Very High Cycle Fatigue Behavior of Additively Manufactured 316L Stainless Steel

The present paper is focused on an experimental study of the damage-to-failure mechanism of additively manufactured 316L stainless steel specimens subjected to very high cycle fatigue (VHCF) loading. Ultrasonic axial tension-compression tests were carried out on specimens for up to 10 cycles, and fr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials 2020-07, Vol.13 (15), p.3293
Hauptverfasser: Voloskov, Boris, Evlashin, Stanislav, Dagesyan, Sarkis, Abaimov, Sergey, Akhatov, Iskander, Sergeichev, Ivan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 15
container_start_page 3293
container_title Materials
container_volume 13
creator Voloskov, Boris
Evlashin, Stanislav
Dagesyan, Sarkis
Abaimov, Sergey
Akhatov, Iskander
Sergeichev, Ivan
description The present paper is focused on an experimental study of the damage-to-failure mechanism of additively manufactured 316L stainless steel specimens subjected to very high cycle fatigue (VHCF) loading. Ultrasonic axial tension-compression tests were carried out on specimens for up to 10 cycles, and fracture surface analysis was performed. A fine granular area (FGA) surrounding internal defects was observed and formed a "fish-eye" fracture type. Nonmetallic inclusions and the lack of fusion within the fracture surfaces that were observed with SEM were assumed to be sources of damage initiation and growth of the FGAs. The characteristic diameter of the FGAs was ≈500 μm on the fracture surface and were induced by nonmetallic inclusions; this characteristic diameter was the same as that for the fracture surface induced by a lack of fusion. Fracture surfaces corresponding to the high cycle fatigue (HCF) regime were discussed as well to emphasize damage features related to the VHCF regime.
doi_str_mv 10.3390/ma13153293
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7435938</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2428555037</sourcerecordid><originalsourceid>FETCH-LOGICAL-c406t-aa4a01474244f2888c3dc5f458ae7e69b9c270a40f88232da17f61bffce3b023</originalsourceid><addsrcrecordid>eNpdkVFLHDEUhUNRqqy-9AeUQF9E2JrkZmaSl4Iu3SqsWKj0NdzN3OxGZmc0mVnYf9-pWqvel3vgfhzO5TD2SYqvAFacbVCCLEBZ-MAOpbXlVFqt917pA3ac850YB0AaZT-yA1CVUsLCIfv5m9KOX8bVms92viE-xz6uBuIXtMZt7BLvAj-v69jHLTU7fo3tEND3Q6KagywX_FePsW0o51ERNUdsP2CT6fh5T9jt_Pvt7HK6uPlxNTtfTL0WZT9F1CikrrTSOihjjIfaF0EXBqmi0i6tV5VALYIxClSNsgqlXIbgCZZCwYR9e7K9H5Ybqj21fcLG3ae4wbRzHUb39tLGtVt1W1dpKCyY0eDk2SB1DwPl3m1i9tQ02FI3ZKe0MkVRCKhG9Ms79K4bUjt-90ipEsxoOWGnT5RPXc6JwksYKdzfqtz_qkb48-v4L-i_YuAPiAmNZg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2428263859</pqid></control><display><type>article</type><title>Very High Cycle Fatigue Behavior of Additively Manufactured 316L Stainless Steel</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>PubMed Central Open Access</source><creator>Voloskov, Boris ; Evlashin, Stanislav ; Dagesyan, Sarkis ; Abaimov, Sergey ; Akhatov, Iskander ; Sergeichev, Ivan</creator><creatorcontrib>Voloskov, Boris ; Evlashin, Stanislav ; Dagesyan, Sarkis ; Abaimov, Sergey ; Akhatov, Iskander ; Sergeichev, Ivan</creatorcontrib><description>The present paper is focused on an experimental study of the damage-to-failure mechanism of additively manufactured 316L stainless steel specimens subjected to very high cycle fatigue (VHCF) loading. Ultrasonic axial tension-compression tests were carried out on specimens for up to 10 cycles, and fracture surface analysis was performed. A fine granular area (FGA) surrounding internal defects was observed and formed a "fish-eye" fracture type. Nonmetallic inclusions and the lack of fusion within the fracture surfaces that were observed with SEM were assumed to be sources of damage initiation and growth of the FGAs. The characteristic diameter of the FGAs was ≈500 μm on the fracture surface and were induced by nonmetallic inclusions; this characteristic diameter was the same as that for the fracture surface induced by a lack of fusion. Fracture surfaces corresponding to the high cycle fatigue (HCF) regime were discussed as well to emphasize damage features related to the VHCF regime.