MICAL2 is essential for myogenic lineage commitment

Contractile myofiber units are mainly composed of thick myosin and thin actin (F-actin) filaments. F-Actin interacts with Microtubule Associated Monooxygenase, Calponin And LIM Domain Containing 2 (MICAL2). Indeed, MICAL2 modifies actin subunits and promotes actin filament turnover by severing them...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cell death & disease 2020-08, Vol.11 (8), p.654-654, Article 654
Hauptverfasser: Giarratana, Nefele, Conti, Filippo, La Rovere, Rita, Gijsbers, Rik, Carai, Paolo, Duelen, Robin, Vervliet, Tim, Bultynck, Geert, Ronzoni, Flavio, Piciotti, Roberto, Costamagna, Domiziana, Fulle, Stefania, Barravecchia, Ivana, Angeloni, Debora, Torrente, Yvan, Sampaolesi, Maurilio
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 654
container_issue 8
container_start_page 654
container_title Cell death & disease
container_volume 11
creator Giarratana, Nefele
Conti, Filippo
La Rovere, Rita
Gijsbers, Rik
Carai, Paolo
Duelen, Robin
Vervliet, Tim
Bultynck, Geert
Ronzoni, Flavio
Piciotti, Roberto
Costamagna, Domiziana
Fulle, Stefania
Barravecchia, Ivana
Angeloni, Debora
Torrente, Yvan
Sampaolesi, Maurilio
description Contractile myofiber units are mainly composed of thick myosin and thin actin (F-actin) filaments. F-Actin interacts with Microtubule Associated Monooxygenase, Calponin And LIM Domain Containing 2 (MICAL2). Indeed, MICAL2 modifies actin subunits and promotes actin filament turnover by severing them and preventing repolymerization. In this study, we found that MICAL2 increases during myogenic differentiation of adult and pluripotent stem cells (PSCs) towards skeletal, smooth and cardiac muscle cells and localizes in the nucleus of acute and chronic regenerating muscle fibers. In vivo delivery of Cas9–Mical2 guide RNA complexes results in muscle actin defects and demonstrates that MICAL2 is essential for skeletal muscle homeostasis and functionality. Conversely, MICAL2 upregulation shows a positive impact on skeletal and cardiac muscle commitments. Taken together these data demonstrate that modulations of MICAL2 have an impact on muscle filament dynamics and its fine-tuned balance is essential for the regeneration of muscle tissues.
doi_str_mv 10.1038/s41419-020-02886-z
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7434877</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2435011054</sourcerecordid><originalsourceid>FETCH-LOGICAL-c502t-19e731f2e7eaf7d4baa1cf480e47e787c28ebbdb49fcfc77ea87d16d243403b73</originalsourceid><addsrcrecordid>eNp9kU1LAzEQhoMoKtU_4EEWvHhZzdc22Ysg4hdUvOg5ZLOzNbK7qUkrtL_eqa314-CQMIF55p0MLyFHjJ4xKvR5kkyyMqec4tV6mC-2yD6nkuVS63L7x3uPHKb0SjGEoLwY7pI9wTVjePaJeLi_uhzxzKcMUoJ-6m2bNSFm3TyMofcua30PdgyZC13npx0iB2SnsW2Cw3UekOeb66eru3z0eLtUy11B-TRnJSjBGg4KbKNqWVnLXCM1BalAaeW4hqqqK1k2rnEKKa1qNqy5FJKKSokBuVjpTmZVB7XD0dG2ZhJ9Z-PcBOvN70rvX8w4vBuFClotBU7XAjG8zSBNTeeTg7a1PYRZMjipKAQV5RDRkz_oa5jFHtdDSiteYPD_KVFQxmghkeIrysWQUoRm82VGzdI8szLPoHnm0zyzwKbjn8tuWr6sQkCsgISlfgzxe_Y_sh89FKQq</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2435011054</pqid></control><display><type>article</type><title>MICAL2 is essential for myogenic lineage commitment</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Springer Nature OA Free Journals</source><source>Nature Free</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Giarratana, Nefele ; Conti, Filippo ; La Rovere, Rita ; Gijsbers, Rik ; Carai, Paolo ; Duelen, Robin ; Vervliet, Tim ; Bultynck, Geert ; Ronzoni, Flavio ; Piciotti, Roberto ; Costamagna, Domiziana ; Fulle, Stefania ; Barravecchia, Ivana ; Angeloni, Debora ; Torrente, Yvan ; Sampaolesi, Maurilio</creator><creatorcontrib>Giarratana, Nefele ; Conti, Filippo ; La Rovere, Rita ; Gijsbers, Rik ; Carai, Paolo ; Duelen, Robin ; Vervliet, Tim ; Bultynck, Geert ; Ronzoni, Flavio ; Piciotti, Roberto ; Costamagna, Domiziana ; Fulle, Stefania ; Barravecchia, Ivana ; Angeloni, Debora ; Torrente, Yvan ; Sampaolesi, Maurilio</creatorcontrib><description>Contractile myofiber units are mainly composed of thick myosin and thin actin (F-actin) filaments. F-Actin interacts with Microtubule Associated Monooxygenase, Calponin And LIM Domain Containing 2 (MICAL2). Indeed, MICAL2 modifies actin subunits and promotes actin filament turnover by severing them and preventing repolymerization. In this study, we found that MICAL2 increases during myogenic differentiation of adult and pluripotent stem cells (PSCs) towards skeletal, smooth and cardiac muscle cells and localizes in the nucleus of acute and chronic regenerating muscle fibers. In vivo delivery of Cas9–Mical2 guide RNA complexes results in muscle actin defects and demonstrates that MICAL2 is essential for skeletal muscle homeostasis and functionality. Conversely, MICAL2 upregulation shows a positive impact on skeletal and cardiac muscle commitments. Taken together these data demonstrate that modulations of MICAL2 have an impact on muscle filament dynamics and its fine-tuned balance is essential for the regeneration of muscle tissues.</description><identifier>ISSN: 2041-4889</identifier><identifier>EISSN: 2041-4889</identifier><identifier>DOI: 10.1038/s41419-020-02886-z</identifier><identifier>PMID: 32811811</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>42/100 ; 42/109 ; 631/337 ; 631/80/304 ; 64 ; 64/60 ; Actin ; Actin Cytoskeleton - metabolism ; Actin Cytoskeleton - physiology ; Actins - metabolism ; Actins - physiology ; Animals ; Antibodies ; Biochemistry ; Biomedical and Life Sciences ; Calponin ; Cardiac muscle ; Cell Biology ; Cell Culture ; Cell Differentiation - physiology ; Cytoskeletal Proteins - metabolism ; Cytoskeletal Proteins - physiology ; Cytoskeleton - metabolism ; Female ; Filaments ; Homeostasis ; Immunology ; Life Sciences ; Male ; Mice ; Mice, Inbred C57BL ; Monooxygenase ; Muscle contraction ; Muscle Contraction - physiology ; Muscle Development - physiology ; Muscle, Skeletal - metabolism ; Muscle, Smooth - physiology ; Myosin ; Myosins - metabolism ; Myosins - physiology ; Pluripotency ; Ribonucleic acid ; RNA ; Skeletal muscle ; Stem cells</subject><ispartof>Cell death &amp; disease, 2020-08, Vol.11 (8), p.654-654, Article 654</ispartof><rights>The Author(s) 2020</rights><rights>The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c502t-19e731f2e7eaf7d4baa1cf480e47e787c28ebbdb49fcfc77ea87d16d243403b73</citedby><cites>FETCH-LOGICAL-c502t-19e731f2e7eaf7d4baa1cf480e47e787c28ebbdb49fcfc77ea87d16d243403b73</cites><orcidid>0000-0003-0904-1215 ; 0000-0003-4557-9127 ; 0000-0002-2422-3757 ; 0000-0002-5968-4828</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7434877/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7434877/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,27923,27924,41119,42188,51575,53790,53792</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32811811$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Giarratana, Nefele</creatorcontrib><creatorcontrib>Conti, Filippo</creatorcontrib><creatorcontrib>La Rovere, Rita</creatorcontrib><creatorcontrib>Gijsbers, Rik</creatorcontrib><creatorcontrib>Carai, Paolo</creatorcontrib><creatorcontrib>Duelen, Robin</creatorcontrib><creatorcontrib>Vervliet, Tim</creatorcontrib><creatorcontrib>Bultynck, Geert</creatorcontrib><creatorcontrib>Ronzoni, Flavio</creatorcontrib><creatorcontrib>Piciotti, Roberto</creatorcontrib><creatorcontrib>Costamagna, Domiziana</creatorcontrib><creatorcontrib>Fulle, Stefania</creatorcontrib><creatorcontrib>Barravecchia, Ivana</creatorcontrib><creatorcontrib>Angeloni, Debora</creatorcontrib><creatorcontrib>Torrente, Yvan</creatorcontrib><creatorcontrib>Sampaolesi, Maurilio</creatorcontrib><title>MICAL2 