Using Hot Electrons and Hot Holes for Simultaneous Cocatalyst Deposition on Plasmonic Nanostructures

Hot electrons generated in metal nanoparticles can drive chemical reactions and selectively deposit cocatalyst materials on the plasmonic hotspots, the areas where the decay of plasmons takes place and the hot electrons are created. While hot electrons have been extensively used for nanomaterial for...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied materials & interfaces 2020-08, Vol.12 (32), p.35986-35994
Hauptverfasser: Kontoleta, Evgenia, Tsoukala, Alexandra, Askes, Sven H. C, Zoethout, Erwin, Oksenberg, Eitan, Agrawal, Harshal, Garnett, Erik C
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 35994
container_issue 32
container_start_page 35986
container_title ACS applied materials & interfaces
container_volume 12
creator Kontoleta, Evgenia
Tsoukala, Alexandra
Askes, Sven H. C
Zoethout, Erwin
Oksenberg, Eitan
Agrawal, Harshal
Garnett, Erik C
description Hot electrons generated in metal nanoparticles can drive chemical reactions and selectively deposit cocatalyst materials on the plasmonic hotspots, the areas where the decay of plasmons takes place and the hot electrons are created. While hot electrons have been extensively used for nanomaterial formation, the utilization of hot holes for simultaneous cocatalyst deposition has not yet been explored. Herein, we demonstrate that hot holes can drive an oxidation reaction for the deposition of the manganese oxide (MnO x ) cocatalyst on different plasmonic gold (Au) nanostructures on a thin titanium dioxide (TiO2) layer, excited at their surface plasmon resonance. An 80% correlation between the hot-hole deposition sites and the simulated plasmonic hotspot location is showed when considering the typical hot-hole diffusion length. Simultaneous deposition of more than one cocatalyst is also achieved on one of the investigated plasmonic systems (Au plasmonic nanoislands) through the hot-hole oxidation of a manganese salt and the hot-electron reduction of a platinum precursor in the same solution. These results add more flexibility to the use of hot carriers and open up the way for the design of complex photocatalytic nanostructures.
doi_str_mv 10.1021/acsami.0c04941
format Article
fullrecord <record><control><sourceid>acs_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7430944</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>c30803285</sourcerecordid><originalsourceid>FETCH-LOGICAL-a468t-a022af1124fd4d8ef8788f750c5cc2fb0f9eb5fab025491028982d74947d77b63</originalsourceid><addsrcrecordid>eNp1kEFLAzEQhYMotlavnnMWWpNsdrN7EaRWKxQVtOeQzSY1ZTcpSVbovze6peBBGJhhZt6D9wFwjdEMI4JvhQyiMzMkEa0oPgFjXFE6LUlOTo8zpSNwEcIWoSIjKD8Ho4wUjKCMjkGzDsZu4NJFuGiVjN7ZAIVtfjdL16oAtfPw3XR9G4VVrg9w7qSIot2HCB_UzgUTjbMw1VsrQueskfBFWBei72XsvQqX4EyLNqirQ5-A9ePiY76crl6fnuf3q6mgRRmnAhEiNMaE6oY2pdIlK0vNciRzKYmuka5UnWtRI5LTKsUvq5I0LAVnDWN1kU3A3eC76-tONVLZ6EXLd950wu-5E4b_vVjzyTfuizOaocQqGcwGA-ldCF7poxYj_sObD7z5gXcS3AyCtOdb13ub8v33_A1W1oQJ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Using Hot Electrons and Hot Holes for Simultaneous Cocatalyst Deposition on Plasmonic Nanostructures</title><source>American Chemical Society Journals</source><creator>Kontoleta, Evgenia ; Tsoukala, Alexandra ; Askes, Sven H. C ; Zoethout, Erwin ; Oksenberg, Eitan ; Agrawal, Harshal ; Garnett, Erik C</creator><creatorcontrib>Kontoleta, Evgenia ; Tsoukala, Alexandra ; Askes, Sven H. C ; Zoethout, Erwin ; Oksenberg, Eitan ; Agrawal, Harshal ; Garnett, Erik C</creatorcontrib><description>Hot electrons generated in metal nanoparticles can drive chemical reactions and selectively deposit cocatalyst materials on the plasmonic hotspots, the areas where the decay of plasmons takes place and the hot electrons are created. While hot electrons have been extensively used for nanomaterial formation, the utilization of hot holes for simultaneous cocatalyst deposition has not yet been explored. Herein, we demonstrate that hot holes can drive an oxidation reaction for the deposition of the manganese oxide (MnO x ) cocatalyst on different plasmonic gold (Au) nanostructures on a thin titanium dioxide (TiO2) layer, excited at their surface plasmon resonance. An 80% correlation between the hot-hole deposition sites and the simulated plasmonic hotspot location is showed when considering the typical hot-hole diffusion length. Simultaneous deposition of more than one cocatalyst is also achieved on one of the investigated plasmonic systems (Au plasmonic nanoislands) through the hot-hole oxidation of a manganese salt and the hot-electron reduction of a platinum precursor in the same solution. These results add more flexibility to the use of hot carriers and open up the way for the design of complex photocatalytic nanostructures.