Experimental demonstration of dynamic thermal regulation using vanadium dioxide thin films
We present an experimental demonstration of passive, dynamic thermal regulation in a solid-state system with temperature-dependent thermal emissivity switching. We achieve this effect using a multilayered device, comprised of a vanadium dioxide (VO 2 ) thin film on a silicon substrate with a gold ba...
Gespeichert in:
Veröffentlicht in: | Scientific reports 2020-08, Vol.10 (1), p.13964-13964, Article 13964 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 13964 |
---|---|
container_issue | 1 |
container_start_page | 13964 |
container_title | Scientific reports |
container_volume | 10 |
creator | Morsy, Ahmed M. Barako, Michael T. Jankovic, Vladan Wheeler, Virginia D. Knight, Mark W. Papadakis, Georgia T. Sweatlock, Luke A. Hon, Philip W. C. Povinelli, Michelle L. |
description | We present an experimental demonstration of passive, dynamic thermal regulation in a solid-state system with temperature-dependent thermal emissivity switching. We achieve this effect using a multilayered device, comprised of a vanadium dioxide (VO
2
) thin film on a silicon substrate with a gold back reflector. We experimentally characterize the optical properties of the VO
2
film and use the results to optimize device design. Using a calibrated, transient calorimetry experiment we directly measure the temperature fluctuations arising from a time-varying heat load. Under laboratory conditions, we find that the device regulates temperature better than a constant emissivity sample. We use the experimental results to validate our thermal model, which can be used to predict device performance under the conditions of outer space. In this limit, thermal fluctuations are halved with reference to a constant-emissivity sample. |
doi_str_mv | 10.1038/s41598-020-70931-0 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7435187</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2435028429</sourcerecordid><originalsourceid>FETCH-LOGICAL-c517t-935743c0bb891a126fe2a5e2eeb119b892a413e520c359389c26862f2aed5453</originalsourceid><addsrcrecordid>eNp9kTFv2zAQhYkiRWO4_gOdBHTJooZ3FG1yCRAEaRvAQBdPXQhaOtkMJNIhpSD592Eso2kzlAsJ3nfv7uEx9gX4N-BCXaYKpFYlR16uuBZQ8g9shrySJQrEs7_e52yR0j3PR6KuQH9i5wIVgFJ6xn7fPh0oup78YLuioT74NEQ7uOCL0BbNs7e9q4thT7HPQKTd2E3VMTm_Kx6tt40b-6Jx4ck1lEnni9Z1ffrMPra2S7Q43XO2-X67uflZrn_9uLu5Xpe1hNVQaiFXlaj5dqs0WMBlS2glIdEWQOdPtBUIkshrIbVQusalWmKLlhpZSTFnV5PsYdz21NTZSbSdOWRTNj6bYJ35t-Ld3uzCo8lTJahVFrg4CcTwMFIaTO9STV1nPYUxGcycFAB5izn7-g69D2P02d2R4qgq1JnCiapjSClS-2cZ4OY1PDOFZ3J45hie4blJTE0pw35H8U36P10vtwWcHg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2435028429</pqid></control><display><type>article</type><title>Experimental demonstration of dynamic thermal regulation using vanadium dioxide thin films</title><source>Nature Free</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><source>Springer Nature OA Free Journals</source><creator>Morsy, Ahmed M. ; Barako, Michael T. ; Jankovic, Vladan ; Wheeler, Virginia D. ; Knight, Mark W. ; Papadakis, Georgia T. ; Sweatlock, Luke A. ; Hon, Philip W. C. ; Povinelli, Michelle L.</creator><creatorcontrib>Morsy, Ahmed M. ; Barako, Michael T. ; Jankovic, Vladan ; Wheeler, Virginia D. ; Knight, Mark W. ; Papadakis, Georgia T. ; Sweatlock, Luke A. ; Hon, Philip W. C. ; Povinelli, Michelle L.</creatorcontrib><description>We present an experimental demonstration of passive, dynamic thermal regulation in a solid-state system with temperature-dependent thermal emissivity switching. We achieve this effect using a multilayered device, comprised of a vanadium dioxide (VO
2
) thin film on a silicon substrate with a gold back reflector. We experimentally characterize the optical properties of the VO
2
