Rapid repair of human disease-specific single-nucleotide variants by One-SHOT genome editing

Many human diseases ranging from cancer to hereditary disorders are caused by single-nucleotide mutations in critical genes. Repairing these mutations would significantly improve the quality of life for patients with hereditary diseases. However, current procedures for repairing deleterious single-n...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific reports 2020-08, Vol.10 (1), p.13927-13927, Article 13927
Hauptverfasser: Yokouchi, Yuji, Suzuki, Shinichi, Ohtsuki, Noriko, Yamamoto, Kei, Noguchi, Satomi, Soejima, Yumi, Goto, Mizuki, Ishioka, Ken, Nakamura, Izumi, Suzuki, Satoru, Takenoshita, Seiichi, Era, Takumi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 13927
container_issue 1
container_start_page 13927
container_title Scientific reports
container_volume 10
creator Yokouchi, Yuji
Suzuki, Shinichi
Ohtsuki, Noriko
Yamamoto, Kei
Noguchi, Satomi
Soejima, Yumi
Goto, Mizuki
Ishioka, Ken
Nakamura, Izumi
Suzuki, Satoru
Takenoshita, Seiichi
Era, Takumi
description Many human diseases ranging from cancer to hereditary disorders are caused by single-nucleotide mutations in critical genes. Repairing these mutations would significantly improve the quality of life for patients with hereditary diseases. However, current procedures for repairing deleterious single-nucleotide mutations are not straightforward, requiring multiple steps and taking several months to complete. In the current study, we aimed to repair pathogenic allele-specific single-nucleotide mutations using a single round of genome editing. Using high-fidelity, site-specific nuclease As Cas12a/Cpf1, we attempted to repair pathogenic single-nucleotide variants (SNVs) in disease-specific induced pluripotent stem cells. As a result, we achieved repair of the Met918Thr SNV in human oncogene RET with the inclusion of a single-nucleotide marker, followed by absolute markerless, scarless repair of the RET SNV with no detected off-target effects. The markerless method was then confirmed in human type VII collagen-encoding gene COL7A1 . Thus, using this One-SHOT method, we successfully reduced the number of genetic manipulations required for genome repair from two consecutive events to one, resulting in allele-specific repair that can be completed within 3 weeks, with or without a single-nucleotide marker. Our findings suggest that One-SHOT can be used to repair other types of mutations, with potential beyond human medicine.
doi_str_mv 10.1038/s41598-020-70401-7
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7435196</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2435028364</sourcerecordid><originalsourceid>FETCH-LOGICAL-c577t-b47fbca0ec1ffd9b3c23f34632289f83523e9b1a620ae9289d9c62581834511c3</originalsourceid><addsrcrecordid>eNp9kU9LHTEUxUOpVLF-gS5KoJtu0ubvTLIpFLFaEB5U3RVCJnPnGZlJpsmM4Ldv9Km1XTSbhNzfOfdeDkLvGP3EqNCfi2TKaEI5JS2VlJH2FTrgVCrCBeevX7z30VEpN7QexY1k5g3aF1wzpmV7gH7-cHPocYbZhYzTgK_XyUXchwKuACkz-DAEj0uI2xFIXP0IaQk94FuXg4tLwd0d3kQgF2ebS7yFmCbA0IelCt6ivcGNBY4e70N09e3k8viMnG9Ovx9_PSdete1COtkOnXcUPBuG3nTCczEI2dTZtRm0UFyA6ZhrOHVg6l9vfMOVZlpIxZgXh-jLzndeuwl6D3HJbrRzDpPLdza5YP-uxHBtt-nWtlIoZppq8PHRIKdfK5TFTqF4GEcXIa3F8sopwZigFf3wD3qT1hzreg8U5Vo0slJ8R_mcSskwPA_DqL3Pz-7yszU_-5Cfbavo_cs1niVPaVVA7IBSS3EL-U_v_9j-BoP_pb4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2435028364</pqid></control><display><type>article</type><title>Rapid repair of human disease-specific single-nucleotide variants by One-SHOT genome editing</title><source>MEDLINE</source><source>Nature Free</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><source>Springer Nature OA Free Journals</source><creator>Yokouchi, Yuji ; Suzuki, Shinichi ; Ohtsuki, Noriko ; Yamamoto, Kei ; Noguchi, Satomi ; Soejima, Yumi ; Goto, Mizuki ; Ishioka, Ken ; Nakamura, Izumi ; Suzuki, Satoru ; Takenoshita, Seiichi ; Era, Takumi</creator><creatorcontrib>Yokouchi, Yuji ; Suzuki, Shinichi ; Ohtsuki, Noriko ; Yamamoto, Kei ; Noguchi, Satomi ; Soejima, Yumi ; Goto, Mizuki ; Ishioka, Ken ; Nakamura, Izumi ; Suzuki, Satoru ; Takenoshita, Seiichi ; Era, Takumi</creatorcontrib><description>Many human diseases ranging from cancer to hereditary disorders are caused by single-nucleotide mutations in critical genes. Repairing these mutations would significantly improve the quality of life for patients with hereditary diseases. However, current procedures for repairing deleterious single-nucleotide mutations are not straightforward, requiring multiple steps and taking several months to complete. In the current study, we aimed to repair pathogenic allele-specific single-nucleotide mutations using a single round of genome editing. Using high-fidelity, site-specific nuclease As Cas12a/Cpf1, we attempted to repair pathogenic single-nucleotide variants (SNVs) in disease-specific induced pluripotent stem cells. As a result, we achieved repair of the Met918Thr SNV in human oncogene RET with the inclusion of a single-nucleotide marker, followed by absolute markerless, scarless repair of the RET SNV with no detected off-target effects. The markerless method was then confirmed in human type VII collagen-encoding gene COL7A1 . Thus, using this One-SHOT method, we successfully reduced the number of genetic manipulations required for genome repair from two consecutive events to one, resulting in allele-specific repair that can be completed within 3 weeks, with or without a single-nucleotide marker. Our findings suggest that One-SHOT can be used to repair other types of mutations, with potential beyond human medicine.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-020-70401-7</identifier><identifier>PMID: 32811847</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/1647/1407/651 ; 631/1647/1511 ; 631/1647/1513 ; 631/1647/1513/1967/3196 ; 631/61/191/1908 ; 631/61/201/2110 ; 631/61/212/2166 ; 631/61/212/2301 ; 631/61/2320 ; 631/61/338/552 ; 631/61/490 ; 692/308/2171 ; 692/699/2743 ; 692/699/4033 ; 692/699/67 ; Alleles ; Bacterial Proteins - genetics ; Bacterial Proteins - metabolism ; Collagen ; Collagen Type VII - genetics ; Collagen Type VII - metabolism ; CRISPR-Associated Proteins - genetics ; CRISPR-Associated Proteins - metabolism ; CRISPR-Cas Systems - genetics ; Endodeoxyribonucleases - genetics ; Endodeoxyribonucleases - metabolism ; Endonucleases - genetics ; Gene Editing - methods ; Genome editing ; Genome, Human - genetics ; Genomes ; Hereditary diseases ; Humanities and Social Sciences ; Humans ; Induced Pluripotent Stem Cells - physiology ; multidisciplinary ; Mutation ; Mutation - genetics ; Nuclease ; Nucleotides - genetics ; Pluripotency ; Pluripotent Stem Cells - physiology ; Polymorphism, Single Nucleotide - genetics ; Proto-Oncogene Proteins c-ret - genetics ; Proto-Oncogene Proteins c-ret - metabolism ; Quality of life ; Ret protein ; Science ; Science (multidisciplinary) ; Stem cells</subject><ispartof>Scientific reports, 2020-08, Vol.10 (1), p.13927-13927, Article 13927</ispartof><rights>The Author(s) 2020</rights><rights>The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c577t-b47fbca0ec1ffd9b3c23f34632289f83523e9b1a620ae9289d9c62581834511c3</citedby><cites>FETCH-LOGICAL-c577t-b47fbca0ec1ffd9b3c23f34632289f83523e9b1a620ae9289d9c62581834511c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7435196/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7435196/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27901,27902,41096,42165,51551,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32811847$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yokouchi, Yuji</creatorcontrib><creatorcontrib>Suzuki, Shinichi</creatorcontrib><creatorcontrib>Ohtsuki, Noriko</creatorcontrib><creatorcontrib>Yamamoto, Kei</creatorcontrib><creatorcontrib>Noguchi, Satomi</creatorcontrib><creatorcontrib>Soejima, Yumi</creatorcontrib><creatorcontrib>Goto, Mizuki</creatorcontrib><creatorcontrib>Ishioka, Ken</creatorcontrib><creatorcontrib>Nakamura, Izumi</creatorcontrib><creatorcontrib>Suzuki, Satoru</creatorcontrib><creatorcontrib>Takenoshita, Seiichi</creatorcontrib><creatorcontrib>Era, Takumi</creatorcontrib><title>Rapid