</description><identifier>ISSN: 1944-8244</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.0c04941</identifier><identifier>PMID: 32672034</identifier><language>eng</language><publisher>American Chemical Society</publisher><subject>Energy, Environmental, and Catalysis Applications</subject><ispartof>ACS applied materials &amp; interfaces, 2020-08, Vol.12 (32), p.35986-35994</ispartof><rights>Copyright © 2020 American Chemical Society 2020 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a468t-a022af1124fd4d8ef8788f750c5cc2fb0f9eb5fab025491028982d74947d77b63</citedby><cites>FETCH-LOGICAL-a468t-a022af1124fd4d8ef8788f750c5cc2fb0f9eb5fab025491028982d74947d77b63</cites><orcidid>0000-0001-9462-3986 ; 0000-0002-5106-3947 ; 0000-0002-3327-1523 ; 0000-0002-9158-8326 ; 0000-0001-6538-3645</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsami.0c04941$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsami.0c04941$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,776,780,881,2752,27053,27901,27902,56713,56763</link.rule.ids></links><search><creatorcontrib>Kontoleta, Evgenia</creatorcontrib><creatorcontrib>Tsoukala, Alexandra</creatorcontrib><creatorcontrib>Askes, Sven H. C</creatorcontrib><creatorcontrib>Zoethout, Erwin</creatorcontrib><creatorcontrib>Oksenberg, Eitan</creatorcontrib><creatorcontrib>Agrawal, Harshal</creatorcontrib><creatorcontrib>Garnett, Erik C</creatorcontrib><title>Using Hot Electrons and Hot Holes for Simultaneous Cocatalyst Deposition on Plasmonic Nanostructures</title><title>ACS applied materials &amp; interfaces</title><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>Hot electrons generated in metal nanoparticles can drive chemical reactions and selectively deposit cocatalyst materials on the plasmonic hotspots, the areas where the decay of plasmons takes place and the hot electrons are created. While hot electrons have been extensively used for nanomaterial formation, the utilization of hot holes for simultaneous cocatalyst deposition has not yet been explored. Herein, we demonstrate that hot holes can drive an oxidation reaction for the deposition of the manganese oxide (MnO x ) cocatalyst on different plasmonic gold (Au) nanostructures on a thin titanium dioxide (TiO2) layer, excited at their surface plasmon resonance. An 80% correlation between the hot-hole deposition sites and the simulated plasmonic hotspot location is showed when considering the typical hot-hole diffusion length. Simultaneous deposition of more than one cocatalyst is also achieved on one of the investigated plasmonic systems (Au plasmonic nanoislands) through the hot-hole oxidation of a manganese salt and the hot-electron reduction of a platinum precursor in the same solution. These results add more flexibility to the use of hot carriers and open up the way for the design of complex photocatalytic nanostructures.</description><subject>Energy, Environmental, and Catalysis Applications</subject><issn>1944-8244</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kEFLAzEQhYMotlavnnMWWpNsdrN7EaRWKxQVtOeQzSY1ZTcpSVbovze6peBBGJhhZt6D9wFwjdEMI4JvhQyiMzMkEa0oPgFjXFE6LUlOTo8zpSNwEcIWoSIjKD8Ho4wUjKCMjkGzDsZu4NJFuGiVjN7ZAIVtfjdL16oAtfPw3XR9G4VVrg9w7qSIot2HCB_UzgUTjbMw1VsrQueskfBFWBei72XsvQqX4EyLNqirQ5-A9ePiY76crl6fnuf3q6mgRRmnAhEiNMaE6oY2pdIlK0vNciRzKYmuka5UnWtRI5LTKsUvq5I0LAVnDWN1kU3A3eC76-tONVLZ6EXLd950wu-5E4b_vVjzyTfuizOaocQqGcwGA-ldCF7poxYj_sObD7z5gXcS3AyCtOdb13ub8v33_A1W1oQJ</recordid><startdate>20200812</startdate><enddate>20200812</enddate><creator>Kontoleta, Evgenia</creator><creator>Tsoukala, Alexandra</creator><creator>Askes, Sven H. C</creator><creator>Zoethout, Erwin</creator><creator>Oksenberg, Eitan</creator><creator>Agrawal, Harshal</creator><creator>Garnett, Erik C</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-9462-3986</orcidid><orcidid>https://orcid.org/0000-0002-5106-3947</orcidid><orcidid>https://orcid.org/0000-0002-3327-1523</orcidid><orcidid>https://orcid.org/0000-0002-9158-8326</orcidid><orcidid>https://orcid.org/0000-0001-6538-3645</orcidid></search><sort><creationdate>20200812</creationdate><title>Using