A Non-canonical BRCT-Phosphopeptide Recognition Mechanism Underlies RhoA Activation in Cytokinesis
Cytokinesis partitions the cell contents to complete mitosis. During cytokinesis, polo-like kinase 1 (PLK1) activates the small GTPase RhoA to assemble a contractile actomyosin ring. PLK1 is proposed to pattern RhoA activation by creating a docking site on the central spindle that concentrates the R...
Gespeichert in:
Veröffentlicht in: | Current biology 2020-08, Vol.30 (16), p.3101-3115.e11 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3115.e11 |
---|---|
container_issue | 16 |
container_start_page | 3101 |
container_title | Current biology |
container_volume | 30 |
creator | Gómez-Cavazos, J. Sebastián Lee, Kian-Yong Lara-González, Pablo Li, Yanchi Desai, Arshad Shiau, Andrew K. Oegema, Karen |
description | Cytokinesis partitions the cell contents to complete mitosis. During cytokinesis, polo-like kinase 1 (PLK1) activates the small GTPase RhoA to assemble a contractile actomyosin ring. PLK1 is proposed to pattern RhoA activation by creating a docking site on the central spindle that concentrates the RhoA guanine nucleotide exchange factor ECT2. However, ECT2 targeting to the central spindle is dispensable for cytokinesis, indicating that how PLK1 controls RhoA activation remains unresolved. To address this question, we employed an unbiased approach targeting ∼100 predicted PLK1 sites in two RhoA regulators: ECT2 and the centralspindlin complex, composed of CYK4 and kinesin-6. This comprehensive approach suggested that the only functionally critical PLK1 target sites are in a single cluster in the CYK4 N terminus. Phosphorylation of this cluster promoted direct interaction of CYK4 with the BRCT repeat module of ECT2. However, mutational analysis in vitro and in vivo led to the surprising finding that the interaction was independent of the conserved “canonical” residues in ECT2’s BRCT repeat module that, based on structurally characterized BRCT-phosphopeptide interactions, were presumed critical for binding. Instead, we show that the ECT2 BRCT module binds phosphorylated CYK4 via a distinct conserved basic surface. Basic surface mutations mimic the effects on cytokinesis of loss of CYK4 cluster phosphorylation or inhibition of PLK1 activity. Together with evidence for ECT2 autoinhibition limiting interaction with CYK4 in the cytoplasm, these results suggest that a spatial gradient of phosphorylated CYK4 around the central spindle patterns RhoA activation by interacting with ECT2 on the adjacent plasma membrane.
[Display omitted]
•RhoA regulator screen identifies a single essential PLK1 target site cluster in CYK4•Phosphorylation by PLK1 of CYK4 enables binding to a conserved basic surface in ECT2•ECT2 basic surface is distinct from the canonical BRCT phosphopeptide binding site•Autoinhibition prevents C. elegans ECT2 from binding to P-CYK4 at the central spindle
Gómez-Cavazos et al. show that the key function of PLK1 kinase in RhoA activation during cytokinesis is phosphorylation of the CYK4 N terminus. Phospho-CYK4 binds to a conserved basic surface in the guanine nucleotide exchange factor ECT2. This site is essential for cytokinesis and is distinct from the canonical BRCT phospho-peptide binding site. |
