Very High Cycle Fatigue Behavior of Additively Manufactured 316L Stainless Steel
The present paper is focused on an experimental study of the damage-to-failure mechanism of additively manufactured 316L stainless steel specimens subjected to very high cycle fatigue (VHCF) loading. Ultrasonic axial tension-compression tests were carried out on specimens for up to 10 cycles, and fr...
Gespeichert in:
Veröffentlicht in: | Materials 2020-07, Vol.13 (15), p.3293 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 15 |
container_start_page | 3293 |
container_title | Materials |
container_volume | 13 |
creator | Voloskov, Boris Evlashin, Stanislav Dagesyan, Sarkis Abaimov, Sergey Akhatov, Iskander Sergeichev, Ivan |
description | The present paper is focused on an experimental study of the damage-to-failure mechanism of additively manufactured 316L stainless steel specimens subjected to very high cycle fatigue (VHCF) loading. Ultrasonic axial tension-compression tests were carried out on specimens for up to 10
cycles, and fracture surface analysis was performed. A fine granular area (FGA) surrounding internal defects was observed and formed a "fish-eye" fracture type. Nonmetallic inclusions and the lack of fusion within the fracture surfaces that were observed with SEM were assumed to be sources of damage initiation and growth of the FGAs. The characteristic diameter of the FGAs was ≈500 μm on the fracture surface and were induced by nonmetallic inclusions; this characteristic diameter was the same as that for the fracture surface induced by a lack of fusion. Fracture surfaces corresponding to the high cycle fatigue (HCF) regime were discussed as well to emphasize damage features related to the VHCF regime. |
doi_str_mv | 10.3390/ma13153293 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7435938</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2428555037</sourcerecordid><originalsourceid>FETCH-LOGICAL-c406t-aa4a01474244f2888c3dc5f458ae7e69b9c270a40f88232da17f61bffce3b023</originalsourceid><addsrcrecordid>eNpdkVFLHDEUhUNRqqy-9AeUQF9E2JrkZmaSl4Iu3SqsWKj0NdzN3OxGZmc0mVnYf9-pWqvel3vgfhzO5TD2SYqvAFacbVCCLEBZ-MAOpbXlVFqt917pA3ac850YB0AaZT-yA1CVUsLCIfv5m9KOX8bVms92viE-xz6uBuIXtMZt7BLvAj-v69jHLTU7fo3tEND3Q6KagywX_FePsW0o51ERNUdsP2CT6fh5T9jt_Pvt7HK6uPlxNTtfTL0WZT9F1CikrrTSOihjjIfaF0EXBqmi0i6tV5VALYIxClSNsgqlXIbgCZZCwYR9e7K9H5Ybqj21fcLG3ae4wbRzHUb39tLGtVt1W1dpKCyY0eDk2SB1DwPl3m1i9tQ02FI3ZKe0MkVRCKhG9Ms79K4bUjt-90ipEsxoOWGnT5RPXc6JwksYKdzfqtz_qkb48-v4L-i_YuAPiAmNZg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2428263859</pqid></control><display><type>article</type><title>Very High Cycle Fatigue Behavior of Additively Manufactured 316L Stainless Steel</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>PubMed Central Open Access</source><creator>Voloskov, Boris ; Evlashin, Stanislav ; Dagesyan, Sarkis ; Abaimov, Sergey ; Akhatov, Iskander ; Sergeichev, Ivan</creator><creatorcontrib>Voloskov, Boris ; Evlashin, Stanislav ; Dagesyan, Sarkis ; Abaimov, Sergey ; Akhatov, Iskander ; Sergeichev, Ivan</creatorcontrib><description>The present paper is focused on an experimental study of the damage-to-failure mechanism of additively manufactured 316L stainless steel specimens subjected to very high cycle fatigue (VHCF) loading. Ultrasonic axial tension-compression tests were carried out on specimens for up to 10
cycles, and fracture surface analysis was performed. A fine granular area (FGA) surrounding internal defects was observed and formed a "fish-eye" fracture type. Nonmetallic inclusions and the lack of fusion within the fracture surfaces that were observed with SEM were assumed to be sources of damage initiation and growth of the FGAs. The characteristic diameter of the FGAs was ≈500 μm on the fracture surface and were induced by nonmetallic inclusions; this characteristic diameter was the same as that for the fracture surface induced by a lack of fusion. Fracture surfaces corresponding to the high cycle fatigue (HCF) regime were discussed as well to emphasize damage features related to the VHCF regime.