Hot Electrons and Hot Holes for Simultaneous Cocatalyst Deposition on Plasmonic Nanostructures</title><author>Kontoleta, Evgenia ; Tsoukala, Alexandra ; Askes, Sven H. C ; Zoethout, Erwin ; Oksenberg, Eitan ; Agrawal, Harshal ; Garnett, Erik C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a468t-a022af1124fd4d8ef8788f750c5cc2fb0f9eb5fab025491028982d74947d77b63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Energy, Environmental, and Catalysis Applications</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kontoleta, Evgenia</creatorcontrib><creatorcontrib>Tsoukala, Alexandra</creatorcontrib><creatorcontrib>Askes, Sven H. C</creatorcontrib><creatorcontrib>Zoethout, Erwin</creatorcontrib><creatorcontrib>Oksenberg, Eitan</creatorcontrib><creatorcontrib>Agrawal, Harshal</creatorcontrib><creatorcontrib>Garnett, Erik C</creatorcontrib><collection>CrossRef</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>ACS applied materials &amp; interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kontoleta, Evgenia</au><au>Tsoukala, Alexandra</au><au>Askes, Sven H. C</au><au>Zoethout, Erwin</au><au>Oksenberg, Eitan</au><au>Agrawal, Harshal</au><au>Garnett, Erik C</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Using Hot Electrons and Hot Holes for Simultaneous Cocatalyst Deposition on Plasmonic Nanostructures</atitle><jtitle>ACS applied materials &amp; interfaces</jtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2020-08-12</date><risdate>2020</risdate><volume>12</volume><issue>32</issue><spage>35986</spage><epage>35994</epage><pages>35986-35994</pages><issn>1944-8244</issn><eissn>1944-8252</eissn><abstract>Hot electrons generated in metal nanoparticles can drive chemical reactions and selectively deposit cocatalyst materials on the plasmonic hotspots, the areas where the decay of plasmons takes place and the hot electrons are created. While hot electrons have been extensively used for nanomaterial formation, the utilization of hot holes for simultaneous cocatalyst deposition has not yet been explored. Herein, we demonstrate that hot holes can drive an oxidation reaction for the deposition of the manganese oxide (MnO x ) cocatalyst on different plasmonic gold (Au) nanostructures on a thin titanium dioxide (TiO2) layer, excited at their surface plasmon resonance. An 80% correlation between the hot-hole deposition sites and the simulated plasmonic hotspot location is showed when considering the typical hot-hole diffusion length. Simultaneous deposition of more than one cocatalyst is also achieved on one of the investigated plasmonic systems (Au plasmonic nanoislands) through the hot-hole oxidation of a manganese salt and the hot-electron reduction of a platinum precursor in the same solution. These results add more flexibility to the use of hot carriers and open up the way for the design of complex photocatalytic nanostructures.</abstract><pub>American Chemical Society</pub><pmid>32672034</pmid><doi>10.1021/acsami.0c04941</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-9462-3986</orcidid><orcidid>https://orcid.org/0000-0002-5106-3947</orcidid><orcidid>https://orcid.org/0000-0002-3327-1523</orcidid><orcidid>https://orcid.org/0000-0002-9158-8326</orcidid><orcidid>https://orcid.org/0000-0001-6538-3645</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1944-8244
ispartof ACS applied materials & interfaces, 2020-08, Vol.12 (32), p.35986-35994
issn 1944-8244
1944-8252
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7430944
source American Chemical Society Journals
subjects Energy, Environmental, and Catalysis Applications
title Using Hot Electrons and Hot Holes for Simultaneous Cocatalyst Deposition on Plasmonic Nanostructures
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T16%3A40%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Using%20Hot%20Electrons%20and%20Hot%20Holes%20for%20Simultaneous%20Cocatalyst%20Deposition%20on%20Plasmonic%20Nanostructures&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Kontoleta,%20Evgenia&rft.date=2020-08-12&rft.volume=12&rft.issue=32&rft.spage=35986&rft.epage=35994&rft.pages=35986-35994&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.0c04941&rft_dat=%3Cacs_pubme%3Ec30803285%3C/acs_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/32672034&rfr_iscdi=true