doi_str_mv | 10.1016/j.cub.2020.05.090 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7438317</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0960982220307776</els_id><sourcerecordid>2420143222</sourcerecordid><originalsourceid>FETCH-LOGICAL-c451t-7a3e0ea3961affadd9aa4d1714330e8fc704e22e766a78e1cc7e084049fe80363</originalsourceid><addsrcrecordid>eNp9kU1v1DAQhi0EokvhB3BBOXJJGH9sbAsJaVnxJZUPrdqz5XUmzSxZO42zK_Xfk7KlggunOcwz74zmYewlh4oDr9_sqnDYVgIEVLCswMIjtuBG2xKUWj5mC7A1lNYIccae5bwD4MLY-ik7k6LmVhm-YNtV8S3FMviYIgXfF-8368vyR5fy0KUBh4kaLDYY0nWkiVIsvmLofKS8L65ig2NPmItNl1bFKkx09L8ZisX6dko_KWKm_Jw9aX2f8cV9PWdXHz9crj-XF98_fVmvLsqglnwqtZcI6KWtuW9b3zTWe9VwzZWUgKYNGhQKgbquvTbIQ9AIRoGyLRqQtTxn7065w2G7xyZgnEbfu2GkvR9vXfLk_u1E6tx1OjqtpJFczwGv7wPGdHPAPLk95YB97yOmQ3ZCCZivEULMKD-hYUw5j9g-rOHg7ty4nZvduDs3DpZudjPPvPr7voeJPzJm4O0JwPlLR8LR5UAYAzY0Yphck-g_8b8AgzehGQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2420143222</pqid></control><display><type>article</type><title>A Non-canonical BRCT-Phosphopeptide Recognition Mechanism Underlies RhoA Activation in Cytokinesis</title><source>MEDLINE</source><source>Cell Press Free Archives</source><source>Elsevier ScienceDirect Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Gómez-Cavazos, J. Sebastián ; Lee, Kian-Yong ; Lara-González, Pablo ; Li, Yanchi ; Desai, Arshad ; Shiau, Andrew K. ; Oegema, Karen</creator><creatorcontrib>Gómez-Cavazos, J. Sebastián ; Lee, Kian-Yong ; Lara-González, Pablo ; Li, Yanchi ; Desai, Arshad ; Shiau, Andrew K. ; Oegema, Karen</creatorcontrib><description>Cytokinesis partitions the cell contents to complete mitosis. During cytokinesis, polo-like kinase 1 (PLK1) activates the small GTPase RhoA to assemble a contractile actomyosin ring. PLK1 is proposed to pattern RhoA activation by creating a docking site on the central spindle that concentrates the RhoA guanine nucleotide exchange factor ECT2. However, ECT2 targeting to the central spindle is dispensable for cytokinesis, indicating that how PLK1 controls RhoA activation remains unresolved. To address this question, we employed an unbiased approach targeting ∼100 predicted PLK1 sites in two RhoA regulators: ECT2 and the centralspindlin complex, composed of CYK4 and kinesin-6. This comprehensive approach suggested that the only functionally critical PLK1 target sites are in a single cluster in the CYK4 N terminus. Phosphorylation of this cluster promoted direct interaction of CYK4 with the BRCT repeat module of ECT2. However, mutational analysis in vitro and in vivo led to the surprising finding that the interaction was independent of the conserved “canonical” residues in ECT2’s BRCT repeat module that, based on structurally characterized BRCT-phosphopeptide interactions, were presumed critical for binding. Instead, we show that the ECT2 BRCT module binds phosphorylated CYK4 via a distinct conserved basic surface. Basic surface mutations mimic the effects on cytokinesis of loss of CYK4 cluster phosphorylation or inhibition of PLK1 activity. Together with evidence for ECT2 autoinhibition limiting interaction with CYK4 in the cytoplasm, these results suggest that a spatial gradient of phosphorylated CYK4 around the central spindle patterns RhoA activation by interacting with ECT2 on the adjacent plasma membrane.
