Benchmark maps of 33 years of secondary forest age for Brazil

The restoration and reforestation of 12 million hectares of forests by 2030 are amongst the leading mitigation strategies for reducing carbon emissions within the Brazilian Nationally Determined Contribution targets assumed under the Paris Agreement. Understanding the dynamics of forest cover, which...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Scientific data 2020-08, Vol.7 (1), p.269-269, Article 269
Hauptverfasser: Silva Junior, Celso H. L., Heinrich, Viola H. A., Freire, Ana T. G., Broggio, Igor S., Rosan, Thais M., Doblas, Juan, Anderson, Liana O., Rousseau, Guillaume X., Shimabukuro, Yosio E., Silva, Carlos A., House, Joanna I., Aragão, Luiz E. O. C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 269
container_issue 1
container_start_page 269
container_title Scientific data
container_volume 7
creator Silva Junior, Celso H. L.
Heinrich, Viola H. A.
Freire, Ana T. G.
Broggio, Igor S.
Rosan, Thais M.
Doblas, Juan
Anderson, Liana O.
Rousseau, Guillaume X.
Shimabukuro, Yosio E.
Silva, Carlos A.
House, Joanna I.
Aragão, Luiz E. O. C.
description The restoration and reforestation of 12 million hectares of forests by 2030 are amongst the leading mitigation strategies for reducing carbon emissions within the Brazilian Nationally Determined Contribution targets assumed under the Paris Agreement. Understanding the dynamics of forest cover, which steeply decreased between 1985 and 2018 throughout Brazil, is essential for estimating the global carbon balance and quantifying the provision of ecosystem services. To know the long-term increment, extent, and age of secondary forests is crucial; however, these variables are yet poorly quantified. Here we developed a 30-m spatial resolution dataset of the annual increment, extent, and age of secondary forests for Brazil over the 1986–2018 period. Land-use and land-cover maps from MapBiomas Project (Collection 4.1) were used as input data for our algorithm, implemented in the Google Earth Engine platform. This dataset provides critical spatially explicit information for supporting carbon emissions reduction, biodiversity, and restoration policies, enabling environmental science applications, territorial planning, and subsidizing environmental law enforcement. Measurement(s) secondary forest • age • Increment • Extent • secondary forest loss Technology Type(s) remote sensing • computational modeling technique • digital curation Factor Type(s) year of data collection Sample Characteristic - Environment tropical • forest ecosystem Sample Characteristic - Location Brazil Machine-accessible metadata file describing the reported data: https://doi.org/10.6084/m9.figshare.12622025
doi_str_mv 10.1038/s41597-020-00600-4
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7427968</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2489907948</sourcerecordid><originalsourceid>FETCH-LOGICAL-c502t-7e23e3158651ed30b941f15256d12e52feb71a67a1914ba99cd34881080f6b6f3</originalsourceid><addsrcrecordid>eNp9kUtLAzEUhYMoKto_4EIG3LgZvXlOslCw4gsEN7oOmZk7dXQ6qUkr1F9vbOtz4SoH7ndP7uEQskfhiALXx1FQaYocGOQACiAXa2SbgWS5EIqv_9BbZBDjEwBQLkAWsEm2OCuM0lJvk5Mh9tXj2IXnbOwmMfNNxnk2RxcWOmLl-9qFedb4gHGauRF-yGwY3Fvb7ZKNxnURB6t3hzxcXtyfX-e3d1c352e3eSWBTfMCGUdOpVaSYs2hNII2VDKpaspQsgbLgjpVOGqoKJ0xVc2F1hQ0NKpUDd8hp0vfyawcY11hPw2us5PQpsvn1rvW_p707aMd-VdbiEXSZHC4Mgj-ZZaC2HEbK-w616OfRcsEF0LThCf04A_65GehT_ESpY2Bwgj9P8UFVSpBiWJLqgo-xoDN18kU7EeNdlmjTTXaRY1WpKX9n2G_Vj5LSwBfAjGN-hGG77__sX0H5FCk8A</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2434166483</pqid></control><display><type>article</type><title>Benchmark maps of 33 years of secondary forest age for Brazil</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central Open Access</source><source>Nature Free</source><source>PubMed Central</source><source>Springer Nature OA/Free Journals</source><creator>Silva Junior, Celso H. L. ; Heinrich, Viola H. A. ; Freire, Ana T. G. ; Broggio, Igor S. ; Rosan, Thais M. ; Doblas, Juan ; Anderson, Liana O. ; Rousseau, Guillaume X. ; Shimabukuro, Yosio E. ; Silva, Carlos A. ; House, Joanna I. ; Aragão, Luiz E. O. C.</creator><creatorcontrib>Silva Junior, Celso H. L. ; Heinrich, Viola H. A. ; Freire, Ana T. G. ; Broggio, Igor S. ; Rosan, Thais M. ; Doblas, Juan ; Anderson, Liana O. ; Rousseau, Guillaume X. ; Shimabukuro, Yosio E. ; Silva, Carlos A. ; House, Joanna I. ; Aragão, Luiz E. O. C.