High Xe density, high photon flux, stopped-flow spin-exchange optical pumping: Simulations versus experiments
[Display omitted] •Standard models of SEOP describe the high Xe density, high photon flux regime.•A laser power and Xe density independent ‘optimal absorption’ is reported.•A simulation guided roadmap for increasing clinical scale Xe polariser performance. Spin-exchange optical pumping (SEOP) can en...
Gespeichert in:
Veröffentlicht in: | Journal of magnetic resonance (1997) 2020-03, Vol.312, p.106686-106686, Article 106686 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 106686 |
---|---|
container_issue | |
container_start_page | 106686 |
container_title | Journal of magnetic resonance (1997) |
container_volume | 312 |
creator | Skinner, Jason G. Ranta, Kaili Whiting, Nicholas Coffey, Aaron M. Nikolaou, Panayiotis Rosen, Matthew S. Chekmenev, Eduard Y. Morris, Peter G. Barlow, Michael J. Goodson, Boyd M. |
description | [Display omitted]
•Standard models of SEOP describe the high Xe density, high photon flux regime.•A laser power and Xe density independent ‘optimal absorption’ is reported.•A simulation guided roadmap for increasing clinical scale Xe polariser performance.
Spin-exchange optical pumping (SEOP) can enhance the NMR sensitivity of noble gases by up to five orders of magnitude at Tesla-strength magnetic fields. SEOP-generated hyperpolarised (HP) 129Xe is a promising contrast agent for lung imaging but an ongoing barrier to widespread clinical usage has been economical production of sufficient quantities with high 129Xe polarisation. Here, the ‘standard model’ of SEOP, which was previously used in the optimisation of continuous-flow 129Xe polarisers, is modified for validation against two Xe-rich stopped-flow SEOP datasets. We use this model to examine ways to increase HP Xe production efficiency in stopped-flow 129Xe polarisers and provide further insight into the underlying physics of Xe-rich stopped-flow SEOP at high laser fluxes. |
doi_str_mv | 10.1016/j.jmr.2020.106686 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7436892</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1090780720300045</els_id><sourcerecordid>2350087927</sourcerecordid><originalsourceid>FETCH-LOGICAL-c451t-f4f3297a9d8468a22d6b1e319047d766c8ed5de126f4ddc1286b771bd8e2854b3</originalsourceid><addsrcrecordid>eNp9kcFu1DAQhi0EoqXwAFyQjxyaxXYS2wEJCVVAkSpxACRulmNPNl4ltrGTZfv2eNlSwYWTxzP__DOaD6HnlGwoofzVbrOb04YRdvxzLvkDdE5JxysiW_7wd0wqIYk4Q09y3hFCaSvIY3RWM0K46OpzNF-77Yi_A7bgs1tuL_F4TMQxLMHjYVoPlzgvIUaw1TCFnzhH5ys4mFH7LeAQF2f0hOM6l_z2Nf7i5nXSiws-4z2kvGYMhwjJzeCX_BQ9GvSU4dnde4G-fXj_9eq6uvn88dPVu5vKNC1dqqEZatYJ3VnZcKkZs7ynUNOONMIKzo0E21qgjA-NtYYyyXshaG8lMNk2fX2B3p5849rPYE2ZnfSkYllDp1sVtFP_Vrwb1TbslWhqLjtWDF7eGaTwY4W8qNllA9OkPYQ1K1a3hEjRMVGk9CQ1KeScYLgfQ4k6YlI7VTCpIyZ1wlR6Xvy9333HHy5F8OYkgHKlvYOksnHgDViXwCzKBvcf-1-2PqXb</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2350087927</pqid></control><display><type>article</type><title>High Xe density, high photon flux, stopped-flow spin-exchange optical pumping: Simulations versus experiments</title><source>MEDLINE</source><source>Access via ScienceDirect (Elsevier)</source><creator>Skinner, Jason G. ; Ranta, Kaili ; Whiting, Nicholas ; Coffey, Aaron M. ; Nikolaou, Panayiotis ; Rosen, Matthew S. ; Chekmenev, Eduard Y. ; Morris, Peter G. ; Barlow, Michael J. ; Goodson, Boyd M.</creator><creatorcontrib>Skinner, Jason G. ; Ranta, Kaili ; Whiting, Nicholas ; Coffey, Aaron M. ; Nikolaou, Panayiotis ; Rosen, Matthew S. ; Chekmenev, Eduard Y. ; Morris, Peter G. ; Barlow, Michael J. ; Goodson, Boyd M.</creatorcontrib><description>[Display omitted]
•Standard models of SEOP describe the high Xe density, high photon flux regime.•A laser power and Xe density independent ‘optimal absorption’ is reported.•A simulation guided roadmap for increasing clinical scale Xe polariser performance.
