis, indicating that how PLK1 controls RhoA activation remains unresolved. To address this question, we employed an unbiased approach targeting ∼100 predicted PLK1 sites in two RhoA regulators: ECT2 and the centralspindlin complex, composed of CYK4 and kinesin-6. This comprehensive approach suggested that the only functionally critical PLK1 target sites are in a single cluster in the CYK4 N terminus. Phosphorylation of this cluster promoted direct interaction of CYK4 with the BRCT repeat module of ECT2. However, mutational analysis in vitro and in vivo led to the surprising finding that the interaction was independent of the conserved “canonical” residues in ECT2’s BRCT repeat module that, based on structurally characterized BRCT-phosphopeptide interactions, were presumed critical for binding. Instead, we show that the ECT2 BRCT module binds phosphorylated CYK4 via a distinct conserved basic surface. Basic surface mutations mimic the effects on cytokinesis of loss of CYK4 cluster phosphorylation or inhibition of PLK1 activity. Together with evidence for ECT2 autoinhibition limiting interaction with CYK4 in the cytoplasm, these results suggest that a spatial gradient of phosphorylated CYK4 around the central spindle patterns RhoA activation by interacting with ECT2 on the adjacent plasma membrane. [Display omitted] •RhoA regulator screen identifies a single essential PLK1 target site cluster in CYK4•Phosphorylation by PLK1 of CYK4 enables binding to a conserved basic surface in ECT2•ECT2 basic surface is distinct from the canonical BRCT phosphopeptide binding site•Autoinhibition prevents C. elegans ECT2 from binding to P-CYK4 at the central spindle Gómez-Cavazos et al. show that the key function of PLK1 kinase in RhoA activation during cytokinesis is phosphorylation of the CYK4 N terminus. Phospho-CYK4 binds to a conserved basic surface in the guanine nucleotide exchange factor ECT2. This site is essential for cytokinesis and is distinct from the canonical BRCT phospho-peptide binding site.</description><subject>Animals</subject><subject>BRCA1 Protein - genetics</subject><subject>BRCA1 Protein - metabolism</subject><subject>BRCT domain</subject><subject>Caenorhabditis elegans</subject><subject>Caenorhabditis elegans Proteins - genetics</subject><subject>Caenorhabditis elegans Proteins - metabolism</subject><subject>Cell Cycle Proteins - genetics</subject><subject>Cell Cycle Proteins - metabolism</subject><subject>cell division</subject><subject>centralspindlin</subject><subject>Cytokinesis</subject><subject>Ect2</subject><subject>GTPase-Activating Proteins - genetics</subject><subject>GTPase-Activating Proteins - metabolism</subject><subject>Guanine Nucleotide Exchange Factors - genetics</subject><subject>Guanine Nucleotide Exchange Factors - metabolism</subject><subject>HeLa Cells</subject><subject>Humans</subject><subject>MgcRacGAP</subject><subject>Phosphopeptides - genetics</subject><subject>Phosphopeptides - metabolism</subject><subject>Phosphorylation</subject><subject>Plk1</subject><subject>Polo-Like Kinase 1</subject><subject>Protein Serine-Threonine Kinases - genetics</subject><subject>Protein Serine-Threonine Kinases - metabolism</subject><subject>Proto-Oncogene Proteins - genetics</subject><subject>Proto-Oncogene Proteins - metabolism</subject><subject>RACGAP1</subject><subject>RhoA</subject><subject>rhoA GTP-Binding Protein - genetics</subject><subject>rhoA GTP-Binding Protein - metabolism</subject><subject>small GTPase</subject><subject>Spindle Apparatus</subject><issn>0960-9822</issn><issn>1879-0445</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kU1v1DAQhi0EokvhB3BBOXJJGH9sbAsJaVnxJZUPrdqz5XUmzSxZO42zK_Xfk7KlggunOcwz74zmYewlh4oDr9_sqnDYVgIEVLCswMIjtuBG2xKUWj5mC7A1lNYIccae5bwD4MLY-ik7k6LmVhm-YNtV8S3FMviYIgXfF-8368vyR5fy0KUBh4kaLDYY0nWkiVIsvmLofKS8L65ig2NPmItNl1bFKkx09L8ZisX6dko_KWKm_Jw9aX2f8cV9PWdXHz9crj-XF98_fVmvLsqglnwqtZcI6KWtuW9b3zTWe9VwzZWUgKYNGhQKgbquvTbIQ9AIRoGyLRqQtTxn7065w2G7xyZgnEbfu2GkvR9vXfLk_u1E6tx1OjqtpJFczwGv7wPGdHPAPLk95YB97yOmQ3ZCCZivEULMKD-hYUw5j9g-rOHg7ty4nZvduDs3DpZudjPPvPr7voeJPzJm4O0JwPlLR8LR5UAYAzY0Yphck-g_8b8AgzehGQ</recordid><startdate>20200817</startdate><enddate>20200817</enddate><creator>Gómez-Cavazos, J. Sebastián</creator><creator>Lee, Kian-Yong</creator><creator>Lara-González, Pablo</creator><creator>Li, Yanchi</creator><creator>Desai, Arshad</creator><creator>Shiau, Andrew K.