</creatorcontrib><description>The restoration and reforestation of 12 million hectares of forests by 2030 are amongst the leading mitigation strategies for reducing carbon emissions within the Brazilian Nationally Determined Contribution targets assumed under the Paris Agreement. Understanding the dynamics of forest cover, which steeply decreased between 1985 and 2018 throughout Brazil, is essential for estimating the global carbon balance and quantifying the provision of ecosystem services. To know the long-term increment, extent, and age of secondary forests is crucial; however, these variables are yet poorly quantified. Here we developed a 30-m spatial resolution dataset of the annual increment, extent, and age of secondary forests for Brazil over the 1986–2018 period. Land-use and land-cover maps from MapBiomas Project (Collection 4.1) were used as input data for our algorithm, implemented in the Google Earth Engine platform. This dataset provides critical spatially explicit information for supporting carbon emissions reduction, biodiversity, and restoration policies, enabling environmental science applications, territorial planning, and subsidizing environmental law enforcement. Measurement(s) secondary forest • age • Increment • Extent • secondary forest loss Technology Type(s) remote sensing • computational modeling technique • digital curation Factor Type(s) year of data collection Sample Characteristic - Environment tropical • forest ecosystem Sample Characteristic - Location Brazil Machine-accessible metadata file describing the reported data: https://doi.org/10.6084/m9.figshare.12622025</description><identifier>ISSN: 2052-4463</identifier><identifier>EISSN: 2052-4463</identifier><identifier>DOI: 10.1038/s41597-020-00600-4</identifier><identifier>PMID: 32796858</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/158/2458 ; 704/106/694/682 ; 704/158/2454 ; Age ; Biodiversity ; Carbon ; Computer applications ; Data collection ; Data Descriptor ; Deforestation ; Digital curation ; Emissions control ; Environmental law ; Environmental restoration ; Forests ; Humanities and Social Sciences ; Land use ; multidisciplinary ; Reforestation ; Remote sensing ; Science ; Science (multidisciplinary) ; Spatial discrimination ; Terrestrial ecosystems ; Tropical forests</subject><ispartof>Scientific data, 2020-08, Vol.7 (1), p.269-269, Article 269</ispartof><rights>The Author(s) 2020</rights><rights>The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c502t-7e23e3158651ed30b941f15256d12e52feb71a67a1914ba99cd34881080f6b6f3</citedby><cites>FETCH-LOGICAL-c502t-7e23e3158651ed30b941f15256d12e52feb71a67a1914ba99cd34881080f6b6f3</cites><orcidid>0000-0003-4576-3960 ; 0000-0002-9045-9135 ; 0000-0002-1052-5551</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7427968/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7427968/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,27924,27925,41120,42189,51576,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32796858$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Silva Junior, Celso H. L.</creatorcontrib><creatorcontrib>Heinrich, Viola H. A.</creatorcontrib><creatorcontrib>Freire, Ana T. G.</creatorcontrib><creatorcontrib>Broggio, Igor S.</creatorcontrib><creatorcontrib>Rosan, Thais M.</creatorcontrib><creatorcontrib>Doblas, Juan</creatorcontrib><creatorcontrib>Anderson, Liana O.</creatorcontrib><creatorcontrib>Rousseau, Guillaume X.</creatorcontrib><creatorcontrib>Shimabukuro, Yosio E.</creatorcontrib><creatorcontrib>Silva, Carlos A.</creatorcontrib><creatorcontrib>House, Joanna I.</creatorcontrib><creatorcontrib>Aragão, Luiz E. O. C.