Spin-exchange optical pumping (SEOP) can enhance the NMR sensitivity of noble gases by up to five orders of magnitude at Tesla-strength magnetic fields. SEOP-generated hyperpolarised (HP) 129Xe is a promising contrast agent for lung imaging but an ongoing barrier to widespread clinical usage has been economical production of sufficient quantities with high 129Xe polarisation. Here, the ‘standard model’ of SEOP, which was previously used in the optimisation of continuous-flow 129Xe polarisers, is modified for validation against two Xe-rich stopped-flow SEOP datasets. We use this model to examine ways to increase HP Xe production efficiency in stopped-flow 129Xe polarisers and provide further insight into the underlying physics of Xe-rich stopped-flow SEOP at high laser fluxes.</description><identifier>ISSN: 1090-7807</identifier><identifier>EISSN: 1096-0856</identifier><identifier>DOI: 10.1016/j.jmr.2020.106686</identifier><identifier>PMID: 32006793</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Computer Simulation ; Contrast Media - chemistry ; Datasets as Topic ; Hyperpolarised ; Lasers ; Lung - diagnostic imaging ; Lung imaging ; Magnetic Resonance Spectroscopy - methods ; Photons ; Rubidium - chemistry ; Sensitivity and Specificity ; SEOP ; Xenon ; Xenon Isotopes - chemistry</subject><ispartof>Journal of magnetic resonance (1997), 2020-03, Vol.312, p.106686-106686, Article 106686</ispartof><rights>2020 Elsevier Inc.</rights><rights>Copyright © 2020 Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c451t-f4f3297a9d8468a22d6b1e319047d766c8ed5de126f4ddc1286b771bd8e2854b3</citedby><cites>FETCH-LOGICAL-c451t-f4f3297a9d8468a22d6b1e319047d766c8ed5de126f4ddc1286b771bd8e2854b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jmr.2020.106686$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32006793$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Skinner, Jason G.</creatorcontrib><creatorcontrib>Ranta, Kaili</creatorcontrib><creatorcontrib>Whiting, Nicholas</creatorcontrib><creatorcontrib>Coffey, Aaron M.</creatorcontrib><creatorcontrib>Nikolaou, Panayiotis</creatorcontrib><creatorcontrib>Rosen, Matthew S.</creatorcontrib><creatorcontrib>Chekmenev, Eduard Y.</creatorcontrib><creatorcontrib>Morris, Peter G.</creatorcontrib><creatorcontrib>Barlow, Michael J.</creatorcontrib><creatorcontrib>Goodson, Boyd M.</creatorcontrib><title>High Xe density, high photon flux, stopped-flow spin-exchange optical pumping: Simulations versus experiments</title><title>Journal of magnetic resonance (1997)</title><addtitle>J Magn Reson</addtitle><description>[Display omitted]
•Standard models of SEOP describe the high Xe density, high photon flux regime.•A laser power and Xe density independent ‘optimal absorption’ is reported.•A simulation guided roadmap for increasing clinical scale Xe polariser performance.