</description><identifier>ISSN: 1996-1944</identifier><identifier>EISSN: 1996-1944</identifier><identifier>DOI: 10.3390/ma13153293</identifier><identifier>PMID: 32722093</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Additive manufacturing ; Austenitic stainless steels ; Axial stress ; Compression tests ; Crack initiation ; Crack propagation ; Damage ; Defects ; Failure mechanisms ; Fatigue tests ; Fracture mechanics ; Fracture surfaces ; High cycle fatigue ; Lasers ; Metal fatigue ; Nonmetallic inclusions ; Propagation ; Stainless steel ; Stress ; Surface analysis (chemical)</subject><ispartof>Materials, 2020-07, Vol.13 (15), p.3293</ispartof><rights>2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2020 by the authors. 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c406t-aa4a01474244f2888c3dc5f458ae7e69b9c270a40f88232da17f61bffce3b023</citedby><cites>FETCH-LOGICAL-c406t-aa4a01474244f2888c3dc5f458ae7e69b9c270a40f88232da17f61bffce3b023</cites><orcidid>0000-0002-7936-395X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7435938/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7435938/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32722093$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Voloskov, Boris</creatorcontrib><creatorcontrib>Evlashin, Stanislav</creatorcontrib><creatorcontrib>Dagesyan, Sarkis</creatorcontrib><creatorcontrib>Abaimov, Sergey</creatorcontrib><creatorcontrib>Akhatov, Iskander</creatorcontrib><creatorcontrib>Sergeichev, Ivan</creatorcontrib><title>Very High Cycle Fatigue Behavior of Additively Manufactured 316L Stainless Steel</title><title>Materials</title><addtitle>Materials (Basel)</addtitle><description>The present paper is focused on an experimental study of the damage-to-failure mechanism of additively manufactured 316L stainless steel specimens subjected to very high cycle fatigue (VHCF) loading. Ultrasonic axial tension-compression tests were carried out on specimens for up to 10 cycles, and fracture surface analysis was performed. A fine granular area (FGA) surrounding internal defects was observed and formed a "fish-eye" fracture type. Nonmetallic inclusions and the lack of fusion within the fracture surfaces that were observed with SEM were assumed to be sources of damage initiation and growth of the FGAs. The characteristic diameter of the FGAs was ≈500 μm on the fracture surface and were induced by nonmetallic inclusions; this characteristic diameter was the same as that for the fracture surface induced by a lack of fusion. Fracture surfaces corresponding to the high cycle fatigue (HCF) regime were discussed as well to emphasize damage features related to the VHCF regime.</description><subject>Additive manufacturing</subject><subject>Austenitic stainless steels</subject><subject>Axial stress</subject><subject>Compression tests</subject><subject>Crack initiation</subject><subject>Crack propagation</subject><subject>Damage</subject><subject>Defects</subject><subject>Failure mechanisms</subject><subject>Fatigue tests</subject><subject>Fracture mechanics</subject><subject>Fracture surfaces</subject><subject>High cycle fatigue</subject><subject>Lasers</subject><subject>Metal fatigue</subject><subject>Nonmetallic inclusions</subject><subject>Propagation</subject><subject>Stainless steel</subject><subject>Stress</subject><subject>Surface analysis (chemical)</subject><issn>1996-1944</issn><issn>1996-1944</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpdkVFLHDEUhUNRqqy-9AeUQF9E2JrkZmaSl4Iu3SqsWKj0NdzN3OxGZmc0mVnYf9-pWqvel3vgfhzO5TD2SYqvAFacbVCCLEBZ-MAOpbXlVFqt917pA3ac850YB0AaZT-yA1CVUsLCIfv5m9KOX8bVms92viE-xz6uBuIXtMZt7BLvAj-v69jHLTU7fo3tEND3Q6KagywX_FePsW0o51ERNUdsP2CT6fh5T9jt_Pvt7HK6uPlxNTtfTL0WZT9F1CikrrTSOihjjIfaF0EXBqmi0i6tV5VALYIxClSNsgqlXIbgCZZCwYR9e7K9H5Ybqj21fcLG3ae4wbRzHUb39tLGtVt1W1dpKCyY0eDk2SB1DwPl3m1i9tQ02FI3ZKe0MkVRCKhG9Ms79K4bUjt-90ipEsxoOWGnT5RPXc6JwksYKdzfqtz_qkb48-v4L-i_YuAPiAmNZg</recordid><startdate>20200724</startdate><enddate>20200724</enddate><creator>Voloskov, Boris</creator><creator>Evlashin, Stanislav</creator><creator>Dagesyan, Sarkis</creator><creator>Abaimov, Sergey</creator><creator>Akhatov, Iskander</creator><creator>Sergeichev, Ivan</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-7936-395X</orcidid></search><sort><creationdate>20200724</creationdate><title>Very High Cycle Fatigue Behavior of Additively Manufactured 316L Stainless