Rapid repair of human disease-specific single-nucleotide variants by One-SHOT genome editing
Many human diseases ranging from cancer to hereditary disorders are caused by single-nucleotide mutations in critical genes. Repairing these mutations would significantly improve the quality of life for patients with hereditary diseases. However, current procedures for repairing deleterious single-n...
Gespeichert in:
Veröffentlicht in: | Scientific reports 2020-08, Vol.10 (1), p.13927-13927, Article 13927 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 13927 |
---|---|
container_issue | 1 |
container_start_page | 13927 |
container_title | Scientific reports |
container_volume | 10 |
creator | Yokouchi, Yuji Suzuki, Shinichi Ohtsuki, Noriko Yamamoto, Kei Noguchi, Satomi Soejima, Yumi Goto, Mizuki Ishioka, Ken Nakamura, Izumi Suzuki, Satoru Takenoshita, Seiichi Era, Takumi |
description | Many human diseases ranging from cancer to hereditary disorders are caused by single-nucleotide mutations in critical genes. Repairing these mutations would significantly improve the quality of life for patients with hereditary diseases. However, current procedures for repairing deleterious single-nucleotide mutations are not straightforward, requiring multiple steps and taking several months to complete. In the current study, we aimed to repair pathogenic allele-specific single-nucleotide mutations using a single round of genome editing. Using high-fidelity, site-specific nuclease
As
Cas12a/Cpf1, we attempted to repair pathogenic single-nucleotide variants (SNVs) in disease-specific induced pluripotent stem cells. As a result, we achieved repair of the Met918Thr SNV in human oncogene
RET
with the inclusion of a single-nucleotide marker, followed by absolute markerless, scarless repair of the
RET
SNV with no detected off-target effects. The markerless method was then confirmed in human type VII collagen-encoding gene
COL7A1
. Thus, using this One-SHOT method, we successfully reduced the number of genetic manipulations required for genome repair from two consecutive events to one, resulting in allele-specific repair that can be completed within 3 weeks, with or without a single-nucleotide marker. Our findings suggest that One-SHOT can be used to repair other types of mutations, with potential beyond human medicine. |
doi_str_mv | 10.1038/s41598-020-70401-7 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7435196</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2435028364</sourcerecordid><originalsourceid>FETCH-LOGICAL-c577t-b47fbca0ec1ffd9b3c23f34632289f83523e9b1a620ae9289d9c62581834511c3</originalsourceid><addsrcrecordid>eNp9kU9LHTEUxUOpVLF-gS5KoJtu0ubvTLIpFLFaEB5U3RVCJnPnGZlJpsmM4Ldv9Km1XTSbhNzfOfdeDkLvGP3EqNCfi2TKaEI5JS2VlJH2FTrgVCrCBeevX7z30VEpN7QexY1k5g3aF1wzpmV7gH7-cHPocYbZhYzTgK_XyUXchwKuACkz-DAEj0uI2xFIXP0IaQk94FuXg4tLwd0d3kQgF2ebS7yFmCbA0IelCt6ivcGNBY4e70N09e3k8viMnG9Ovx9_PSdete1COtkOnXcUPBuG3nTCczEI2dTZtRm0UFyA6ZhrOHVg6l9vfMOVZlpIxZgXh-jLzndeuwl6D3HJbrRzDpPLdza5YP-uxHBtt-nWtlIoZppq8PHRIKdfK5TFTqF4GEcXIa3F8sopwZigFf3wD3qT1hzreg8U5Vo0slJ8R_mcSskwPA_DqL3Pz-7yszU_-5Cfbavo_cs1niVPaVVA7IBSS3EL-U_v_9j-BoP_pb4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2435028364</pqid></control><display><type>article</type><title>Rapid repair of human disease-specific single-nucleotide variants by One-SHOT genome editing</title><source>MEDLINE</source><source>Nature Free</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><source>Springer Nature OA Free Journals</source><creator>Yokouchi, Yuji ; Suzuki, Shinichi ; Ohtsuki, Noriko ; Yamamoto, Kei ; Noguchi, Satomi ; Soejima, Yumi ; Goto, Mizuki ; Ishioka, Ken ; Nakamura, Izumi ; Suzuki, Satoru ; Takenoshita, Seiichi ; Era, Takumi</creator><creatorcontrib>Yokouchi, Yuji ; Suzuki, Shinichi ; Ohtsuki, Noriko ; Yamamoto, Kei ; Noguchi, Satomi ; Soejima, Yumi ; Goto, Mizuki ; Ishioka, Ken ; Nakamura, Izumi ; Suzuki, Satoru ; Takenoshita, Seiichi ; Era, Takumi</creatorcontrib><description>Many human diseases ranging from cancer to hereditary disorders are caused by single-nucleotide mutations in critical genes. Repairing these mutations would significantly improve the quality of life for patients with hereditary diseases. However, current procedures for repairing deleterious single-nucleotide mutations are not straightforward, requiring multiple steps and taking several months to complete. In the current study, we aimed to repair pathogenic allele-specific single-nucleotide mutations using a single round of genome editing. Using high-fidelity, site-specific nuclease
As
Cas12a/Cpf1, we attempted to repair pathogenic single-nucleotide variants (SNVs) in disease-specific induced pluripotent stem cells. As a result, we achieved repair of the Met918Thr SNV in human oncogene
RET
with the inclusion of a single-nucleotide marker, followed by absolute markerless, scarless repair of the
RET
SNV with no detected off-target effects. The markerless method was then confirmed in human type VII collagen-encoding gene
COL7A1
. Thus, using this One-SHOT method, we successfully reduced the number of genetic manipulations required for genome repair from two consecutive events to one, resulting in allele-specific repair that can be completed within 3 weeks, with or without a single-nucleotide marker. Our findings suggest that One-SHOT can be used to repair other types of mutations, with potential beyond human medicine.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-020-70401-7</identifier><identifier>PMID: 32811847</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/1647/1407/651 ; 631/1647/1511 ; 631/1647/1513 ; 631/1647/1513/1967/3196 ; 631/61/191/1908 ; 631/61/201/2110 ; 631/61/212/2166 ; 631/61/212/2301 ; 631/61/2320 ; 631/61/338/552 ; 631/61/490 ; 692/308/2171 ; 692/699/2743 ; 692/699/4033 ; 692/699/67 ; Alleles ; Bacterial Proteins - genetics ; Bacterial Proteins - metabolism ; Collagen ; Collagen Type VII - genetics ; Collagen Type VII - metabolism ; CRISPR-Associated Proteins - genetics ; CRISPR-Associated Proteins - metabolism ; CRISPR-Cas Systems - genetics ; Endodeoxyribonucleases - genetics ; Endodeoxyribonucleases - metabolism ; Endonucleases - genetics ; Gene Editing - methods ; Genome editing ; Genome, Human - genetics ; Genomes ; Hereditary diseases ; Humanities and Social Sciences ; Humans ; Induced Pluripotent Stem Cells - physiology ; multidisciplinary ; Mutation ; Mutation - genetics ; Nuclease ; Nucleotides - genetics ; Pluripotency ; Pluripotent Stem Cells - physiology ; Polymorphism, Single Nucleotide - genetics ; Proto-Oncogene Proteins c-ret - genetics ; Proto-Oncogene Proteins c-ret - metabolism ; Quality of life ; Ret protein ; Science ; Science (multidisciplinary) ; Stem cells</subject><ispartof>Scientific reports, 2020-08, Vol.10 (1), p.13927-13927, Article 13927</ispartof><rights>The Author(s) 2020</rights><rights>The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c577t-b47fbca0ec1ffd9b3c23f34632289f83523e9b1a620ae9289d9c62581834511c3</citedby><cites>FETCH-LOGICAL-c577t-b47fbca0ec1ffd9b3c23f34632289f83523e9b1a620ae9289d9c62581834511c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7435196/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7435196/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27901,27902,41096,42165,51551,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32811847$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yokouchi, Yuji</creatorcontrib><creatorcontrib>Suzuki, Shinichi</creatorcontrib><creatorcontrib>Ohtsuki, Noriko</creatorcontrib><creatorcontrib>Yamamoto, Kei</creatorcontrib><creatorcontrib>Noguchi, Satomi</creatorcontrib><creatorcontrib>Soejima, Yumi</creatorcontrib><creatorcontrib>Goto, Mizuki</creatorcontrib><creatorcontrib>Ishioka, Ken</creatorcontrib><creatorcontrib>Nakamura, Izumi</creatorcontrib><creatorcontrib>Suzuki, Satoru</creatorcontrib><creatorcontrib>Takenoshita, Seiichi</creatorcontrib><creatorcontrib>Era, Takumi</creatorcontrib><title>Rapid