</creator><creator>Oegema, Karen</creator><general>Elsevier Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20200817</creationdate><title>A Non-canonical BRCT-Phosphopeptide Recognition Mechanism Underlies RhoA Activation in Cytokinesis</title><author>Gómez-Cavazos, J. Sebastián ; Lee, Kian-Yong ; Lara-González, Pablo ; Li, Yanchi ; Desai, Arshad ; Shiau, Andrew K. ; Oegema, Karen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c451t-7a3e0ea3961affadd9aa4d1714330e8fc704e22e766a78e1cc7e084049fe80363</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Animals</topic><topic>BRCA1 Protein - genetics</topic><topic>BRCA1 Protein - metabolism</topic><topic>BRCT domain</topic><topic>Caenorhabditis elegans</topic><topic>Caenorhabditis elegans Proteins - genetics</topic><topic>Caenorhabditis elegans Proteins - metabolism</topic><topic>Cell Cycle Proteins - genetics</topic><topic>Cell Cycle Proteins - metabolism</topic><topic>cell division</topic><topic>centralspindlin</topic><topic>Cytokinesis</topic><topic>Ect2</topic><topic>GTPase-Activating Proteins - genetics</topic><topic>GTPase-Activating Proteins - metabolism</topic><topic>Guanine Nucleotide Exchange Factors - genetics</topic><topic>Guanine Nucleotide Exchange Factors - metabolism</topic><topic>HeLa Cells</topic><topic>Humans</topic><topic>MgcRacGAP</topic><topic>Phosphopeptides - genetics</topic><topic>Phosphopeptides - metabolism</topic><topic>Phosphorylation</topic><topic>Plk1</topic><topic>Polo-Like Kinase 1</topic><topic>Protein Serine-Threonine Kinases - genetics</topic><topic>Protein Serine-Threonine Kinases - metabolism</topic><topic>Proto-Oncogene Proteins - genetics</topic><topic>Proto-Oncogene Proteins - metabolism</topic><topic>RACGAP1</topic><topic>RhoA</topic><topic>rhoA GTP-Binding Protein - genetics</topic><topic>rhoA GTP-Binding Protein - metabolism</topic><topic>small GTPase</topic><topic>Spindle Apparatus</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gómez-Cavazos, J. Sebastián</creatorcontrib><creatorcontrib>Lee, Kian-Yong</creatorcontrib><creatorcontrib>Lara-González, Pablo</creatorcontrib><creatorcontrib>Li, Yanchi</creatorcontrib><creatorcontrib>Desai, Arshad</creatorcontrib><creatorcontrib>Shiau, Andrew K.</creatorcontrib><creatorcontrib>Oegema, Karen</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Current biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gómez-Cavazos, J. Sebastián</au><au>Lee, Kian-Yong</au><au>Lara-González, Pablo</au><au>Li, Yanchi</au><au>Desai, Arshad</au><au>Shiau, Andrew K.</au><au>Oegema, Karen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Non-canonical BRCT-Phosphopeptide Recognition Mechanism Underlies RhoA Activation in Cytokinesis</atitle><jtitle>Current biology</jtitle><addtitle>Curr Biol</addtitle><date>2020-08-17</date><risdate>2020</risdate><volume>30</volume><issue>16</issue><spage>3101</spage><epage>3115.e11</epage><pages>3101-3115.e11</pages><issn>0960-9822</issn><eissn>1879-0445</eissn><abstract>Cytokinesis partitions the cell contents to complete mitosis. During cytokinesis, polo-like kinase 1 (PLK1) activates the small GTPase RhoA to assemble a contractile actomyosin ring. PLK1 is proposed to pattern RhoA activation by creating a docking site on the central spindle that concentrates the RhoA guanine nucleotide exchange factor ECT2. However, ECT2 targeting to the central spindle is dispensable for cytokinesis, indicating that how PLK1 controls RhoA activation remains unresolved. To address this question, we employed an unbiased