Liver osteopontin is required to prevent the progression of age‐related nonalcoholic fatty liver disease

Osteopontin (OPN), a senescence‐associated secretory phenotype factor, is increased in patients with nonalcoholic fatty liver disease (NAFLD). Cellular senescence has been associated with age‐dependent hepatosteatosis. Thus, we investigated the role of OPN in the age‐related hepatosteatosis. For thi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Aging cell 2020-08, Vol.19 (8), p.e13183-n/a
Hauptverfasser: Gómez‐Santos, Beatriz, Saenz de Urturi, Diego, Nuñez‐García, Maitane, Gonzalez‐Romero, Francisco, Buque, Xabier, Aurrekoetxea, Igor, Gutiérrez de Juan, Virginia, Gonzalez‐Rellan, Maria J., García‐Monzón, Carmelo, González‐Rodríguez, Águeda, Mosteiro, Lorena, Errazti, Gaizka, Mifsut, Patricia, Gaztambide, Sonia, Castaño, Luis, Martin, Cesar, Nogueiras, Rubén, Martinez‐Chantar, María L., Syn, Wing‐Kin, Aspichueta, Patricia
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 8
container_start_page e13183
container_title Aging cell
container_volume 19
creator Gómez‐Santos, Beatriz
Saenz de Urturi, Diego
Nuñez‐García, Maitane
Gonzalez‐Romero, Francisco
Buque, Xabier
Aurrekoetxea, Igor
Gutiérrez de Juan, Virginia
Gonzalez‐Rellan, Maria J.
García‐Monzón, Carmelo
González‐Rodríguez, Águeda
Mosteiro, Lorena
Errazti, Gaizka
Mifsut, Patricia
Gaztambide, Sonia
Castaño, Luis
Martin, Cesar
Nogueiras, Rubén
Martinez‐Chantar, María L.
Syn, Wing‐Kin
Aspichueta, Patricia
description Osteopontin (OPN), a senescence‐associated secretory phenotype factor, is increased in patients with nonalcoholic fatty liver disease (NAFLD). Cellular senescence has been associated with age‐dependent hepatosteatosis. Thus, we investigated the role of OPN in the age‐related hepatosteatosis. For this, human serum samples, animal models of aging, and cell lines in which senescence was induced were used. Metabolic fluxes, lipid, and protein concentration were determined. Among individuals with a normal liver, we observed a positive correlation between serum OPN levels and increasing age. This correlation with age, however, was absent in patients with NAFLD. In wild‐type (WT) mice, serum and liver OPN were increased at 10 months old (m) along with liver p53 levels and remained elevated at 20m. Markers of liver senescence increased in association with synthesis and concentration of triglycerides (TG) in 10m OPN‐deficient (KO) hepatocytes when compared to WT hepatocytes. These changes in senescence and lipid metabolism in 10m OPN‐KO mice liver were associated with the decrease of 78 kDa glucose‐regulated protein (GRP78), induction of ER stress, and the increase in fatty acid synthase and CD36 levels. OPN deficiency in senescent cells also diminished GRP78, the accumulation of intracellular TG, and the increase in CD36 levels. In 20m mice, OPN loss led to increased liver fibrosis. Finally, we showed that OPN expression in vitro and in vivo was regulated by p53. In conclusion, OPN deficiency leads to earlier cellular senescence, ER stress, and TG accumulation during aging. The p53‐OPN axis is required to inhibit the onset of age‐related hepatosteatosis. OPN is a protective factor required to preserve liver health during aging. As OPN‐deficient mice become older, increased levels of senescence, ER stress, hepatosteatosis, DNA damage, fibrosis, and inflammation appear.