</creatorcontrib><title>Benchmark maps of 33 years of secondary forest age for Brazil</title><title>Scientific data</title><addtitle>Sci Data</addtitle><addtitle>Sci Data</addtitle><description>The restoration and reforestation of 12 million hectares of forests by 2030 are amongst the leading mitigation strategies for reducing carbon emissions within the Brazilian Nationally Determined Contribution targets assumed under the Paris Agreement. Understanding the dynamics of forest cover, which steeply decreased between 1985 and 2018 throughout Brazil, is essential for estimating the global carbon balance and quantifying the provision of ecosystem services. To know the long-term increment, extent, and age of secondary forests is crucial; however, these variables are yet poorly quantified. Here we developed a 30-m spatial resolution dataset of the annual increment, extent, and age of secondary forests for Brazil over the 1986–2018 period. Land-use and land-cover maps from MapBiomas Project (Collection 4.1) were used as input data for our algorithm, implemented in the Google Earth Engine platform. This dataset provides critical spatially explicit information for supporting carbon emissions reduction, biodiversity, and restoration policies, enabling environmental science applications, territorial planning, and subsidizing environmental law enforcement. Measurement(s) secondary forest • age • Increment • Extent • secondary forest loss Technology Type(s) remote sensing • computational modeling technique • digital curation Factor Type(s) year of data collection Sample Characteristic - Environment tropical • forest ecosystem Sample Characteristic - Location Brazil Machine-accessible metadata file describing the reported data: https://doi.org/10.6084/m9.figshare.12622025</description><subject>631/158/2458</subject><subject>704/106/694/682</subject><subject>704/158/2454</subject><subject>Age</subject><subject>Biodiversity</subject><subject>Carbon</subject><subject>Computer applications</subject><subject>Data collection</subject><subject>Data Descriptor</subject><subject>Deforestation</subject><subject>Digital curation</subject><subject>Emissions control</subject><subject>Environmental law</subject><subject>Environmental restoration</subject><subject>Forests</subject><subject>Humanities and Social Sciences</subject><subject>Land use</subject><subject>multidisciplinary</subject><subject>Reforestation</subject><subject>Remote sensing</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Spatial discrimination</subject><subject>Terrestrial ecosystems</subject><subject>Tropical forests</subject><issn>2052-4463</issn><issn>2052-4463</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kUtLAzEUhYMoKto_4EIG3LgZvXlOslCw4gsEN7oOmZk7dXQ6qUkr1F9vbOtz4SoH7ndP7uEQskfhiALXx1FQaYocGOQACiAXa2SbgWS5EIqv_9BbZBDjEwBQLkAWsEm2OCuM0lJvk5Mh9tXj2IXnbOwmMfNNxnk2RxcWOmLl-9qFedb4gHGauRF-yGwY3Fvb7ZKNxnURB6t3hzxcXtyfX-e3d1c352e3eSWBTfMCGUdOpVaSYs2hNII2VDKpaspQsgbLgjpVOGqoKJ0xVc2F1hQ0NKpUDd8hp0vfyawcY11hPw2us5PQpsvn1rvW_p707aMd-VdbiEXSZHC4Mgj-ZZaC2HEbK-w616OfRcsEF0LThCf04A_65GehT_ESpY2Bwgj9P8UFVSpBiWJLqgo-xoDN18kU7EeNdlmjTTXaRY1WpKX9n2G_Vj5LSwBfAjGN-hGG77__sX0H5FCk8A</recordid><startdate>20200814</startdate><enddate>20200814</enddate><creator>Silva Junior, Celso H. L.</creator><creator>Heinrich, Viola H. A.</creator><creator>Freire, Ana T. G.</creator><creator>Broggio, Igor S.</creator><creator>Rosan, Thais M.</creator><creator>Doblas, Juan</creator><creator>Anderson, Liana O.</creator><creator>Rousseau, Guillaume X.</creator><creator>Shimabukuro, Yosio E.</creator><creator>Silva, Carlos A.</creator><creator>House, Joanna I.</creator><creator>Aragão, Luiz E. O. C.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-4576-3960</orcidid><orcidid>https://orcid.org/0000-0002-9045-9135</orcidid><orcidid>https://orcid.org/0000-0002-1052-5551</orcidid></search><sort><creationdate>20200814</creationdate><title>Benchmark maps of 33 years of secondary forest age for Brazil</title><author>Silva Junior, Celso H. L. ; Heinrich, Viola H. A. ; Freire, Ana T. G. ; Broggio, Igor S. ; Rosan, Thais M. ; Doblas, Juan ; Anderson, Liana O. ; Rousseau, Guillaume X. ; Shimabukuro, Yosio E. ; Silva, Carlos A. ; House, Joanna I. ; Aragão, Luiz E. O. C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c502t-7e23e3158651ed30b941f15256d12e52feb71a67a1914ba99cd34881080f6b6f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>631/158/2458</topic><topic>704/106/694/682</topic><topic>704/158/2454</topic><topic>Age</topic><topic>Biodiversity</topic><topic>Carbon</topic><topic>Computer applications</topic><topic>Data collection</topic><topic>Data Descriptor</topic><topic>Deforestation</topic><topic>Digital curation</topic><topic>Emissions control</topic><topic>Environmental law</topic><topic>Environmental restoration</topic><topic>Forests</topic><topic>Humanities and Social Sciences</topic><topic>Land use</topic><topic>multidisciplinary</topic><topic>Reforestation</topic><topic>Remote sensing</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Spatial discrimination</topic><topic>Terrestrial ecosystems</topic><topic>Tropical forests</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Silva Junior, Celso H. L.