approach targeting ∼100 predicted PLK1 sites in two RhoA regulators: ECT2 and the centralspindlin complex, composed of CYK4 and kinesin-6. This comprehensive approach suggested that the only functionally critical PLK1 target sites are in a single cluster in the CYK4 N terminus. Phosphorylation of this cluster promoted direct interaction of CYK4 with the BRCT repeat module of ECT2. However, mutational analysis in vitro and in vivo led to the surprising finding that the interaction was independent of the conserved “canonical” residues in ECT2’s BRCT repeat module that, based on structurally characterized BRCT-phosphopeptide interactions, were presumed critical for binding. Instead, we show that the ECT2 BRCT module binds phosphorylated CYK4 via a distinct conserved basic surface. Basic surface mutations mimic the effects on cytokinesis of loss of CYK4 cluster phosphorylation or inhibition of PLK1 activity. Together with evidence for ECT2 autoinhibition limiting interaction with CYK4 in the cytoplasm, these results suggest that a spatial gradient of phosphorylated CYK4 around the central spindle patterns RhoA activation by interacting with ECT2 on the adjacent plasma membrane. [Display omitted] •RhoA regulator screen identifies a single essential PLK1 target site cluster in CYK4•Phosphorylation by PLK1 of CYK4 enables binding to a conserved basic surface in ECT2•ECT2 basic surface is distinct from the canonical BRCT phosphopeptide binding site•Autoinhibition prevents C. elegans ECT2 from binding to P-CYK4 at the central spindle Gómez-Cavazos et al. show that the key function of PLK1 kinase in RhoA activation during cytokinesis is phosphorylation of the CYK4 N terminus. Phospho-CYK4 binds to a conserved basic surface in the guanine nucleotide exchange factor ECT2. This site is essential for cytokinesis and is distinct from the canonical BRCT phospho-peptide binding site.</abstract><cop>England</cop><pub>Elsevier Inc</pub><pmid>32619481</pmid><doi>10.1016/j.cub.2020.05.090</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0960-9822
ispartof Current biology, 2020-08, Vol.30 (16), p.3101-3115.e11
issn 0960-9822
1879-0445
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7438317
source MEDLINE; Cell Press Free Archives; Elsevier ScienceDirect Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Animals
BRCA1 Protein - genetics
BRCA1 Protein - metabolism
BRCT domain
Caenorhabditis elegans
Caenorhabditis elegans Proteins - genetics
Caenorhabditis elegans Proteins - metabolism
Cell Cycle Proteins - genetics
Cell Cycle Proteins - metabolism
cell division
centralspindlin
Cytokinesis
Ect2
GTPase-Activating Proteins - genetics
GTPase-Activating Proteins - metabolism
Guanine Nucleotide Exchange Factors - genetics
Guanine Nucleotide Exchange Factors - metabolism
HeLa Cells
Humans
MgcRacGAP
Phosphopeptides - genetics
Phosphopeptides - metabolism
Phosphorylation
Plk1
Polo-Like Kinase 1
Protein Serine-Threonine Kinases - genetics
Protein Serine-Threonine Kinases - metabolism
Proto-Oncogene Proteins - genetics
Proto-Oncogene Proteins - metabolism
RACGAP1
RhoA
rhoA GTP-Binding Protein - genetics
rhoA GTP-Binding Protein - metabolism
small GTPase
Spindle Apparatus
title A Non-canonical BRCT-Phosphopeptide Recognition Mechanism Underlies RhoA Activation in Cytokinesis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T06%3A11%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Non-canonical%20BRCT-Phosphopeptide%20Recognition%20Mechanism%20Underlies%20RhoA%20Activation%20in%20Cytokinesis&rft.jtitle=Current%20biology&rft.au=G%C3%B3mez-Cavazos,%20J.%20Sebasti%C3%A1n&rft.date=2020-08-17&rft.volume=30&rft.issue=16&rft.spage=3101&rft.epage=3115.e11&rft.pages=3101-3115.e11&rft.issn=0960-9822&rft.eissn=1879-0445&rft_id=info:doi/10.1016/j.cub.2020.05.090&rft_dat=%3Cproquest_pubme%3E2420143222%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2420143222&rft_id=info:pmid/32619481&rft_els_id=S0960982220307776&rfr_iscdi=true