film and use the results to optimize device design. Using a calibrated, transient calorimetry experiment we directly measure the temperature fluctuations arising from a time-varying heat load. Under laboratory conditions, we find that the device regulates temperature better than a constant emissivity sample. We use the experimental results to validate our thermal model, which can be used to predict device performance under the conditions of outer space. In this limit, thermal fluctuations are halved with reference to a constant-emissivity sample.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-020-70931-0</identifier><identifier>PMID: 32811889</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/624/1075/1082 ; 639/624/399 ; 639/624/400/385 ; Calorimetry ; Emissivity ; Fluctuations ; Humanities and Social Sciences ; multidisciplinary ; Optical properties ; Science ; Science (multidisciplinary) ; Temperature ; Thin films ; Vanadium</subject><ispartof>Scientific reports, 2020-08, Vol.10 (1), p.13964-13964, Article 13964</ispartof><rights>The Author(s) 2020</rights><rights>The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c517t-935743c0bb891a126fe2a5e2eeb119b892a413e520c359389c26862f2aed5453</citedby><cites>FETCH-LOGICAL-c517t-935743c0bb891a126fe2a5e2eeb119b892a413e520c359389c26862f2aed5453</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7435187/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7435187/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27901,27902,41096,42165,51551,53766,53768</link.rule.ids></links><search><creatorcontrib>Morsy, Ahmed M.</creatorcontrib><creatorcontrib>Barako, Michael T.</creatorcontrib><creatorcontrib>Jankovic, Vladan</creatorcontrib><creatorcontrib>Wheeler, Virginia D.</creatorcontrib><creatorcontrib>Knight, Mark W.</creatorcontrib><creatorcontrib>Papadakis, Georgia T.</creatorcontrib><creatorcontrib>Sweatlock, Luke A.</creatorcontrib><creatorcontrib>Hon, Philip W. C.</creatorcontrib><creatorcontrib>Povinelli, Michelle L.</creatorcontrib><title>Experimental demonstration of dynamic thermal regulation using vanadium dioxide thin films</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><description>We present an experimental demonstration of passive, dynamic thermal regulation in a solid-state system with temperature-dependent thermal emissivity switching. We achieve this effect using a multilayered device, comprised of a vanadium dioxide (VO
2
) thin film on a silicon substrate with a gold back reflector. We experimentally characterize the optical properties of the VO
2
film and use the results to optimize device design. Using a calibrated, transient calorimetry experiment we directly measure the temperature fluctuations arising from a time-varying heat load. Under laboratory conditions, we find that the device regulates temperature better than a constant emissivity sample. We use the experimental results to validate our thermal model, which can be used to predict device performance under the conditions of outer space. In this limit, thermal fluctuations are halved with reference to a constant-emissivity sample.</description><subject>639/624/1075/1082</subject><subject>639/624/399</subject><subject>639/624/400/385</subject><subject>Calorimetry</subject><subject>Emissivity</subject><subject>Fluctuations</subject><subject>Humanities and Social Sciences</subject><subject>multidisciplinary</subject><subject>Optical properties</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Temperature</subject><subject>Thin films</subject><subject>Vanadium</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>BENPR</sourceid><recordid>eNp9kTFv2zAQhYkiRWO4_gOdBHTJooZ3FG1yCRAEaRvAQBdPXQhaOtkMJNIhpSD592Eso2kzlAsJ3nfv7uEx9gX4N-BCXaYKpFYlR16uuBZQ8g9shrySJQrEs7_e52yR0j3PR6KuQH9i5wIVgFJ6xn7fPh0oup78YLuioT74NEQ7uOCL0BbNs7e9q4thT7HPQKTd2E3VMTm_Kx6tt40b-6Jx4ck1lEnni9Z1ffrMPra2S7Q43XO2-X67uflZrn_9uLu5Xpe1hNVQaiFXlaj5dqs0WMBlS2glIdEWQOdPtBUIkshrIbVQusalWmKLlhpZSTFnV5PsYdz21NTZSbSdOWRTNj6bYJ35t-Ld3uzCo8lTJahVFrg4CcTwMFIaTO9STV1nPYUxGcycFAB5izn7-g69D2P02d2R4qgq1JnCiapjSClS-2cZ4OY1PDOFZ3J45hie4blJTE0pw35H8U36P10vtwWcHg</recordid><startdate>20200818</startdate><enddate>20200818</enddate><creator>Morsy, Ahmed M.</creator><creator>Barako, Michael T.</creator><creator>Jankovic, Vladan</creator><creator>Wheeler, Virginia D.</creator><creator>Knight, Mark W.</creator><creator>Papadakis, Georgia T.</creator><creator>Sweatlock, Luke A.</creator><creator>Hon, Philip W. C.</creator><creator>Povinelli, Michelle L.