doi_str_mv 10.1111/acel.13183
format Article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7431823</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A707831087</galeid><sourcerecordid>A707831087</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5433-da94f64fb57af16718398787b3a24b5ce9afb617a70ccfe37338373d9fe71ff3</originalsourceid><addsrcrecordid>eNp9ksFqGzEQhpfS0qRpL32AIuilFOyuVtqV9lIwJmkLhl5yF1rtyJaRJUfadfCtj9Bn7JNkHKduU0okkAbpm3-GnymKt7ScUlyftAE_pYxK9qw4p1zwSSuq5vkppvKseJXzuiypaEv2sjhjVcMkb6vzYr1wO0gk5gHiNobBBeIySXAzugQ9GSLZJthBGMiwAozjMkHOLgYSLdFL-PXjZwKvB2RDDNqbuIreGWL1MOyJvxfvXQad4XXxwmqf4c3DfVFcX11ez79OFt-_fJvPFhNTc8YmvW65bbjtaqEtbbB71kohRcd0xbvaQKtt11ChRWmMBSYYk3j0rQVBrWUXxeej7HbsNtAb7D1pr7bJbXTaq6idevwT3Eot404JjhZWDAU-PAikeDNCHtTGZbTY6wBxzKriFeUNq-oa0ff_oOs4JrThQHEUk4zLpynGG2y_Lv9QS-1BuWAjdmcOpdVMlEIyWkqB1PQ_FO4eNs7EANbh-6OEj8cEk2LOCezJCVqqw_iow_io-_FB-N3f3p3Q3_OCAD0Ct1hm_4SUms0vF0fRO03B0MY</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2448238348</pqid></control><display><type>article</type><title>Liver osteopontin is required to prevent the progression of age‐related nonalcoholic fatty liver disease</title><source>Wiley Online Library Open Access</source><source>DOAJ Directory of Open Access Journals</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Gómez‐Santos, Beatriz ; Saenz de Urturi, Diego ; Nuñez‐García, Maitane ; Gonzalez‐Romero, Francisco ; Buque, Xabier ; Aurrekoetxea, Igor ; Gutiérrez de Juan, Virginia ; Gonzalez‐Rellan, Maria J. ; García‐Monzón, Carmelo ; González‐Rodríguez, Águeda ; Mosteiro, Lorena ; Errazti, Gaizka ; Mifsut, Patricia ; Gaztambide, Sonia ; Castaño, Luis ; Martin, Cesar ; Nogueiras, Rubén ; Martinez‐Chantar, María L. ; Syn, Wing‐Kin ; Aspichueta, Patricia</creator><creatorcontrib>Gómez‐Santos, Beatriz ; Saenz de Urturi, Diego ; Nuñez‐García, Maitane ; Gonzalez‐Romero, Francisco ; Buque, Xabier ; Aurrekoetxea, Igor ; Gutiérrez de Juan, Virginia ; Gonzalez‐Rellan, Maria J. ; García‐Monzón, Carmelo ; González‐Rodríguez, Águeda ; Mosteiro, Lorena ; Errazti, Gaizka ; Mifsut, Patricia ; Gaztambide, Sonia ; Castaño, Luis ; Martin, Cesar ; Nogueiras, Rubén ; Martinez‐Chantar, María L. ; Syn, Wing‐Kin ; Aspichueta, Patricia</creatorcontrib><description>Osteopontin (OPN), a senescence‐associated secretory phenotype factor, is increased in patients with nonalcoholic fatty liver disease (NAFLD). Cellular senescence has been associated with age‐dependent hepatosteatosis. Thus, we investigated the role of OPN in the age‐related hepatosteatosis. For this, human serum samples, animal models of aging, and cell lines in which senescence was induced were used. Metabolic fluxes, lipid, and protein concentration were determined. Among individuals with a normal liver, we observed a positive correlation between serum OPN levels and increasing age. This correlation with age, however, was absent in patients with NAFLD. In wild‐type (WT) mice, serum and liver OPN were increased at 10 months old (m) along with liver p53 levels and remained elevated at 20m. Markers of liver senescence increased in association with synthesis and concentration of triglycerides (TG) in 10m OPN‐deficient (KO) hepatocytes when compared to WT hepatocytes. These changes in senescence and lipid metabolism in 10m OPN‐KO mice liver were associated with the decrease of 78 kDa glucose‐regulated protein (GRP78), induction of ER stress, and the increase in fatty acid synthase and CD36 levels. OPN deficiency in senescent cells also diminished GRP78, the accumulation of intracellular TG, and the increase in CD36 levels. In 20m mice, OPN loss led to increased liver fibrosis. Finally, we showed that OPN expression in vitro and in vivo was regulated by p53. In conclusion, OPN deficiency leads to earlier cellular senescence, ER stress, and TG accumulation during aging. The p53‐OPN axis is required to inhibit the onset of age‐related hepatosteatosis. OPN is a protective factor required to preserve liver health during aging. As OPN‐deficient mice become older, increased levels of senescence, ER stress, hepatosteatosis, DNA damage, fibrosis, and inflammation appear.