repair of human disease-specific single-nucleotide variants by One-SHOT genome editing</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>Many human diseases ranging from cancer to hereditary disorders are caused by single-nucleotide mutations in critical genes. Repairing these mutations would significantly improve the quality of life for patients with hereditary diseases. However, current procedures for repairing deleterious single-nucleotide mutations are not straightforward, requiring multiple steps and taking several months to complete. In the current study, we aimed to repair pathogenic allele-specific single-nucleotide mutations using a single round of genome editing. Using high-fidelity, site-specific nuclease
As
Cas12a/Cpf1, we attempted to repair pathogenic single-nucleotide variants (SNVs) in disease-specific induced pluripotent stem cells. As a result, we achieved repair of the Met918Thr SNV in human oncogene
RET
with the inclusion of a single-nucleotide marker, followed by absolute markerless, scarless repair of the
RET
SNV with no detected off-target effects. The markerless method was then confirmed in human type VII collagen-encoding gene
COL7A1
. Thus, using this One-SHOT method, we successfully reduced the number of genetic manipulations required for genome repair from two consecutive events to one, resulting in allele-specific repair that can be completed within 3 weeks, with or without a single-nucleotide marker. Our findings suggest that One-SHOT can be used to repair other types of mutations, with potential beyond human medicine.</description><subject>631/1647/1407/651</subject><subject>631/1647/1511</subject><subject>631/1647/1513</subject><subject>631/1647/1513/1967/3196</subject><subject>631/61/191/1908</subject><subject>631/61/201/2110</subject><subject>631/61/212/2166</subject><subject>631/61/212/2301</subject><subject>631/61/2320</subject><subject>631/61/338/552</subject><subject>631/61/490</subject><subject>692/308/2171</subject><subject>692/699/2743</subject><subject>692/699/4033</subject><subject>692/699/67</subject><subject>Alleles</subject><subject>Bacterial Proteins - genetics</subject><subject>Bacterial Proteins - metabolism</subject><subject>Collagen</subject><subject>Collagen Type VII - genetics</subject><subject>Collagen Type VII - metabolism</subject><subject>CRISPR-Associated Proteins - genetics</subject><subject>CRISPR-Associated Proteins - metabolism</subject><subject>CRISPR-Cas Systems - genetics</subject><subject>Endodeoxyribonucleases - genetics</subject><subject>Endodeoxyribonucleases - metabolism</subject><subject>Endonucleases - genetics</subject><subject>Gene Editing - methods</subject><subject>Genome editing</subject><subject>Genome, Human - genetics</subject><subject>Genomes</subject><subject>Hereditary diseases</subject><subject>Humanities and Social Sciences</subject><subject>Humans</subject><subject>Induced Pluripotent Stem Cells - physiology</subject><subject>multidisciplinary</subject><subject>Mutation</subject><subject>Mutation - genetics</subject><subject>Nuclease</subject><subject>Nucleotides - genetics</subject><subject>Pluripotency</subject><subject>Pluripotent Stem Cells - physiology</subject><subject>Polymorphism, Single Nucleotide - genetics</subject><subject>Proto-Oncogene Proteins c-ret - genetics</subject><subject>Proto-Oncogene Proteins c-ret - metabolism</subject><subject>Quality of life</subject><subject>Ret protein</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Stem