Spin-exchange optical pumping (SEOP) can enhance the NMR sensitivity of noble gases by up to five orders of magnitude at Tesla-strength magnetic fields. SEOP-generated hyperpolarised (HP) 129Xe is a promising contrast agent for lung imaging but an ongoing barrier to widespread clinical usage has been economical production of sufficient quantities with high 129Xe polarisation. Here, the ‘standard model’ of SEOP, which was previously used in the optimisation of continuous-flow 129Xe polarisers, is modified for validation against two Xe-rich stopped-flow SEOP datasets. We use this model to examine ways to increase HP Xe production efficiency in stopped-flow 129Xe polarisers and provide further insight into the underlying physics of Xe-rich stopped-flow SEOP at high laser fluxes.</description><subject>Computer Simulation</subject><subject>Contrast Media - chemistry</subject><subject>Datasets as Topic</subject><subject>Hyperpolarised</subject><subject>Lasers</subject><subject>Lung - diagnostic imaging</subject><subject>Lung imaging</subject><subject>Magnetic Resonance Spectroscopy - methods</subject><subject>Photons</subject><subject>Rubidium - chemistry</subject><subject>Sensitivity and Specificity</subject><subject>SEOP</subject><subject>Xenon</subject><subject>Xenon Isotopes - chemistry</subject><issn>1090-7807</issn><issn>1096-0856</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kcFu1DAQhi0EoqXwAFyQjxyaxXYS2wEJCVVAkSpxACRulmNPNl4ltrGTZfv2eNlSwYWTxzP__DOaD6HnlGwoofzVbrOb04YRdvxzLvkDdE5JxysiW_7wd0wqIYk4Q09y3hFCaSvIY3RWM0K46OpzNF-77Yi_A7bgs1tuL_F4TMQxLMHjYVoPlzgvIUaw1TCFnzhH5ys4mFH7LeAQF2f0hOM6l_z2Nf7i5nXSiws-4z2kvGYMhwjJzeCX_BQ9GvSU4dnde4G-fXj_9eq6uvn88dPVu5vKNC1dqqEZatYJ3VnZcKkZs7ynUNOONMIKzo0E21qgjA-NtYYyyXshaG8lMNk2fX2B3p5849rPYE2ZnfSkYllDp1sVtFP_Vrwb1TbslWhqLjtWDF7eGaTwY4W8qNllA9OkPYQ1K1a3hEjRMVGk9CQ1KeScYLgfQ4k6YlI7VTCpIyZ1wlR6Xvy9333HHy5F8OYkgHKlvYOksnHgDViXwCzKBvcf-1-2PqXb</recordid><startdate>20200301</startdate><enddate>20200301</enddate><creator>Skinner, Jason G.</creator><creator>Ranta, Kaili</creator><creator>Whiting, Nicholas</creator><creator>Coffey, Aaron M.</creator><creator>Nikolaou, Panayiotis</creator><creator>Rosen, Matthew S.</creator><creator>Chekmenev, Eduard Y.</creator><creator>Morris, Peter G.</creator><creator>Barlow, Michael J.</creator><creator>Goodson, Boyd M.</creator><general>Elsevier Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20200301</creationdate><title>High Xe density, high photon flux, stopped-flow spin-exchange optical pumping: Simulations versus experiments</title><author>Skinner, Jason G. ; Ranta, Kaili ; Whiting, Nicholas ; Coffey, Aaron M. ; Nikolaou, Panayiotis ; Rosen, Matthew S. ; Chekmenev, Eduard Y. ; Morris, Peter G. ; Barlow, Michael J. ; Goodson, Boyd M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c451t-f4f3297a9d8468a22d6b1e319047d766c8ed5de126f4ddc1286b771bd8e2854b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Computer Simulation</topic><topic>Contrast Media - chemistry</topic><topic>Datasets as Topic</topic><topic>Hyperpolarised</topic><topic>Lasers</topic><topic>Lung - diagnostic imaging</topic><topic>Lung imaging</topic><topic>Magnetic Resonance Spectroscopy - methods</topic><topic>Photons</topic><topic>Rubidium - chemistry</topic><topic>Sensitivity and Specificity</topic><topic>SEOP</topic><topic>Xenon</topic><topic>Xenon Isotopes - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Skinner, Jason G.</creatorcontrib><creatorcontrib>Ranta, Kaili</creatorcontrib><creatorcontrib>Whiting, Nicholas</creatorcontrib><creatorcontrib>Coffey, Aaron M.</creatorcontrib><creatorcontrib>Nikolaou, Panayiotis</creatorcontrib><creatorcontrib>Rosen, Matthew S.