repair of human disease-specific single-nucleotide variants by One-SHOT genome editing</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>Many human diseases ranging from cancer to hereditary disorders are caused by single-nucleotide mutations in critical genes. Repairing these mutations would significantly improve the quality of life for patients with hereditary diseases. However, current procedures for repairing deleterious single-nucleotide mutations are not straightforward, requiring multiple steps and taking several months to complete. In the current study, we aimed to repair pathogenic allele-specific single-nucleotide mutations using a single round of genome editing. Using high-fidelity, site-specific nuclease As Cas12a/Cpf1, we attempted to repair pathogenic single-nucleotide variants (SNVs) in disease-specific induced pluripotent stem cells. As a result, we achieved repair of the Met918Thr SNV in human oncogene RET with the inclusion of a single-nucleotide marker, followed by absolute markerless, scarless repair of the RET SNV with no detected off-target effects. The markerless method was then confirmed in human type VII collagen-encoding gene COL7A1 . Thus, using this One-SHOT method, we successfully reduced the number of genetic manipulations required for genome repair from two consecutive events to one, resulting in allele-specific repair that can be completed within 3 weeks, with or without a single-nucleotide marker. Our findings suggest that One-SHOT can be used to repair other types of mutations, with potential beyond human medicine.</description><subject>631/1647/1407/651</subject><subject>631/1647/1511</subject><subject>631/1647/1513</subject><subject>631/1647/1513/1967/3196</subject><subject>631/61/191/1908</subject><subject>631/61/201/2110</subject><subject>631/61/212/2166</subject><subject>631/61/212/2301</subject><subject>631/61/2320</subject><subject>631/61/338/552</subject><subject>631/61/490</subject><subject>692/308/2171</subject><subject>692/699/2743</subject><subject>692/699/4033</subject><subject>692/699/67</subject><subject>Alleles</subject><subject>Bacterial Proteins - genetics</subject><subject>Bacterial Proteins - metabolism</subject><subject>Collagen</subject><subject>Collagen Type VII - genetics</subject><subject>Collagen Type VII - metabolism</subject><subject>CRISPR-Associated Proteins - genetics</subject><subject>CRISPR-Associated Proteins - metabolism</subject><subject>CRISPR-Cas Systems - genetics</subject><subject>Endodeoxyribonucleases - genetics</subject><subject>Endodeoxyribonucleases - metabolism</subject><subject>Endonucleases - genetics</subject><subject>Gene Editing - methods</subject><subject>Genome editing</subject><subject>Genome, Human - genetics</subject><subject>Genomes</subject><subject>Hereditary diseases</subject><subject>Humanities and Social Sciences</subject><subject>Humans</subject><subject>Induced Pluripotent Stem Cells - physiology</subject><subject>multidisciplinary</subject><subject>Mutation</subject><subject>Mutation - genetics</subject><subject>Nuclease</subject><subject>Nucleotides - genetics</subject><subject>Pluripotency</subject><subject>Pluripotent Stem Cells - physiology</subject><subject>Polymorphism, Single Nucleotide - genetics</subject><subject>Proto-Oncogene Proteins c-ret - genetics</subject><subject>Proto-Oncogene Proteins c-ret - metabolism</subject><subject>Quality of life</subject><subject>Ret protein</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Stem