cells</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNp9kU9LHTEUxUOpVLF-gS5KoJtu0ubvTLIpFLFaEB5U3RVCJnPnGZlJpsmM4Ldv9Km1XTSbhNzfOfdeDkLvGP3EqNCfi2TKaEI5JS2VlJH2FTrgVCrCBeevX7z30VEpN7QexY1k5g3aF1wzpmV7gH7-cHPocYbZhYzTgK_XyUXchwKuACkz-DAEj0uI2xFIXP0IaQk94FuXg4tLwd0d3kQgF2ebS7yFmCbA0IelCt6ivcGNBY4e70N09e3k8viMnG9Ovx9_PSdete1COtkOnXcUPBuG3nTCczEI2dTZtRm0UFyA6ZhrOHVg6l9vfMOVZlpIxZgXh-jLzndeuwl6D3HJbrRzDpPLdza5YP-uxHBtt-nWtlIoZppq8PHRIKdfK5TFTqF4GEcXIa3F8sopwZigFf3wD3qT1hzreg8U5Vo0slJ8R_mcSskwPA_DqL3Pz-7yszU_-5Cfbavo_cs1niVPaVVA7IBSS3EL-U_v_9j-BoP_pb4</recordid><startdate>20200818</startdate><enddate>20200818</enddate><creator>Yokouchi, Yuji</creator><creator>Suzuki, Shinichi</creator><creator>Ohtsuki, Noriko</creator><creator>Yamamoto, Kei</creator><creator>Noguchi, Satomi</creator><creator>Soejima, Yumi</creator><creator>Goto, Mizuki</creator><creator>Ishioka, Ken</creator><creator>Nakamura, Izumi</creator><creator>Suzuki, Satoru</creator><creator>Takenoshita, Seiichi</creator><creator>Era, Takumi</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20200818</creationdate><title>Rapid repair of human disease-specific single-nucleotide variants by One-SHOT genome editing</title><author>Yokouchi, Yuji ; Suzuki, Shinichi ; Ohtsuki, Noriko ; Yamamoto, Kei ; Noguchi, Satomi ; Soejima, Yumi ; Goto, Mizuki ; Ishioka, Ken ; Nakamura, Izumi ; Suzuki, Satoru ; Takenoshita, Seiichi ; Era, Takumi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c577t-b47fbca0ec1ffd9b3c23f34632289f83523e9b1a620ae9289d9c62581834511c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>631/1647/1407/651</topic><topic>631/1647/1511</topic><topic>631/1647/1513</topic><topic>631/1647/1513/1967/3196</topic><topic>631/61/191/1908</topic><topic>631/61/201/2110</topic><topic>631/61/212/2166</topic><topic>631/61/212/2301</topic><topic>631/61/2320</topic><topic>631/61/338/552</topic><topic>631/61/490</topic><topic>692/308/2171</topic><topic>692/699/2743</topic><topic>692/699/4033</topic><topic>692/699/67</topic><topic>Alleles</topic><topic>Bacterial Proteins - genetics</topic><topic>Bacterial Proteins - metabolism</topic><topic>Collagen</topic><topic>Collagen Type VII - genetics</topic><topic>Collagen Type VII - metabolism</topic><topic>CRISPR-Associated Proteins - genetics</topic><topic>CRISPR-Associated Proteins - metabolism</topic><topic>CRISPR-Cas Systems - genetics</topic><topic>Endodeoxyribonucleases - genetics</topic><topic>Endodeoxyribonucleases - metabolism</topic><topic>Endonucleases - genetics</topic><topic>Gene Editing - methods</topic><topic>Genome editing</topic><topic>Genome, Human - genetics</topic><topic>Genomes</topic><topic>Hereditary diseases</topic><topic>Humanities and Social Sciences</topic><topic>Humans</topic><topic>Induced Pluripotent Stem Cells - physiology</topic><topic>multidisciplinary</topic><topic>Mutation</topic><topic>Mutation - genetics</topic><topic>Nuclease</topic><topic>Nucleotides - genetics</topic><topic>Pluripotency</topic><topic>Pluripotent Stem Cells - physiology</topic><topic>Polymorphism, Single Nucleotide - genetics</topic><topic>Proto-Oncogene Proteins c-ret - genetics</topic><topic>Proto-Oncogene Proteins c-ret - metabolism</topic><topic>Quality of life</topic><topic>Ret protein</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Stem cells</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yokouchi, Yuji</creatorcontrib><creatorcontrib>Suzuki, Shinichi</creatorcontrib><creatorcontrib>Ohtsuki, Noriko</creatorcontrib><creatorcontrib>Yamamoto, Kei</creatorcontrib><creatorcontrib>Noguchi, Satomi</creatorcontrib><creatorcontrib>Soejima, Yumi</creatorcontrib><creatorcontrib>Goto, Mizuki</creatorcontrib><creatorcontrib>Ishioka, Ken</creatorcontrib><creatorcontrib>Nakamura, Izumi</creatorcontrib><creatorcontrib>Suzuki, Satoru</creatorcontrib><creatorcontrib>Takenoshita, Seiichi</creatorcontrib><creatorcontrib>Era, Takumi</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yokouchi, Yuji</au><au>Suzuki, Shinichi</au><au>Ohtsuki, Noriko</au><au>Yamamoto, Kei</au><au>Noguchi, Satomi</au><au>Soejima, Yumi</au><au>Goto, Mizuki</au><au>Ishioka, Ken</au><au>Nakamura, Izumi</au><au>Suzuki, Satoru</au><au>Takenoshita, Seiichi</au><au>Era, Takumi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Rapid repair of human disease-specific single-nucleotide variants by One-SHOT