is essential for myogenic lineage commitment</title><title>Cell death &amp; disease</title><addtitle>Cell Death Dis</addtitle><addtitle>Cell Death Dis</addtitle><description>Contractile myofiber units are mainly composed of thick myosin and thin actin (F-actin) filaments. F-Actin interacts with Microtubule Associated Monooxygenase, Calponin And LIM Domain Containing 2 (MICAL2). Indeed, MICAL2 modifies actin subunits and promotes actin filament turnover by severing them and preventing repolymerization. In this study, we found that MICAL2 increases during myogenic differentiation of adult and pluripotent stem cells (PSCs) towards skeletal, smooth and cardiac muscle cells and localizes in the nucleus of acute and chronic regenerating muscle fibers. In vivo delivery of Cas9–Mical2 guide RNA complexes results in muscle actin defects and demonstrates that MICAL2 is essential for skeletal muscle homeostasis and functionality. Conversely, MICAL2 upregulation shows a positive impact on skeletal and cardiac muscle commitments. Taken together these data demonstrate that modulations of MICAL2 have an impact on muscle filament dynamics and its fine-tuned balance is essential for the regeneration of muscle tissues.</description><subject>42/100</subject><subject>42/109</subject><subject>631/337</subject><subject>631/80/304</subject><subject>64</subject><subject>64/60</subject><subject>Actin</subject><subject>Actin Cytoskeleton - metabolism</subject><subject>Actin Cytoskeleton - physiology</subject><subject>Actins - metabolism</subject><subject>Actins - physiology</subject><subject>Animals</subject><subject>Antibodies</subject><subject>Biochemistry</subject><subject>Biomedical and Life Sciences</subject><subject>Calponin</subject><subject>Cardiac muscle</subject><subject>Cell Biology</subject><subject>Cell Culture</subject><subject>Cell Differentiation - physiology</subject><subject>Cytoskeletal Proteins - metabolism</subject><subject>Cytoskeletal Proteins - physiology</subject><subject>Cytoskeleton - metabolism</subject><subject>Female</subject><subject>Filaments</subject><subject>Homeostasis</subject><subject>Immunology</subject><subject>Life Sciences</subject><subject>Male</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Monooxygenase</subject><subject>Muscle contraction</subject><subject>Muscle Contraction - physiology</subject><subject>Muscle Development - physiology</subject><subject>Muscle, Skeletal - metabolism</subject><subject>Muscle, Smooth - physiology</subject><subject>Myosin</subject><subject>Myosins - metabolism</subject><subject>Myosins - physiology</subject><subject>Pluripotency</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>Skeletal muscle</subject><subject>Stem cells</subject><issn>2041-4889</issn><issn>2041-4889</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kU1LAzEQhoMoKtU_4EEWvHhZzdc22Ysg4hdUvOg5ZLOzNbK7qUkrtL_eqa314-CQMIF55p0MLyFHjJ4xKvR5kkyyMqec4tV6mC-2yD6nkuVS63L7x3uPHKb0SjGEoLwY7pI9wTVjePaJeLi_uhzxzKcMUoJ-6m2bNSFm3TyMofcua30PdgyZC13npx0iB2SnsW2Cw3UekOeb66eru3z0eLtUy11B-TRnJSjBGg4KbKNqWVnLXCM1BalAaeW4hqqqK1k2rnEKKa1qNqy5FJKKSokBuVjpTmZVB7XD0dG2ZhJ9Z-PcBOvN70rvX8w4vBuFClotBU7XAjG8zSBNTeeTg7a1PYRZMjipKAQV5RDRkz_oa5jFHtdDSiteYPD_KVFQxmghkeIrysWQUoRm82VGzdI8szLPoHnm0zyzwKbjn8tuWr6sQkCsgISlfgzxe_Y_sh89FKQq</recordid><startdate>20200818</startdate><enddate>20200818</enddate><creator>Giarratana, Nefele</creator><creator>Conti, Filippo</creator><creator>La