</creatorcontrib><creatorcontrib>Chekmenev, Eduard Y.</creatorcontrib><creatorcontrib>Morris, Peter G.</creatorcontrib><creatorcontrib>Barlow, Michael J.</creatorcontrib><creatorcontrib>Goodson, Boyd M.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of magnetic resonance (1997)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Skinner, Jason G.</au><au>Ranta, Kaili</au><au>Whiting, Nicholas</au><au>Coffey, Aaron M.</au><au>Nikolaou, Panayiotis</au><au>Rosen, Matthew S.</au><au>Chekmenev, Eduard Y.</au><au>Morris, Peter G.</au><au>Barlow, Michael J.</au><au>Goodson, Boyd M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High Xe density, high photon flux, stopped-flow spin-exchange optical pumping: Simulations versus experiments</atitle><jtitle>Journal of magnetic resonance (1997)</jtitle><addtitle>J Magn Reson</addtitle><date>2020-03-01</date><risdate>2020</risdate><volume>312</volume><spage>106686</spage><epage>106686</epage><pages>106686-106686</pages><artnum>106686</artnum><issn>1090-7807</issn><eissn>1096-0856</eissn><abstract>[Display omitted]
•Standard models of SEOP describe the high Xe density, high photon flux regime.•A laser power and Xe density independent ‘optimal absorption’ is reported.•A simulation guided roadmap for increasing clinical scale Xe polariser performance.
Spin-exchange optical pumping (SEOP) can enhance the NMR sensitivity of noble gases by up to five orders of magnitude at Tesla-strength magnetic fields. SEOP-generated hyperpolarised (HP) 129Xe is a promising contrast agent for lung imaging but an ongoing barrier to widespread clinical usage has been economical production of sufficient quantities with high 129Xe polarisation. Here, the ‘standard model’ of SEOP, which was previously used in the optimisation of continuous-flow 129Xe polarisers, is modified for validation against two Xe-rich stopped-flow SEOP datasets. We use this model to examine ways to increase HP Xe production efficiency in stopped-flow 129Xe polarisers and provide further insight into the underlying physics of Xe-rich stopped-flow SEOP at high laser fluxes.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>32006793</pmid><doi>10.1016/j.jmr.2020.106686</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1090-7807 |
ispartof | Journal of magnetic resonance (1997), 2020-03, Vol.312, p.106686-106686, Article 106686 |
issn | 1090-7807 1096-0856 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7436892 |
source | MEDLINE; Access via ScienceDirect (Elsevier) |
subjects | Computer Simulation Contrast Media - chemistry Datasets as Topic Hyperpolarised Lasers Lung - diagnostic imaging Lung imaging Magnetic Resonance Spectroscopy - methods Photons Rubidium - chemistry Sensitivity and Specificity SEOP Xenon Xenon Isotopes - chemistry |
title | High Xe density, high photon flux, stopped-flow spin-exchange optical pumping: Simulations versus experiments |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T13%3A39%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High%20Xe%20density,%20high%20photon%20flux,%20stopped-flow%20spin-exchange%20optical%20pumping:%20Simulations%20versus%20experiments&rft.jtitle=Journal%20of%20magnetic%20resonance%20(1997)&rft.au=Skinner,%20Jason%20G.&rft.date=2020-03-01&rft.volume=312&rft.spage=106686&rft.epage=106686&rft.pages=106686-106686&rft.artnum=106686&rft.issn=1090-7807&rft.eissn=1096-0856&rft_id=info:doi/10.1016/j.jmr.2020.106686&rft_dat=%3Cproquest_pubme%3E2350087927%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2350087927&rft_id=info:pmid/32006793&rft_els_id=S1090780720300045&rfr_iscdi=true |