genome editing</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2020-08-18</date><risdate>2020</risdate><volume>10</volume><issue>1</issue><spage>13927</spage><epage>13927</epage><pages>13927-13927</pages><artnum>13927</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>Many human diseases ranging from cancer to hereditary disorders are caused by single-nucleotide mutations in critical genes. Repairing these mutations would significantly improve the quality of life for patients with hereditary diseases. However, current procedures for repairing deleterious single-nucleotide mutations are not straightforward, requiring multiple steps and taking several months to complete. In the current study, we aimed to repair pathogenic allele-specific single-nucleotide mutations using a single round of genome editing. Using high-fidelity, site-specific nuclease
As
Cas12a/Cpf1, we attempted to repair pathogenic single-nucleotide variants (SNVs) in disease-specific induced pluripotent stem cells. As a result, we achieved repair of the Met918Thr SNV in human oncogene
RET
with the inclusion of a single-nucleotide marker, followed by absolute markerless, scarless repair of the
RET
SNV with no detected off-target effects. The markerless method was then confirmed in human type VII collagen-encoding gene
COL7A1
. Thus, using this One-SHOT method, we successfully reduced the number of genetic manipulations required for genome repair from two consecutive events to one, resulting in allele-specific repair that can be completed within 3 weeks, with or without a single-nucleotide marker. Our findings suggest that One-SHOT can be used to repair other types of mutations, with potential beyond human medicine.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>32811847</pmid><doi>10.1038/s41598-020-70401-7</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2045-2322 |
ispartof | Scientific reports, 2020-08, Vol.10 (1), p.13927-13927, Article 13927 |
issn | 2045-2322 2045-2322 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7435196 |
source | MEDLINE; Nature Free; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry; Springer Nature OA Free Journals |
subjects | 631/1647/1407/651 631/1647/1511 631/1647/1513 631/1647/1513/1967/3196 631/61/191/1908 631/61/201/2110 631/61/212/2166 631/61/212/2301 631/61/2320 631/61/338/552 631/61/490 692/308/2171 692/699/2743 692/699/4033 692/699/67 Alleles Bacterial Proteins - genetics Bacterial Proteins - metabolism Collagen Collagen Type VII - genetics Collagen Type VII - metabolism CRISPR-Associated Proteins - genetics CRISPR-Associated Proteins - metabolism CRISPR-Cas Systems - genetics Endodeoxyribonucleases - genetics Endodeoxyribonucleases - metabolism Endonucleases - genetics Gene Editing - methods Genome editing Genome, Human - genetics Genomes Hereditary diseases Humanities and Social Sciences Humans Induced Pluripotent Stem Cells - physiology multidisciplinary Mutation Mutation - genetics Nuclease Nucleotides - genetics Pluripotency Pluripotent Stem Cells - physiology Polymorphism, Single Nucleotide - genetics Proto-Oncogene Proteins c-ret - genetics Proto-Oncogene Proteins c-ret - metabolism Quality of life Ret protein Science Science (multidisciplinary) Stem cells |
title | Rapid repair of human disease-specific single-nucleotide variants by One-SHOT genome editing |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T22%3A36%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Rapid%20repair%20of%20human%20disease-specific%20single-nucleotide%20variants%20by%20One-SHOT%20genome%20editing&rft.jtitle=Scientific%20reports&rft.au=Yokouchi,%20Yuji&rft.date=2020-08-18&rft.volume=10&rft.issue=1&rft.spage=13927&rft.epage=13927&rft.pages=13927-13927&rft.artnum=13927&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-020-70401-7&rft_dat=%3Cproquest_pubme%3E2435028364%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2435028364&rft_id=info:pmid/32811847&rfr_iscdi=true |