Rovere, Rita</creator><creator>Gijsbers, Rik</creator><creator>Carai, Paolo</creator><creator>Duelen, Robin</creator><creator>Vervliet, Tim</creator><creator>Bultynck, Geert</creator><creator>Ronzoni, Flavio</creator><creator>Piciotti, Roberto</creator><creator>Costamagna, Domiziana</creator><creator>Fulle, Stefania</creator><creator>Barravecchia, Ivana</creator><creator>Angeloni, Debora</creator><creator>Torrente, Yvan</creator><creator>Sampaolesi, Maurilio</creator><general>Nature Publishing Group UK</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-0904-1215</orcidid><orcidid>https://orcid.org/0000-0003-4557-9127</orcidid><orcidid>https://orcid.org/0000-0002-2422-3757</orcidid><orcidid>https://orcid.org/0000-0002-5968-4828</orcidid></search><sort><creationdate>20200818</creationdate><title>MICAL2 is essential for myogenic lineage commitment</title><author>Giarratana, Nefele ; Conti, Filippo ; La Rovere, Rita ; Gijsbers, Rik ; Carai, Paolo ; Duelen, Robin ; Vervliet, Tim ; Bultynck, Geert ; Ronzoni, Flavio ; Piciotti, Roberto ; Costamagna, Domiziana ; Fulle, Stefania ; Barravecchia, Ivana ; Angeloni, Debora ; Torrente, Yvan ; Sampaolesi, Maurilio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c502t-19e731f2e7eaf7d4baa1cf480e47e787c28ebbdb49fcfc77ea87d16d243403b73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>42/100</topic><topic>42/109</topic><topic>631/337</topic><topic>631/80/304</topic><topic>64</topic><topic>64/60</topic><topic>Actin</topic><topic>Actin Cytoskeleton - metabolism</topic><topic>Actin Cytoskeleton - physiology</topic><topic>Actins - metabolism</topic><topic>Actins - physiology</topic><topic>Animals</topic><topic>Antibodies</topic><topic>Biochemistry</topic><topic>Biomedical and Life Sciences</topic><topic>Calponin</topic><topic>Cardiac muscle</topic><topic>Cell Biology</topic><topic>Cell Culture</topic><topic>Cell Differentiation - physiology</topic><topic>Cytoskeletal Proteins - metabolism</topic><topic>Cytoskeletal Proteins - physiology</topic><topic>Cytoskeleton - metabolism</topic><topic>Female</topic><topic>Filaments</topic><topic>Homeostasis</topic><topic>Immunology</topic><topic>Life Sciences</topic><topic>Male</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Monooxygenase</topic><topic>Muscle contraction</topic><topic>Muscle Contraction - physiology</topic><topic>Muscle Development - physiology</topic><topic>Muscle, Skeletal - metabolism</topic><topic>Muscle, Smooth - physiology</topic><topic>Myosin</topic><topic>Myosins - metabolism</topic><topic>Myosins - physiology</topic><topic>Pluripotency</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>Skeletal muscle</topic><topic>Stem cells</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Giarratana, Nefele</creatorcontrib><creatorcontrib>Conti, Filippo</creatorcontrib><creatorcontrib>La Rovere, Rita</creatorcontrib><creatorcontrib>Gijsbers, Rik</creatorcontrib><creatorcontrib>Carai, Paolo</creatorcontrib><creatorcontrib>Duelen, Robin</creatorcontrib><creatorcontrib>Vervliet, Tim</creatorcontrib><creatorcontrib>Bultynck, Geert</creatorcontrib><creatorcontrib>Ronzoni, Flavio</creatorcontrib><creatorcontrib>Piciotti, Roberto</creatorcontrib><creatorcontrib>Costamagna, Domiziana</creatorcontrib><creatorcontrib>Fulle, Stefania</creatorcontrib><creatorcontrib>Barravecchia, Ivana</creatorcontrib><creatorcontrib>Angeloni, Debora</creatorcontrib><creatorcontrib>Torrente, Yvan</creatorcontrib><creatorcontrib>Sampaolesi, Maurilio</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Science Database (ProQuest)</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Cell death &amp; disease</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Giarratana, Nefele</au><au>Conti, Filippo</au><au>La