Spermidine Suppresses Development of Experimental Abdominal Aortic Aneurysms
Background The protective effects of polyamines on cardiovascular disease have been demonstrated in many studies. However, the roles of spermidine, a natural polyamine, in abdominal aortic aneurysm (AAA) disease have not been studied. In this study, we investigated the influence and potential mechan...
Gespeichert in:
Veröffentlicht in: | Journal of the American Heart Association 2020-04, Vol.9 (8), p.e014757, Article 014757 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Background
The protective effects of polyamines on cardiovascular disease have been demonstrated in many studies. However, the roles of spermidine, a natural polyamine, in abdominal aortic aneurysm (AAA) disease have not been studied. In this study, we investigated the influence and potential mechanisms of spermidine treatment on experimental AAA disease.
Methods and Results
Experimental AAAs were induced in 8- to 10-week-old male C57BL/6J mice by transient intra-aortic infusion of porcine pancreatic elastase. Spermidine was administered via drinking water at a concentration of 3 mmol/L. Spermidine treatment prevented experimental AAA formation with preservation of medial elastin and smooth muscle cells. In immunostaining, macrophages, T cells, neutrophils, and neovessels were significantly reduced in aorta of spermidine-treated, as compared with vehicle-treated elastase-infused mice. Additionally, flow cytometric analysis showed that spermidine treatment reduced aortic leukocyte infiltration and circulating inflammatory cells. Furthermore, we demonstrated that spermidine treatment promoted autophagy-related proteins in experimental AAAs using Western blot analysis, immunostaining, and transmission electron microscopic examination. Autophagic function was evaluated for human abdominal aneurysmal and nonaneurysmal adjacent aortae from AAA patients using Western blot analysis and immunohistochemistry. Dysregulated autophagic function, as evidenced by increased SQSTM1/p62 protein and phosphorylated mTOR, was found in aneurysmal, as compared with nonaneurysmal, aortic segments.
Conclusions
Our results suggest that spermidine supplementation limits experimental AAA formation associated with preserved aortic structural integrity, attenuated aortic inflammatory infiltration, reduced circulating inflammatory monocytes, and increased autophagy-related proteins. These findings suggest that spermidine may be a promising treatment for AAA disease. |
---|---|
ISSN: | 2047-9980 2047-9980 |
DOI: | 10.1161/JAHA.119.014757 |