</description><identifier>ISSN: 1474-9718</identifier><identifier>EISSN: 1474-9726</identifier><identifier>DOI: 10.1111/acel.13183</identifier><identifier>PMID: 32638492</identifier><language>eng</language><publisher>England: John Wiley &amp; Sons, Inc</publisher><subject>Age ; Aging ; Analysis ; Animal models ; Body mass index ; CD36 antigen ; Cell culture ; Cell cycle ; Cell lines ; Development and progression ; Evaluation ; Fatty acids ; Fatty liver ; Fatty-acid synthase ; Fibrosis ; Hepatocytes ; Lipid metabolism ; Lipids ; Liver diseases ; Metabolism ; nonalcoholic fatty liver disease ; Original ; Osteopontin ; p53 ; p53 Protein ; Phenotypes ; Physiological aspects ; Prevention ; Senescence ; Triglycerides ; Tumor proteins</subject><ispartof>Aging cell, 2020-08, Vol.19 (8), p.e13183-n/a</ispartof><rights>2020 The Authors. published by the Anatomical Society and John Wiley &amp; Sons Ltd.</rights><rights>2020 The Authors. Aging Cell published by the Anatomical Society and John Wiley &amp; Sons Ltd.</rights><rights>COPYRIGHT 2020 John Wiley &amp; Sons, Inc.</rights><rights>2020. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5433-da94f64fb57af16718398787b3a24b5ce9afb617a70ccfe37338373d9fe71ff3</citedby><cites>FETCH-LOGICAL-c5433-da94f64fb57af16718398787b3a24b5ce9afb617a70ccfe37338373d9fe71ff3</cites><orcidid>0000-0001-6607-7973 ; 0000-0002-3553-1755</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7431823/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7431823/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,1411,11541,27901,27902,45550,45551,46027,46451,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32638492$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gómez‐Santos, Beatriz</creatorcontrib><creatorcontrib>Saenz de Urturi, Diego</creatorcontrib><creatorcontrib>Nuñez‐García, Maitane</creatorcontrib><creatorcontrib>Gonzalez‐Romero, Francisco</creatorcontrib><creatorcontrib>Buque, Xabier</creatorcontrib><creatorcontrib>Aurrekoetxea, Igor</creatorcontrib><creatorcontrib>Gutiérrez de Juan, Virginia</creatorcontrib><creatorcontrib>Gonzalez‐Rellan, Maria J.</creatorcontrib><creatorcontrib>García‐Monzón, Carmelo</creatorcontrib><creatorcontrib>González‐Rodríguez, Águeda</creatorcontrib><creatorcontrib>Mosteiro, Lorena</creatorcontrib><creatorcontrib>Errazti, Gaizka</creatorcontrib><creatorcontrib>Mifsut, Patricia</creatorcontrib><creatorcontrib>Gaztambide, Sonia</creatorcontrib><creatorcontrib>Castaño, Luis</creatorcontrib><creatorcontrib>Martin, Cesar</creatorcontrib><creatorcontrib>Nogueiras, Rubén</creatorcontrib><creatorcontrib>Martinez‐Chantar, María L.</creatorcontrib><creatorcontrib>Syn, Wing‐Kin</creatorcontrib><creatorcontrib>Aspichueta, Patricia</creatorcontrib><title>Liver osteopontin is required to prevent the progression of age‐related nonalcoholic fatty liver disease</title><title>Aging cell</title><addtitle>Aging Cell</addtitle><description>Osteopontin (OPN), a senescence‐associated secretory phenotype factor, is increased in patients with nonalcoholic fatty liver disease (NAFLD). Cellular senescence has been associated with age‐dependent hepatosteatosis. Thus, we investigated the role of OPN in the age‐related hepatosteatosis. For this, human serum samples, animal models of aging, and cell lines in which senescence was induced were used. Metabolic fluxes, lipid, and protein concentration were determined. Among individuals with a normal liver, we observed a positive correlation between serum OPN levels and increasing age. This correlation with age, however, was absent