Rovere, Rita</au><au>Gijsbers, Rik</au><au>Carai, Paolo</au><au>Duelen, Robin</au><au>Vervliet, Tim</au><au>Bultynck, Geert</au><au>Ronzoni, Flavio</au><au>Piciotti, Roberto</au><au>Costamagna, Domiziana</au><au>Fulle, Stefania</au><au>Barravecchia, Ivana</au><au>Angeloni, Debora</au><au>Torrente, Yvan</au><au>Sampaolesi, Maurilio</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>MICAL2 is essential for myogenic lineage commitment</atitle><jtitle>Cell death &amp; disease</jtitle><stitle>Cell Death Dis</stitle><addtitle>Cell Death Dis</addtitle><date>2020-08-18</date><risdate>2020</risdate><volume>11</volume><issue>8</issue><spage>654</spage><epage>654</epage><pages>654-654</pages><artnum>654</artnum><issn>2041-4889</issn><eissn>2041-4889</eissn><abstract>Contractile myofiber units are mainly composed of thick myosin and thin actin (F-actin) filaments. F-Actin interacts with Microtubule Associated Monooxygenase, Calponin And LIM Domain Containing 2 (MICAL2). Indeed, MICAL2 modifies actin subunits and promotes actin filament turnover by severing them and preventing repolymerization. In this study, we found that MICAL2 increases during myogenic differentiation of adult and pluripotent stem cells (PSCs) towards skeletal, smooth and cardiac muscle cells and localizes in the nucleus of acute and chronic regenerating muscle fibers. In vivo delivery of Cas9–Mical2 guide RNA complexes results in muscle actin defects and demonstrates that MICAL2 is essential for skeletal muscle homeostasis and functionality. Conversely, MICAL2 upregulation shows a positive impact on skeletal and cardiac muscle commitments. Taken together these data demonstrate that modulations of MICAL2 have an impact on muscle filament dynamics and its fine-tuned balance is essential for the regeneration of muscle tissues.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>32811811</pmid><doi>10.1038/s41419-020-02886-z</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0003-0904-1215</orcidid><orcidid>https://orcid.org/0000-0003-4557-9127</orcidid><orcidid>https://orcid.org/0000-0002-2422-3757</orcidid><orcidid>https://orcid.org/0000-0002-5968-4828</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2041-4889
ispartof Cell death & disease, 2020-08, Vol.11 (8), p.654-654, Article 654
issn 2041-4889
2041-4889
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7434877
source MEDLINE; DOAJ Directory of Open Access Journals; Springer Nature OA Free Journals; Nature Free; EZB-FREE-00999 freely available EZB journals; PubMed Central
subjects 42/100
42/109
631/337
631/80/304
64
64/60
Actin
Actin Cytoskeleton - metabolism
Actin Cytoskeleton - physiology
Actins - metabolism
Actins - physiology
Animals
Antibodies
Biochemistry
Biomedical and Life Sciences
Calponin
Cardiac muscle
Cell Biology
Cell Culture
Cell Differentiation - physiology
Cytoskeletal Proteins - metabolism
Cytoskeletal Proteins - physiology
Cytoskeleton - metabolism
Female
Filaments
Homeostasis
Immunology
Life Sciences
Male
Mice
Mice, Inbred C57BL
Monooxygenase
Muscle contraction
Muscle Contraction - physiology
Muscle Development - physiology
Muscle, Skeletal - metabolism
Muscle, Smooth - physiology
Myosin
Myosins - metabolism
Myosins - physiology
Pluripotency
Ribonucleic acid
RNA
Skeletal muscle
Stem cells
title MICAL2 is essential for myogenic lineage commitment
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T10%3A21%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=MICAL2%20is%20essential%20for%20myogenic%20lineage%20commitment&rft.jtitle=Cell%20death%20&%20disease&rft.au=Giarratana,%20Nefele&rft.date=2020-08-18&rft.volume=11&rft.issue=8&rft.spage=654&rft.epage=654&rft.pages=654-654&rft.artnum=654&rft.issn=2041-4889&rft.eissn=2041-4889&rft_id=info:doi/10.1038/s41419-020-02886-z&rft_dat=%3Cproquest_pubme%3E2435011054%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2435011054&rft_id=info:pmid/32811811&rfr_iscdi=true