cells</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNp9kU9LHTEUxUOpVLF-gS5KoJtu0ubvTLIpFLFaEB5U3RVCJnPnGZlJpsmM4Ldv9Km1XTSbhNzfOfdeDkLvGP3EqNCfi2TKaEI5JS2VlJH2FTrgVCrCBeevX7z30VEpN7QexY1k5g3aF1wzpmV7gH7-cHPocYbZhYzTgK_XyUXchwKuACkz-DAEj0uI2xFIXP0IaQk94FuXg4tLwd0d3kQgF2ebS7yFmCbA0IelCt6ivcGNBY4e70N09e3k8viMnG9Ovx9_PSdete1COtkOnXcUPBuG3nTCczEI2dTZtRm0UFyA6ZhrOHVg6l9vfMOVZlpIxZgXh-jLzndeuwl6D3HJbrRzDpPLdza5YP-uxHBtt-nWtlIoZppq8PHRIKdfK5TFTqF4GEcXIa3F8sopwZigFf3wD3qT1hzreg8U5Vo0slJ8R_mcSskwPA_DqL3Pz-7yszU_-5Cfbavo_cs1niVPaVVA7IBSS3EL-U_v_9j-BoP_pb4</recordid><startdate>20200818</startdate><enddate>20200818</enddate><creator>Yokouchi, Yuji</creator><creator>Suzuki, Shinichi</creator><creator>Ohtsuki, Noriko</creator><creator>Yamamoto, Kei</creator><creator>Noguchi, Satomi</creator><creator>Soejima, Yumi</creator><creator>Goto, Mizuki</creator><creator>Ishioka, Ken</creator><creator>Nakamura, Izumi</creator><creator>Suzuki, Satoru</creator><creator>Takenoshita, Seiichi</creator><creator>Era, Takumi</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20200818</creationdate><title>Rapid repair of human disease-specific single-nucleotide variants by One-SHOT genome editing</title><author>Yokouchi, Yuji ; Suzuki, Shinichi ; Ohtsuki, Noriko ; Yamamoto, Kei ; Noguchi, Satomi ; Soejima, Yumi ; Goto, Mizuki ; Ishioka, Ken ; Nakamura, Izumi ; Suzuki, Satoru ; Takenoshita, Seiichi ; Era, Takumi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c577t-b47fbca0ec1ffd9b3c23f34632289f83523e9b1a620ae9289d9c62581834511c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>631/1647/1407/651</topic><topic>631/1647/1511</topic><topic>631/1647/1513</topic><topic>631/1647/1513/1967/3196</topic><topic>631/61/191/1908</topic><topic>631/61/201/2110</topic><topic>631/61/212/2166</topic><topic>631/61/212/2301</topic><topic>631/61/2320</topic><topic>631/61/338/552</topic><topic>631/61/490</topic><topic>692/308/2171</topic><topic>692/699/2743</topic><topic>692/699/4033</topic><topic>692/699/67</topic><topic>Alleles</topic><topic>Bacterial Proteins - genetics</topic><topic>Bacterial Proteins - metabolism</topic><topic>Collagen</topic><topic>Collagen Type VII - genetics</topic><topic>Collagen Type VII - metabolism</topic><topic>CRISPR-Associated Proteins - genetics</topic><topic>CRISPR-Associated Proteins - metabolism</topic><topic>CRISPR-Cas Systems - genetics</topic><topic>Endodeoxyribonucleases - genetics</topic><topic>Endodeoxyribonucleases - metabolism</topic><topic>Endonucleases - genetics</topic><topic>Gene Editing - methods</topic><topic>Genome editing</topic><topic>Genome, Human - genetics</topic><topic>Genomes</topic><topic>Hereditary diseases</topic><topic>Humanities and Social Sciences</topic><topic>Humans</topic><topic>Induced Pluripotent Stem Cells - physiology</topic><topic>multidisciplinary</topic><topic>Mutation</topic><topic>Mutation - genetics</topic><topic>Nuclease</topic><topic>Nucleotides - genetics</topic><topic>Pluripotency</topic><topic>Pluripotent Stem Cells - physiology</topic><topic>Polymorphism, Single Nucleotide - genetics</topic><topic>Proto-Oncogene Proteins c-ret - genetics</topic><topic>Proto-Oncogene Proteins c-ret - metabolism</topic><topic>Quality of life</topic><topic>Ret protein</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Stem cells</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yokouchi, Yuji</creatorcontrib><creatorcontrib>Suzuki, Shinichi</creatorcontrib><creatorcontrib>Ohtsuki, Noriko</creatorcontrib><creatorcontrib>Yamamoto, Kei</creatorcontrib><creatorcontrib>Noguchi, Satomi</creatorcontrib><creatorcontrib>Soejima, Yumi</creatorcontrib><creatorcontrib>Goto, Mizuki</creatorcontrib><creatorcontrib>Ishioka, Ken</creatorcontrib><creatorcontrib>Nakamura, Izumi</creatorcontrib><creatorcontrib>Suzuki, Satoru</creatorcontrib><creatorcontrib>Takenoshita, Seiichi</creatorcontrib><creatorcontrib>Era, Takumi</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yokouchi, Yuji</au><au>Suzuki, Shinichi</au><au>Ohtsuki, Noriko</au><au>Yamamoto, Kei</au><au>Noguchi, Satomi</au><au>Soejima, Yumi</au><au>Goto, Mizuki</au><au>Ishioka, Ken</au><au>Nakamura, Izumi</au><au>Suzuki, Satoru</au><au>Takenoshita, Seiichi</au><au>Era, Takumi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Rapid repair of human