in patients with NAFLD. In wild‐type (WT) mice, serum and liver OPN were increased at 10 months old (m) along with liver p53 levels and remained elevated at 20m. Markers of liver senescence increased in association with synthesis and concentration of triglycerides (TG) in 10m OPN‐deficient (KO) hepatocytes when compared to WT hepatocytes. These changes in senescence and lipid metabolism in 10m OPN‐KO mice liver were associated with the decrease of 78 kDa glucose‐regulated protein (GRP78), induction of ER stress, and the increase in fatty acid synthase and CD36 levels. OPN deficiency in senescent cells also diminished GRP78, the accumulation of intracellular TG, and the increase in CD36 levels. In 20m mice, OPN loss led to increased liver fibrosis. Finally, we showed that OPN expression in vitro and in vivo was regulated by p53. In conclusion, OPN deficiency leads to earlier cellular senescence, ER stress, and TG accumulation during aging. The p53‐OPN axis is required to inhibit the onset of age‐related hepatosteatosis. OPN is a protective factor required to preserve liver health during aging. As OPN‐deficient mice become older, increased levels of senescence, ER stress, hepatosteatosis, DNA damage, fibrosis, and inflammation appear.</description><subject>Age</subject><subject>Aging</subject><subject>Analysis</subject><subject>Animal models</subject><subject>Body mass index</subject><subject>CD36 antigen</subject><subject>Cell culture</subject><subject>Cell cycle</subject><subject>Cell lines</subject><subject>Development and progression</subject><subject>Evaluation</subject><subject>Fatty acids</subject><subject>Fatty liver</subject><subject>Fatty-acid synthase</subject><subject>Fibrosis</subject><subject>Hepatocytes</subject><subject>Lipid metabolism</subject><subject>Lipids</subject><subject>Liver diseases</subject><subject>Metabolism</subject><subject>nonalcoholic fatty liver disease</subject><subject>Original</subject><subject>Osteopontin</subject><subject>p53</subject><subject>p53 Protein</subject><subject>Phenotypes</subject><subject>Physiological aspects</subject><subject>Prevention</subject><subject>Senescence</subject><subject>Triglycerides</subject><subject>Tumor proteins</subject><issn>1474-9718</issn><issn>1474-9726</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>BENPR</sourceid><recordid>eNp9ksFqGzEQhpfS0qRpL32AIuilFOyuVtqV9lIwJmkLhl5yF1rtyJaRJUfadfCtj9Bn7JNkHKduU0okkAbpm3-GnymKt7ScUlyftAE_pYxK9qw4p1zwSSuq5vkppvKseJXzuiypaEv2sjhjVcMkb6vzYr1wO0gk5gHiNobBBeIySXAzugQ9GSLZJthBGMiwAozjMkHOLgYSLdFL-PXjZwKvB2RDDNqbuIreGWL1MOyJvxfvXQad4XXxwmqf4c3DfVFcX11ez79OFt-_fJvPFhNTc8YmvW65bbjtaqEtbbB71kohRcd0xbvaQKtt11ChRWmMBSYYk3j0rQVBrWUXxeej7HbsNtAb7D1pr7bJbXTaq6idevwT3Eot404JjhZWDAU-PAikeDNCHtTGZbTY6wBxzKriFeUNq-oa0ff_oOs4JrThQHEUk4zLpynGG2y_Lv9QS-1BuWAjdmcOpdVMlEIyWkqB1PQ_FO4eNs7EANbh-6OEj8cEk2LOCezJCVqqw_iow_io-_FB-N3f3p3Q3_OCAD0Ct1hm_4SUms0vF0fRO03B0MY</recordid><startdate>202008</startdate><enddate>202008</enddate><creator>Gómez‐Santos, Beatriz</creator><creator>Saenz de Urturi, Diego</creator><creator>Nuñez‐García, Maitane</creator><creator>Gonzalez‐Romero, Francisco</creator><creator>Buque, Xabier</creator><creator>Aurrekoetxea, Igor</creator><creator>Gutiérrez de Juan, Virginia</creator><creator>Gonzalez‐Rellan, Maria J.</creator><creator>García‐Monzón, Carmelo</creator><creator>González‐Rodríguez, Águeda</creator><creator>Mosteiro, Lorena</creator><creator>Errazti, Gaizka</creator><creator>Mifsut, Patricia</creator><creator>Gaztambide, Sonia</creator><creator>Castaño, Luis</creator><creator>Martin, Cesar</creator><creator>Nogueiras, Rubén</creator><creator>Martinez‐Chantar, María L.