[Display omitted]
•RhoA regulator screen identifies a single essential PLK1 target site cluster in CYK4•Phosphorylation by PLK1 of CYK4 enables binding to a conserved basic surface in ECT2•ECT2 basic surface is distinct from the canonical BRCT phosphopeptide binding site•Autoinhibition prevents C. elegans ECT2 from binding to P-CYK4 at the central spindle
Gómez-Cavazos et al. show that the key function of PLK1 kinase in RhoA activation during cytokinesis is phosphorylation of the CYK4 N terminus. Phospho-CYK4 binds to a conserved basic surface in the guanine nucleotide exchange factor ECT2. This site is essential for cytokinesis and is distinct from the canonical BRCT phospho-peptide binding site.</description><identifier>ISSN: 0960-9822</identifier><identifier>EISSN: 1879-0445</identifier><identifier>DOI: 10.1016/j.cub.2020.05.090</identifier><identifier>PMID: 32619481</identifier><language>eng</language><publisher>England: Elsevier Inc</publisher><subject>Animals ; BRCA1 Protein - genetics ; BRCA1 Protein - metabolism ; BRCT domain ; Caenorhabditis elegans ; Caenorhabditis elegans Proteins - genetics ; Caenorhabditis elegans Proteins - metabolism ; Cell Cycle Proteins - genetics ; Cell Cycle Proteins - metabolism ; cell division ; centralspindlin ; Cytokinesis ; Ect2 ; GTPase-Activating Proteins - genetics ; GTPase-Activating Proteins - metabolism ; Guanine Nucleotide Exchange Factors - genetics ; Guanine Nucleotide Exchange Factors - metabolism ; HeLa Cells ; Humans ; MgcRacGAP ; Phosphopeptides - genetics ; Phosphopeptides - metabolism ; Phosphorylation ; Plk1 ; Polo-Like Kinase 1 ; Protein Serine-Threonine Kinases - genetics ; Protein Serine-Threonine Kinases - metabolism ; Proto-Oncogene Proteins - genetics ; Proto-Oncogene Proteins - metabolism ; RACGAP1 ; RhoA ; rhoA GTP-Binding Protein - genetics ; rhoA GTP-Binding Protein - metabolism ; small GTPase ; Spindle Apparatus</subject><ispartof>Current biology, 2020-08, Vol.30 (16), p.3101-3115.e11</ispartof><rights>2020 Elsevier Inc.</rights><rights>Copyright © 2020 Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c451t-7a3e0ea3961affadd9aa4d1714330e8fc704e22e766a78e1cc7e084049fe80363</citedby><cites>FETCH-LOGICAL-c451t-7a3e0ea3961affadd9aa4d1714330e8fc704e22e766a78e1cc7e084049fe80363</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0960982220307776$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32619481$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gómez-Cavazos, J. Sebastián</creatorcontrib><creatorcontrib>Lee, Kian-Yong</creatorcontrib><creatorcontrib>Lara-González, Pablo</creatorcontrib><creatorcontrib>Li, Yanchi</creatorcontrib><creatorcontrib>Desai, Arshad</creatorcontrib><creatorcontrib>Shiau, Andrew K.</creatorcontrib><creatorcontrib>Oegema, Karen</creatorcontrib><title>A Non-canonical BRCT-Phosphopeptide Recognition Mechanism Underlies RhoA Activation in Cytokinesis</title><title>Current biology</title><addtitle>Curr Biol</addtitle><description>Cytokinesis partitions the cell contents to complete mitosis. During cytokinesis, polo-like kinase 1 (PLK1) activates the small GTPase RhoA to assemble a contractile actomyosin ring. PLK1 is proposed to pattern RhoA activation by creating a docking site on the central spindle that concentrates the RhoA guanine nucleotide exchange factor ECT2. However, ECT2 targeting to the central spindle is dispensable for cytokinesis, indicating that how PLK1 controls RhoA activation remains unresolved. To address this question, we employed an unbiased approach targeting ∼100 predicted PLK1 sites in two RhoA regulators: ECT2 and the centralspindlin complex, composed of CYK4 and kinesin-6. This comprehensive approach suggested that the only functionally critical PLK1 target sites are in a single cluster in the CYK4 N terminus. Phosphorylation of this cluster promoted direct interaction of CYK4 with the BRCT repeat module of ECT2. However, mutational analysis in vitro and in vivo led to the surprising finding that the interaction was independent of the conserved “canonical” residues in ECT2’s BRCT repeat module that, based on structurally characterized BRCT-phosphopeptide interactions, were presumed critical for binding. Instead, we show that the ECT2 BRCT module binds phosphorylated CYK4 via a distinct conserved basic surface. Basic surface mutations mimic the effects on cytokinesis of loss of CYK4 cluster phosphorylation or inhibition of PLK1 activity. Together with evidence for ECT2 autoinhibition limiting interaction with CYK4 in the cytoplasm, these results suggest that a spatial gradient of phosphorylated CYK4 around the central spindle patterns RhoA activation by interacting with ECT2 on the adjacent plasma membrane.