</description><identifier>ISSN: 1996-1944</identifier><identifier>EISSN: 1996-1944</identifier><identifier>DOI: 10.3390/ma13153293</identifier><identifier>PMID: 32722093</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Additive manufacturing ; Austenitic stainless steels ; Axial stress ; Compression tests ; Crack initiation ; Crack propagation ; Damage ; Defects ; Failure mechanisms ; Fatigue tests ; Fracture mechanics ; Fracture surfaces ; High cycle fatigue ; Lasers ; Metal fatigue ; Nonmetallic inclusions ; Propagation ; Stainless steel ; Stress ; Surface analysis (chemical)</subject><ispartof>Materials, 2020-07, Vol.13 (15), p.3293</ispartof><rights>2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2020 by the authors. 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c406t-aa4a01474244f2888c3dc5f458ae7e69b9c270a40f88232da17f61bffce3b023</citedby><cites>FETCH-LOGICAL-c406t-aa4a01474244f2888c3dc5f458ae7e69b9c270a40f88232da17f61bffce3b023</cites><orcidid>0000-0002-7936-395X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7435938/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7435938/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32722093$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Voloskov, Boris</creatorcontrib><creatorcontrib>Evlashin, Stanislav</creatorcontrib><creatorcontrib>Dagesyan, Sarkis</creatorcontrib><creatorcontrib>Abaimov, Sergey</creatorcontrib><creatorcontrib>Akhatov, Iskander</creatorcontrib><creatorcontrib>Sergeichev, Ivan</creatorcontrib><title>Very High Cycle Fatigue Behavior of Additively Manufactured 316L Stainless Steel</title><title>Materials</title><addtitle>Materials (Basel)</addtitle><description>The present paper is focused on an experimental study of the damage-to-failure mechanism of additively manufactured 316L stainless steel specimens subjected to very high cycle fatigue (VHCF) loading. Ultrasonic axial tension-compression tests were carried out on specimens for up to 10
cycles, and fracture surface analysis was performed. A fine granular area (FGA) surrounding internal defects was observed and formed a "fish-eye" fracture type. Nonmetallic inclusions and the lack of fusion within the fracture surfaces that were observed with SEM were assumed to be sources of damage initiation and growth of the FGAs. The characteristic diameter of the FGAs was ≈500 μm on the fracture surface and were induced by nonmetallic inclusions; this characteristic diameter was the same as that for the fracture surface induced by a lack of fusion. Fracture surfaces corresponding to the high cycle fatigue (HCF) regime were discussed as well to emphasize damage features related to the VHCF regime.</description><subject>Additive manufacturing</subject><subject>Austenitic stainless steels</subject><subject>Axial stress</subject><subject>Compression tests</subject><subject>Crack initiation</subject><subject>Crack propagation</subject><subject>Damage</subject><subject>Defects</subject><subject>Failure mechanisms</subject><subject>Fatigue tests</subject><subject>Fracture mechanics</subject><subject>Fracture surfaces</subject><subject>High cycle fatigue</subject><subject>Lasers</subject><subject>Metal fatigue</subject><subject>Nonmetallic inclusions</subject><subject>Propagation</subject><subject>Stainless steel</subject><subject>Stress</subject><subject>Surface analysis (chemical)</subject><issn>1996-1944</issn><issn>1996-1944</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpdkVFLHDEUhUNRqqy-9AeUQF9E2JrkZmaSl4Iu3SqsWKj0NdzN3OxGZmc0mVnYf9-pWqvel3vgfhzO5TD2SYqvAFacbVCCLEBZ-MAOpbXlVFqt917pA3ac850YB0AaZT-yA1CVUsLCIfv5m9KOX8bVms92viE-xz6uBuIXtMZt7BLvAj-v69jHLTU7fo3tEND3Q6KagywX_FePsW0o51ERNUdsP2CT6fh5T9jt_Pvt7HK6uPlxNTtfTL0WZT9F1CikrrTSOihjjIfaF0EXBqmi0i6tV5VALYIxClSNsgqlXIbgCZZCwYR9e7K9H5Ybqj21fcLG3ae4wbRzHUb39tLGtVt1W1dpKCyY0eDk2SB1DwPl3m1i9tQ02FI3ZKe0MkVRCKhG9Ms79K4bUjt-90ipEsxoOWGnT5RPXc6JwksYKdzfqtz_qkb48-v4L-i_YuAPiAmNZg</recordid><startdate>20200724</startdate><enddate>20200724</enddate><creator>Voloskov, Boris</creator><creator>Evlashin, Stanislav</creator><creator>Dagesyan, Sarkis</creator><creator>Abaimov, Sergey</creator><creator>Akhatov, Iskander</creator><creator>Sergeichev, Ivan</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-7936-395X</orcidid></search><sort><creationdate>20200724</creationdate><title>Very High Cycle Fatigue Behavior of Additively Manufactured 316L Stainless Steel</title><author>Voloskov, Boris ; Evlashin, Stanislav ; Dagesyan, Sarkis ; Abaimov, Sergey ; Akhatov, Iskander ; Sergeichev, Ivan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c406t-aa4a01474244f2888c3dc5f458ae7e69b9c270a40f88232da17f61bffce3b023</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Additive manufacturing</topic><topic>Austenitic stainless steels</topic><topic>Axial stress</topic><topic>Compression tests</topic><topic>Crack initiation</topic><topic>Crack propagation</topic><topic>Damage</topic><topic>Defects</topic><topic>Failure mechanisms</topic><topic>Fatigue tests</topic><topic>Fracture mechanics</topic><topic>Fracture surfaces</topic><topic>High cycle fatigue</topic><topic>Lasers</topic><topic>Metal fatigue</topic><topic>Nonmetallic inclusions</topic><topic>Propagation</topic><topic>Stainless steel</topic><topic>Stress</topic><topic>Surface analysis (chemical)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Voloskov, Boris</creatorcontrib><creatorcontrib>Evlashin, Stanislav</creatorcontrib><creatorcontrib>Dagesyan, Sarkis</creatorcontrib><creatorcontrib>Abaimov, Sergey</creatorcontrib><creatorcontrib>Akhatov, Iskander</creatorcontrib><creatorcontrib>Sergeichev, Ivan</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Voloskov, Boris</au><au>Evlashin, Stanislav</au><au>Dagesyan, Sarkis</au><au>Abaimov, Sergey</au><au>Akhatov, Iskander</au><au>Sergeichev, Ivan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Very High Cycle Fatigue Behavior of Additively Manufactured 316L Stainless Steel</atitle><jtitle>Materials</jtitle><addtitle>Materials (Basel)</addtitle><date>2020-07-24</date><risdate>2020</risdate><volume>13</volume><issue>15</issue><spage>3293</spage><pages>3293-</pages><issn>1996-1944</issn><eissn>1996-1944</eissn><abstract>The present paper is focused on an experimental study of the damage-to-failure mechanism of additively manufactured 316L stainless steel specimens subjected to very high cycle fatigue (VHCF) loading. Ultrasonic axial tension-compression tests were carried out on specimens for up to 10
cycles, and fracture surface analysis was performed. A fine granular area (FGA) surrounding internal defects was observed and formed a "fish-eye" fracture type. Nonmetallic inclusions and the lack of fusion within the fracture surfaces that were observed with SEM were assumed to be sources of damage initiation and growth of the FGAs. The characteristic diameter of the FGAs was ≈500 μm on the fracture surface and were induced by nonmetallic inclusions; this characteristic diameter was the same as that for the fracture surface induced by a lack of fusion. Fracture surfaces corresponding to the high cycle fatigue (HCF) regime were discussed as well to emphasize damage features related to the VHCF regime.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>32722093</pmid><doi>10.3390/ma13153293</doi><orcidid>https://orcid.org/0000-0002-7936-395X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1996-1944 |
ispartof | Materials, 2020-07, Vol.13 (15), p.3293 |
issn | 1996-1944 1996-1944 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7435938 |
source | MDPI - Multidisciplinary Digital Publishing Institute; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Free Full-Text Journals in Chemistry; PubMed Central Open Access |
subjects | Additive manufacturing Austenitic stainless steels Axial stress Compression tests Crack initiation Crack propagation Damage Defects Failure mechanisms Fatigue tests Fracture mechanics Fracture surfaces High cycle fatigue Lasers Metal fatigue Nonmetallic inclusions Propagation Stainless steel Stress Surface analysis (chemical) |
title | Very High Cycle Fatigue Behavior of Additively Manufactured 316L Stainless Steel |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T10%3A40%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Very%20High%20Cycle%20Fatigue%20Behavior%20of%20Additively%20Manufactured%20316L%20Stainless%20Steel&rft.jtitle=Materials&rft.au=Voloskov,%20Boris&rft.date=2020-07-24&rft.volume=13&rft.issue=15&rft.spage=3293&rft.pages=3293-&rft.issn=1996-1944&rft.eissn=1996-1944&rft_id=info:doi/10.3390/ma13153293&rft_dat=%3Cproquest_pubme%3E2428555037%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2428263859&rft_id=info:pmid/32722093&rfr_iscdi=true |