</creator><creator>Syn, Wing‐Kin</creator><creator>Aspichueta, Patricia</creator><general>John Wiley &amp; Sons, Inc</general><general>John Wiley and Sons Inc</general><scope>24P</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7TK</scope><scope>8FE</scope><scope>8FH</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-6607-7973</orcidid><orcidid>https://orcid.org/0000-0002-3553-1755</orcidid></search><sort><creationdate>202008</creationdate><title>Liver osteopontin is required to prevent the progression of age‐related nonalcoholic fatty liver disease</title><author>Gómez‐Santos, Beatriz ; Saenz de Urturi, Diego ; Nuñez‐García, Maitane ; Gonzalez‐Romero, Francisco ; Buque, Xabier ; Aurrekoetxea, Igor ; Gutiérrez de Juan, Virginia ; Gonzalez‐Rellan, Maria J. ; García‐Monzón, Carmelo ; González‐Rodríguez, Águeda ; Mosteiro, Lorena ; Errazti, Gaizka ; Mifsut, Patricia ; Gaztambide, Sonia ; Castaño, Luis ; Martin, Cesar ; Nogueiras, Rubén ; Martinez‐Chantar, María L. ; Syn, Wing‐Kin ; Aspichueta, Patricia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5433-da94f64fb57af16718398787b3a24b5ce9afb617a70ccfe37338373d9fe71ff3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Age</topic><topic>Aging</topic><topic>Analysis</topic><topic>Animal models</topic><topic>Body mass index</topic><topic>CD36 antigen</topic><topic>Cell culture</topic><topic>Cell cycle</topic><topic>Cell lines</topic><topic>Development and progression</topic><topic>Evaluation</topic><topic>Fatty acids</topic><topic>Fatty liver</topic><topic>Fatty-acid synthase</topic><topic>Fibrosis</topic><topic>Hepatocytes</topic><topic>Lipid metabolism</topic><topic>Lipids</topic><topic>Liver diseases</topic><topic>Metabolism</topic><topic>nonalcoholic fatty liver disease</topic><topic>Original</topic><topic>Osteopontin</topic><topic>p53</topic><topic>p53 Protein</topic><topic>Phenotypes</topic><topic>Physiological aspects</topic><topic>Prevention</topic><topic>Senescence</topic><topic>Triglycerides</topic><topic>Tumor proteins</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gómez‐Santos, Beatriz</creatorcontrib><creatorcontrib>Saenz de Urturi, Diego</creatorcontrib><creatorcontrib>Nuñez‐García, Maitane</creatorcontrib><creatorcontrib>Gonzalez‐Romero, Francisco</creatorcontrib><creatorcontrib>Buque, Xabier</creatorcontrib><creatorcontrib>Aurrekoetxea, Igor</creatorcontrib><creatorcontrib>Gutiérrez de Juan, Virginia</creatorcontrib><creatorcontrib>Gonzalez‐Rellan, Maria J.</creatorcontrib><creatorcontrib>García‐Monzón, Carmelo</creatorcontrib><creatorcontrib>González‐Rodríguez, Águeda</creatorcontrib><creatorcontrib>Mosteiro, Lorena</creatorcontrib><creatorcontrib>Errazti, Gaizka</creatorcontrib><creatorcontrib>Mifsut, Patricia</creatorcontrib><creatorcontrib>Gaztambide, Sonia</creatorcontrib><creatorcontrib>Castaño, Luis</creatorcontrib><creatorcontrib>Martin, Cesar</creatorcontrib><creatorcontrib>Nogueiras, Rubén</creatorcontrib><creatorcontrib>Martinez‐Chantar, María L.</creatorcontrib><creatorcontrib>Syn, Wing‐Kin</creatorcontrib><creatorcontrib>Aspichueta, Patricia</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Aging cell</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gómez‐Santos, Beatriz</au><au>Saenz de Urturi, Diego</au><au>Nuñez‐García, Maitane</au><au>Gonzalez‐Romero, Francisco</au><au>Buque, Xabier</au><au>Aurrekoetxea, Igor</au><au>Gutiérrez de Juan, Virginia</au><au>Gonzalez‐Rellan, Maria J.</au><au>García‐Monzón, Carmelo</au><au>González‐Rodríguez, Águeda</au><au>Mosteiro, Lorena</au><au>Errazti, Gaizka</au><au>Mifsut, Patricia</au><au>Gaztambide, Sonia</au><au>Castaño, Luis</au><au>Martin, Cesar</au><au>Nogueiras, Rubén</au><au>Martinez‐Chantar, María L.