[Display omitted]
•RhoA regulator screen identifies a single essential PLK1 target site cluster in CYK4•Phosphorylation by PLK1 of CYK4 enables binding to a conserved basic surface in ECT2•ECT2 basic surface is distinct from the canonical BRCT phosphopeptide binding site•Autoinhibition prevents C. elegans ECT2 from binding to P-CYK4 at the central spindle
Gómez-Cavazos et al. show that the key function of PLK1 kinase in RhoA activation during cytokinesis is phosphorylation of the CYK4 N terminus. Phospho-CYK4 binds to a conserved basic surface in the guanine nucleotide exchange factor ECT2. This site is essential for cytokinesis and is distinct from the canonical BRCT phospho-peptide binding site.</description><subject>Animals</subject><subject>BRCA1 Protein - genetics</subject><subject>BRCA1 Protein - metabolism</subject><subject>BRCT domain</subject><subject>Caenorhabditis elegans</subject><subject>Caenorhabditis elegans Proteins - genetics</subject><subject>Caenorhabditis elegans Proteins - metabolism</subject><subject>Cell Cycle Proteins - genetics</subject><subject>Cell Cycle Proteins - metabolism</subject><subject>cell division</subject><subject>centralspindlin</subject><subject>Cytokinesis</subject><subject>Ect2</subject><subject>GTPase-Activating Proteins - genetics</subject><subject>GTPase-Activating Proteins - metabolism</subject><subject>Guanine Nucleotide Exchange Factors - genetics</subject><subject>Guanine Nucleotide Exchange Factors - metabolism</subject><subject>HeLa Cells</subject><subject>Humans</subject><subject>MgcRacGAP</subject><subject>Phosphopeptides - genetics</subject><subject>Phosphopeptides - metabolism</subject><subject>Phosphorylation</subject><subject>Plk1</subject><subject>Polo-Like Kinase 1</subject><subject>Protein Serine-Threonine Kinases - genetics</subject><subject>Protein Serine-Threonine Kinases - metabolism</subject><subject>Proto-Oncogene Proteins - genetics</subject><subject>Proto-Oncogene Proteins - metabolism</subject><subject>RACGAP1</subject><subject>RhoA</subject><subject>rhoA GTP-Binding Protein - genetics</subject><subject>rhoA GTP-Binding Protein - metabolism</subject><subject>small GTPase</subject><subject>Spindle Apparatus</subject><issn>0960-9822</issn><issn>1879-0445</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kU1v1DAQhi0EokvhB3BBOXJJGH9sbAsJaVnxJZUPrdqz5XUmzSxZO42zK_Xfk7KlggunOcwz74zmYewlh4oDr9_sqnDYVgIEVLCswMIjtuBG2xKUWj5mC7A1lNYIccae5bwD4MLY-ik7k6LmVhm-YNtV8S3FMviYIgXfF-8368vyR5fy0KUBh4kaLDYY0nWkiVIsvmLofKS8L65ig2NPmItNl1bFKkx09L8ZisX6dko_KWKm_Jw9aX2f8cV9PWdXHz9crj-XF98_fVmvLsqglnwqtZcI6KWtuW9b3zTWe9VwzZWUgKYNGhQKgbquvTbIQ9AIRoGyLRqQtTxn7065w2G7xyZgnEbfu2GkvR9vXfLk_u1E6tx1OjqtpJFczwGv7wPGdHPAPLk95YB97yOmQ3ZCCZivEULMKD-hYUw5j9g-rOHg7ty4nZvduDs3DpZudjPPvPr7voeJPzJm4O0JwPlLR8LR5UAYAzY0Yphck-g_8b8AgzehGQ</recordid><startdate>20200817</startdate><enddate>20200817</enddate><creator>Gómez-Cavazos, J. Sebastián</creator><creator>Lee, Kian-Yong</creator><creator>Lara-González, Pablo</creator><creator>Li, Yanchi</creator><creator>Desai, Arshad</creator><creator>Shiau, Andrew K.</creator><creator>Oegema, Karen</creator><general>Elsevier Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20200817</creationdate><title>A Non-canonical BRCT-Phosphopeptide Recognition Mechanism Underlies RhoA Activation in Cytokinesis</title><author>Gómez-Cavazos, J. Sebastián ; Lee, Kian-Yong ; Lara-González, Pablo ; Li, Yanchi ; Desai, Arshad ; Shiau, Andrew K. ; Oegema, Karen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c451t-7a3e0ea3961affadd9aa4d1714330e8fc704e22e766a78e1cc7e084049fe80363</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Animals</topic><topic>BRCA1 Protein - genetics</topic><topic>BRCA1 Protein - metabolism</topic><topic>BRCT domain</topic><topic>Caenorhabditis elegans</topic><topic>Caenorhabditis elegans Proteins - genetics</topic><topic>Caenorhabditis elegans Proteins - metabolism</topic><topic>Cell Cycle Proteins - genetics</topic><topic>Cell Cycle Proteins - metabolism</topic><topic>cell division</topic><topic>centralspindlin</topic><topic>Cytokinesis</topic><topic>Ect2</topic><topic>GTPase-Activating Proteins - genetics</topic><topic>GTPase-Activating Proteins - metabolism</topic><topic>Guanine Nucleotide Exchange Factors - genetics</topic><topic>Guanine Nucleotide Exchange Factors - metabolism</topic><topic>HeLa Cells</topic><topic>Humans</topic><topic>MgcRacGAP</topic><topic>Phosphopeptides - genetics</topic><topic>Phosphopeptides - metabolism</topic><topic>Phosphorylation</topic><topic>Plk1</topic><topic>Polo-Like Kinase 1</topic><topic>Protein Serine-Threonine Kinases - genetics</topic><topic>Protein Serine-Threonine Kinases - metabolism</topic><topic>Proto-Oncogene Proteins - genetics</topic><topic>Proto-Oncogene Proteins - metabolism</topic><topic>RACGAP1</topic><topic>RhoA</topic><topic>rhoA GTP-Binding Protein - genetics</topic><topic>rhoA GTP-Binding Protein - metabolism</topic><topic>small GTPase</topic><topic>Spindle Apparatus</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gómez-Cavazos, J. Sebastián</creatorcontrib><creatorcontrib>Lee, Kian-Yong</creatorcontrib><creatorcontrib>Lara-González, Pablo</creatorcontrib><creatorcontrib>Li, Yanchi</creatorcontrib><creatorcontrib>Desai, Arshad</creatorcontrib><creatorcontrib>Shiau, Andrew K.</creatorcontrib><creatorcontrib>Oegema, Karen</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Current biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gómez-Cavazos, J. Sebastián</au><au>Lee, Kian-Yong</au><au>Lara-González, Pablo</au><au>Li, Yanchi</au><au>Desai, Arshad</au><au>Shiau, Andrew K.</au><au>Oegema, Karen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Non-canonical BRCT-Phosphopeptide Recognition Mechanism Underlies RhoA Activation in Cytokinesis</atitle><jtitle>Current biology</jtitle><addtitle>Curr Biol</addtitle><date>2020-08-17</date><risdate>2020</risdate><volume>30</volume><issue>16</issue><spage>3101</spage><epage>3115.e11</epage><pages>3101-3115.e11</pages><issn>0960-9822</issn><eissn>1879-0445</eissn><abstract>Cytokinesis partitions the cell contents to complete mitosis. During cytokinesis, polo-like kinase 1 (PLK1) activates the small GTPase RhoA to assemble a contractile actomyosin ring. PLK1 is proposed to pattern RhoA activation by creating a docking site on the central spindle that concentrates the RhoA guanine nucleotide exchange factor ECT2. However, ECT2 targeting to the central spindle is dispensable for cytokinesis, indicating that how PLK1 controls RhoA activation remains unresolved. To address this question, we employed an unbiased approach targeting ∼100 predicted PLK1 sites in two RhoA regulators: ECT2 and the centralspindlin complex, composed of CYK4 and kinesin-6. This comprehensive approach suggested that the only functionally critical PLK1 target sites are in a single cluster in the CYK4 N terminus. Phosphorylation of this cluster promoted direct interaction of CYK4 with the BRCT repeat module of ECT2. However, mutational analysis in vitro and in vivo led to the surprising finding that the interaction was independent of the conserved “canonical” residues in ECT2’s BRCT repeat module that, based on structurally characterized BRCT-phosphopeptide interactions, were presumed critical for binding. Instead, we show that the ECT2 BRCT module binds phosphorylated CYK4 via a distinct conserved basic surface. Basic surface mutations mimic the effects on cytokinesis of loss of CYK4 cluster phosphorylation or inhibition of PLK1 activity. Together with evidence for ECT2 autoinhibition limiting interaction with CYK4 in the cytoplasm, these results suggest that a spatial gradient of phosphorylated CYK4 around the central spindle patterns RhoA activation by interacting with ECT2 on the adjacent plasma membrane.