Steel</title><author>Voloskov, Boris ; Evlashin, Stanislav ; Dagesyan, Sarkis ; Abaimov, Sergey ; Akhatov, Iskander ; Sergeichev, Ivan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c406t-aa4a01474244f2888c3dc5f458ae7e69b9c270a40f88232da17f61bffce3b023</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Additive manufacturing</topic><topic>Austenitic stainless steels</topic><topic>Axial stress</topic><topic>Compression tests</topic><topic>Crack initiation</topic><topic>Crack propagation</topic><topic>Damage</topic><topic>Defects</topic><topic>Failure mechanisms</topic><topic>Fatigue tests</topic><topic>Fracture mechanics</topic><topic>Fracture surfaces</topic><topic>High cycle fatigue</topic><topic>Lasers</topic><topic>Metal fatigue</topic><topic>Nonmetallic inclusions</topic><topic>Propagation</topic><topic>Stainless steel</topic><topic>Stress</topic><topic>Surface analysis (chemical)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Voloskov, Boris</creatorcontrib><creatorcontrib>Evlashin, Stanislav</creatorcontrib><creatorcontrib>Dagesyan, Sarkis</creatorcontrib><creatorcontrib>Abaimov, Sergey</creatorcontrib><creatorcontrib>Akhatov, Iskander</creatorcontrib><creatorcontrib>Sergeichev, Ivan</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Voloskov, Boris</au><au>Evlashin, Stanislav</au><au>Dagesyan, Sarkis</au><au>Abaimov, Sergey</au><au>Akhatov, Iskander</au><au>Sergeichev, Ivan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Very High Cycle Fatigue Behavior of Additively Manufactured 316L Stainless Steel</atitle><jtitle>Materials</jtitle><addtitle>Materials (Basel)</addtitle><date>2020-07-24</date><risdate>2020</risdate><volume>13</volume><issue>15</issue><spage>3293</spage><pages>3293-</pages><issn>1996-1944</issn><eissn>1996-1944</eissn><abstract>The present paper is focused on an experimental study of the damage-to-failure mechanism of additively manufactured 316L stainless steel specimens subjected to very high cycle fatigue (VHCF) loading. Ultrasonic axial tension-compression tests were carried out on specimens for up to 10 cycles, and fracture surface analysis was performed. A fine granular area (FGA) surrounding internal defects was observed and formed a "fish-eye" fracture type. Nonmetallic inclusions and the lack of fusion within the fracture surfaces that were observed with SEM were assumed to be sources of damage initiation and growth of the FGAs. The characteristic diameter of the FGAs was ≈500 μm on the fracture surface and were induced by nonmetallic inclusions; this characteristic diameter was the same as that for the fracture surface induced by a lack of fusion. Fracture surfaces corresponding to the high cycle fatigue (HCF) regime were discussed as well to emphasize damage features related to the VHCF regime.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>32722093</pmid><doi>10.3390/ma13153293</doi><orcidid>https://orcid.org/0000-0002-7936-395X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1996-1944
ispartof Materials, 2020-07, Vol.13 (15), p.3293
issn 1996-1944
1996-1944
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7435938
source MDPI - Multidisciplinary Digital Publishing Institute; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Free Full-Text Journals in Chemistry; PubMed Central Open Access
subjects Additive manufacturing
Austenitic stainless steels
Axial stress
Compression tests
Crack initiation
Crack propagation
Damage
Defects
Failure mechanisms
Fatigue tests
Fracture mechanics
Fracture surfaces
High cycle fatigue
Lasers
Metal fatigue
Nonmetallic inclusions
Propagation
Stainless steel
Stress
Surface analysis (chemical)
title Very High Cycle Fatigue Behavior of Additively Manufactured 316L Stainless Steel
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T10%3A40%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Very%20High%20Cycle%20Fatigue%20Behavior%20of%20Additively%20Manufactured%20316L%20Stainless%20Steel&rft.jtitle=Materials&rft.au=Voloskov,%20Boris&rft.date=2020-07-24&rft.volume=13&rft.issue=15&rft.spage=3293&rft.pages=3293-&rft.issn=1996-1944&rft.eissn=1996-1944&rft_id=info:doi/10.3390/ma13153293&rft_dat=%3Cproquest_pubme%3E2428555037%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2428263859&rft_id=info:pmid/32722093&rfr_iscdi=true