</au><au>Syn, Wing‐Kin</au><au>Aspichueta, Patricia</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Liver osteopontin is required to prevent the progression of age‐related nonalcoholic fatty liver disease</atitle><jtitle>Aging cell</jtitle><addtitle>Aging Cell</addtitle><date>2020-08</date><risdate>2020</risdate><volume>19</volume><issue>8</issue><spage>e13183</spage><epage>n/a</epage><pages>e13183-n/a</pages><issn>1474-9718</issn><eissn>1474-9726</eissn><abstract>Osteopontin (OPN), a senescence‐associated secretory phenotype factor, is increased in patients with nonalcoholic fatty liver disease (NAFLD). Cellular senescence has been associated with age‐dependent hepatosteatosis. Thus, we investigated the role of OPN in the age‐related hepatosteatosis. For this, human serum samples, animal models of aging, and cell lines in which senescence was induced were used. Metabolic fluxes, lipid, and protein concentration were determined. Among individuals with a normal liver, we observed a positive correlation between serum OPN levels and increasing age. This correlation with age, however, was absent in patients with NAFLD. In wild‐type (WT) mice, serum and liver OPN were increased at 10 months old (m) along with liver p53 levels and remained elevated at 20m. Markers of liver senescence increased in association with synthesis and concentration of triglycerides (TG) in 10m OPN‐deficient (KO) hepatocytes when compared to WT hepatocytes. These changes in senescence and lipid metabolism in 10m OPN‐KO mice liver were associated with the decrease of 78 kDa glucose‐regulated protein (GRP78), induction of ER stress, and the increase in fatty acid synthase and CD36 levels. OPN deficiency in senescent cells also diminished GRP78, the accumulation of intracellular TG, and the increase in CD36 levels. In 20m mice, OPN loss led to increased liver fibrosis. Finally, we showed that OPN expression in vitro and in vivo was regulated by p53. In conclusion, OPN deficiency leads to earlier cellular senescence, ER stress, and TG accumulation during aging. The p53‐OPN axis is required to inhibit the onset of age‐related hepatosteatosis. OPN is a protective factor required to preserve liver health during aging. As OPN‐deficient mice become older, increased levels of senescence, ER stress, hepatosteatosis, DNA damage, fibrosis, and inflammation appear.</abstract><cop>England</cop><pub>John Wiley &amp; Sons, Inc</pub><pmid>32638492</pmid><doi>10.1111/acel.13183</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0001-6607-7973</orcidid><orcidid>https://orcid.org/0000-0002-3553-1755</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1474-9718
ispartof Aging cell, 2020-08, Vol.19 (8), p.e13183-n/a
issn 1474-9718
1474-9726
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7431823
source Wiley Online Library Open Access; DOAJ Directory of Open Access Journals; Wiley Online Library Journals Frontfile Complete; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Alma/SFX Local Collection
subjects Age
Aging
Analysis
Animal models
Body mass index
CD36 antigen
Cell culture
Cell cycle
Cell lines
Development and progression
Evaluation
Fatty acids
Fatty liver
Fatty-acid synthase
Fibrosis
Hepatocytes
Lipid metabolism
Lipids
Liver diseases
Metabolism
nonalcoholic fatty liver disease
Original
Osteopontin
p53
p53 Protein
Phenotypes
Physiological aspects
Prevention
Senescence
Triglycerides
Tumor proteins
title Liver osteopontin is required to prevent the progression of age‐related nonalcoholic fatty liver disease
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T04%3A28%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Liver%20osteopontin%20is%20required%20to%20prevent%20the%20progression%20of%20age%E2%80%90related%20nonalcoholic%20fatty%20liver%20disease&rft.jtitle=Aging%20cell&rft.au=G%C3%B3mez%E2%80%90Santos,%20Beatriz&rft.date=2020-08&rft.volume=19&rft.issue=8&rft.spage=e13183&rft.epage=n/a&rft.pages=e13183-n/a&rft.issn=1474-9718&rft.eissn=1474-9726&rft_id=info:doi/10.1111/acel.13183&rft_dat=%3Cgale_pubme%3EA707831087%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2448238348&rft_id=info:pmid/32638492&rft_galeid=A707831087&rfr_iscdi=true