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20200818</creationdate><title>Experimental demonstration of dynamic thermal regulation using vanadium dioxide thin films</title><author>Morsy, Ahmed M. ; Barako, Michael T. ; Jankovic, Vladan ; Wheeler, Virginia D. ; Knight, Mark W. ; Papadakis, Georgia T. ; Sweatlock, Luke A. ; Hon, Philip W. C. ; Povinelli, Michelle L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c517t-935743c0bb891a126fe2a5e2eeb119b892a413e520c359389c26862f2aed5453</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>639/624/1075/1082</topic><topic>639/624/399</topic><topic>639/624/400/385</topic><topic>Calorimetry</topic><topic>Emissivity</topic><topic>Fluctuations</topic><topic>Humanities and Social Sciences</topic><topic>multidisciplinary</topic><topic>Optical properties</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Temperature</topic><topic>Thin films</topic><topic>Vanadium</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Morsy, Ahmed M.</creatorcontrib><creatorcontrib>Barako, Michael T.</creatorcontrib><creatorcontrib>Jankovic, Vladan</creatorcontrib><creatorcontrib>Wheeler, Virginia D.</creatorcontrib><creatorcontrib>Knight, Mark W.</creatorcontrib><creatorcontrib>Papadakis, Georgia T.</creatorcontrib><creatorcontrib>Sweatlock, Luke A.</creatorcontrib><creatorcontrib>Hon, Philip W. C.</creatorcontrib><creatorcontrib>Povinelli, Michelle L.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Morsy, Ahmed M.</au><au>Barako, Michael T.</au><au>Jankovic, Vladan</au><au>Wheeler, Virginia D.</au><au>Knight, Mark W.</au><au>Papadakis, Georgia T.</au><au>Sweatlock, Luke A.</au><au>Hon, Philip W. C.</au><au>Povinelli, Michelle L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Experimental demonstration of dynamic thermal regulation using vanadium dioxide thin films</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><date>2020-08-18</date><risdate>2020</risdate><volume>10</volume><issue>1</issue><spage>13964</spage><epage>13964</epage><pages>13964-13964</pages><artnum>13964</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>We present an experimental demonstration of passive, dynamic thermal regulation in a solid-state system with temperature-dependent thermal emissivity switching. We achieve this effect using a multilayered device, comprised of a vanadium dioxide (VO
2
) thin film on a silicon substrate with a gold back reflector. We experimentally characterize the optical properties of the VO
2
film and use the results to optimize device design. Using a calibrated, transient calorimetry experiment we directly measure the temperature fluctuations arising from a time-varying heat load. Under laboratory conditions, we find that the device regulates temperature better than a constant emissivity sample. We use the experimental results to validate our thermal model, which can be used to predict device performance under the conditions of outer space. In this limit, thermal fluctuations are halved with reference to a constant-emissivity sample.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>32811889</pmid><doi>10.1038/s41598-020-70931-0</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2045-2322 |
ispartof | Scientific reports, 2020-08, Vol.10 (1), p.13964-13964, Article 13964 |
issn | 2045-2322 2045-2322 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7435187 |
source | Nature Free; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry; Springer Nature OA Free Journals |
subjects | 639/624/1075/1082 639/624/399 639/624/400/385 Calorimetry Emissivity Fluctuations Humanities and Social Sciences multidisciplinary Optical properties Science Science (multidisciplinary) Temperature Thin films Vanadium |
title | Experimental demonstration of dynamic thermal regulation using vanadium dioxide thin films |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T21%3A37%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Experimental%20demonstration%20of%20dynamic%20thermal%20regulation%20using%20vanadium%20dioxide%20thin%20films&rft.jtitle=Scientific%20reports&rft.au=Morsy,%20Ahmed%20M.&rft.date=2020-08-18&rft.volume=10&rft.issue=1&rft.spage=13964&rft.epage=13964&rft.pages=13964-13964&rft.artnum=13964&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-020-70931-0&rft_dat=%3Cproquest_pubme%3E2435028429%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2435028429&rft_id=info:pmid/32811889&rfr_iscdi=true |