disease-specific single-nucleotide variants by One-SHOT genome editing</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2020-08-18</date><risdate>2020</risdate><volume>10</volume><issue>1</issue><spage>13927</spage><epage>13927</epage><pages>13927-13927</pages><artnum>13927</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>Many human diseases ranging from cancer to hereditary disorders are caused by single-nucleotide mutations in critical genes. Repairing these mutations would significantly improve the quality of life for patients with hereditary diseases. However, current procedures for repairing deleterious single-nucleotide mutations are not straightforward, requiring multiple steps and taking several months to complete. In the current study, we aimed to repair pathogenic allele-specific single-nucleotide mutations using a single round of genome editing. Using high-fidelity, site-specific nuclease As Cas12a/Cpf1, we attempted to repair pathogenic single-nucleotide variants (SNVs) in disease-specific induced pluripotent stem cells. As a result, we achieved repair of the Met918Thr SNV in human oncogene RET with the inclusion of a single-nucleotide marker, followed by absolute markerless, scarless repair of the RET SNV with no detected off-target effects. The markerless method was then confirmed in human type VII collagen-encoding gene COL7A1 . Thus, using this One-SHOT method, we successfully reduced the number of genetic manipulations required for genome repair from two consecutive events to one, resulting in allele-specific repair that can be completed within 3 weeks, with or without a single-nucleotide marker. Our findings suggest that One-SHOT can be used to repair other types of mutations, with potential beyond human medicine.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>32811847</pmid><doi>10.1038/s41598-020-70401-7</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2045-2322
ispartof Scientific reports, 2020-08, Vol.10 (1), p.13927-13927, Article 13927
issn 2045-2322
2045-2322
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7435196
source MEDLINE; Nature Free; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry; Springer Nature OA Free Journals
subjects 631/1647/1407/651
631/1647/1511
631/1647/1513
631/1647/1513/1967/3196
631/61/191/1908
631/61/201/2110
631/61/212/2166
631/61/212/2301
631/61/2320
631/61/338/552
631/61/490
692/308/2171
692/699/2743
692/699/4033
692/699/67
Alleles
Bacterial Proteins - genetics
Bacterial Proteins - metabolism
Collagen
Collagen Type VII - genetics
Collagen Type VII - metabolism
CRISPR-Associated Proteins - genetics
CRISPR-Associated Proteins - metabolism
CRISPR-Cas Systems - genetics
Endodeoxyribonucleases - genetics
Endodeoxyribonucleases - metabolism
Endonucleases - genetics
Gene Editing - methods
Genome editing
Genome, Human - genetics
Genomes
Hereditary diseases
Humanities and Social Sciences
Humans
Induced Pluripotent Stem Cells - physiology
multidisciplinary
Mutation
Mutation - genetics
Nuclease
Nucleotides - genetics
Pluripotency
Pluripotent Stem Cells - physiology
Polymorphism, Single Nucleotide - genetics
Proto-Oncogene Proteins c-ret - genetics
Proto-Oncogene Proteins c-ret - metabolism
Quality of life
Ret protein
Science
Science (multidisciplinary)
Stem cells
title Rapid repair of human disease-specific single-nucleotide variants by One-SHOT genome editing
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T22%3A36%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Rapid%20repair%20of%20human%20disease-specific%20single-nucleotide%20variants%20by%20One-SHOT%20genome%20editing&rft.jtitle=Scientific%20reports&rft.au=Yokouchi,%20Yuji&rft.date=2020-08-18&rft.volume=10&rft.issue=1&rft.spage=13927&rft.epage=13927&rft.pages=13927-13927&rft.artnum=13927&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-020-70401-7&rft_dat=%3Cproquest_pubme%3E2435028364%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2435028364&rft_id=info:pmid/32811847&rfr_iscdi=true