[Display omitted]
•RhoA regulator screen identifies a single essential PLK1 target site cluster in CYK4•Phosphorylation by PLK1 of CYK4 enables binding to a conserved basic surface in ECT2•ECT2 basic surface is distinct from the canonical BRCT phosphopeptide binding site•Autoinhibition prevents C. elegans ECT2 from binding to P-CYK4 at the central spindle
Gómez-Cavazos et al. show that the key function of PLK1 kinase in RhoA activation during cytokinesis is phosphorylation of the CYK4 N terminus. Phospho-CYK4 binds to a conserved basic surface in the guanine nucleotide exchange factor ECT2. This site is essential for cytokinesis and is distinct from the canonical BRCT phospho-peptide binding site.</abstract><cop>England</cop><pub>Elsevier Inc</pub><pmid>32619481</pmid><doi>10.1016/j.cub.2020.05.090</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0960-9822 |
ispartof | Current biology, 2020-08, Vol.30 (16), p.3101-3115.e11 |
issn | 0960-9822 1879-0445 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7438317 |
source | MEDLINE; Cell Press Free Archives; Elsevier ScienceDirect Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Animals BRCA1 Protein - genetics BRCA1 Protein - metabolism BRCT domain Caenorhabditis elegans Caenorhabditis elegans Proteins - genetics Caenorhabditis elegans Proteins - metabolism Cell Cycle Proteins - genetics Cell Cycle Proteins - metabolism cell division centralspindlin Cytokinesis Ect2 GTPase-Activating Proteins - genetics GTPase-Activating Proteins - metabolism Guanine Nucleotide Exchange Factors - genetics Guanine Nucleotide Exchange Factors - metabolism HeLa Cells Humans MgcRacGAP Phosphopeptides - genetics Phosphopeptides - metabolism Phosphorylation Plk1 Polo-Like Kinase 1 Protein Serine-Threonine Kinases - genetics Protein Serine-Threonine Kinases - metabolism Proto-Oncogene Proteins - genetics Proto-Oncogene Proteins - metabolism RACGAP1 RhoA rhoA GTP-Binding Protein - genetics rhoA GTP-Binding Protein - metabolism small GTPase Spindle Apparatus |
title | A Non-canonical BRCT-Phosphopeptide Recognition Mechanism Underlies RhoA Activation in Cytokinesis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T06%3A11%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Non-canonical%20BRCT-Phosphopeptide%20Recognition%20Mechanism%20Underlies%20RhoA%20Activation%20in%20Cytokinesis&rft.jtitle=Current%20biology&rft.au=G%C3%B3mez-Cavazos,%20J.%20Sebasti%C3%A1n&rft.date=2020-08-17&rft.volume=30&rft.issue=16&rft.spage=3101&rft.epage=3115.e11&rft.pages=3101-3115.e11&rft.issn=0960-9822&rft.eissn=1879-0445&rft_id=info:doi/10.1016/j.cub.2020.05.090&rft_dat=%3Cproquest_pubme%3E2420143222%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2420143222&rft_id=info:pmid/32619481&rft_els_id=S0960982220307776&rfr_iscdi=true |