</creatorcontrib><creatorcontrib>Heinrich, Viola H. A.</creatorcontrib><creatorcontrib>Freire, Ana T. G.</creatorcontrib><creatorcontrib>Broggio, Igor S.</creatorcontrib><creatorcontrib>Rosan, Thais M.</creatorcontrib><creatorcontrib>Doblas, Juan</creatorcontrib><creatorcontrib>Anderson, Liana O.</creatorcontrib><creatorcontrib>Rousseau, Guillaume X.</creatorcontrib><creatorcontrib>Shimabukuro, Yosio E.</creatorcontrib><creatorcontrib>Silva, Carlos A.</creatorcontrib><creatorcontrib>House, Joanna I.</creatorcontrib><creatorcontrib>Aragão, Luiz E. O. C.</creatorcontrib><collection>Springer Nature OA/Free Journals</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Scientific data</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Silva Junior, Celso H. L.</au><au>Heinrich, Viola H. A.</au><au>Freire, Ana T. G.</au><au>Broggio, Igor S.</au><au>Rosan, Thais M.</au><au>Doblas, Juan</au><au>Anderson, Liana O.</au><au>Rousseau, Guillaume X.</au><au>Shimabukuro, Yosio E.</au><au>Silva, Carlos A.</au><au>House, Joanna I.</au><au>Aragão, Luiz E. O. C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Benchmark maps of 33 years of secondary forest age for Brazil</atitle><jtitle>Scientific data</jtitle><stitle>Sci Data</stitle><addtitle>Sci Data</addtitle><date>2020-08-14</date><risdate>2020</risdate><volume>7</volume><issue>1</issue><spage>269</spage><epage>269</epage><pages>269-269</pages><artnum>269</artnum><issn>2052-4463</issn><eissn>2052-4463</eissn><abstract>The restoration and reforestation of 12 million hectares of forests by 2030 are amongst the leading mitigation strategies for reducing carbon emissions within the Brazilian Nationally Determined Contribution targets assumed under the Paris Agreement. Understanding the dynamics of forest cover, which steeply decreased between 1985 and 2018 throughout Brazil, is essential for estimating the global carbon balance and quantifying the provision of ecosystem services. To know the long-term increment, extent, and age of secondary forests is crucial; however, these variables are yet poorly quantified. Here we developed a 30-m spatial resolution dataset of the annual increment, extent, and age of secondary forests for Brazil over the 1986–2018 period. Land-use and land-cover maps from MapBiomas Project (Collection 4.1) were used as input data for our algorithm, implemented in the Google Earth Engine platform. This dataset provides critical spatially explicit information for supporting carbon emissions reduction, biodiversity, and restoration policies, enabling environmental science applications, territorial planning, and subsidizing environmental law enforcement. Measurement(s) secondary forest • age • Increment • Extent • secondary forest loss Technology Type(s) remote sensing • computational modeling technique • digital curation Factor Type(s) year of data collection Sample Characteristic - Environment tropical • forest ecosystem Sample Characteristic - Location Brazil Machine-accessible metadata file describing the reported data: https://doi.org/10.6084/m9.figshare.12622025</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>32796858</pmid><doi>10.1038/s41597-020-00600-4</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0003-4576-3960</orcidid><orcidid>https://orcid.org/0000-0002-9045-9135</orcidid><orcidid>https://orcid.org/0000-0002-1052-5551</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2052-4463
ispartof Scientific data, 2020-08, Vol.7 (1), p.269-269, Article 269
issn 2052-4463
2052-4463
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7427968
source DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central Open Access; Nature Free; PubMed Central; Springer Nature OA/Free Journals
subjects 631/158/2458
704/106/694/682
704/158/2454
Age
Biodiversity
Carbon
Computer applications
Data collection
Data Descriptor
Deforestation
Digital curation
Emissions control
Environmental law
Environmental restoration
Forests
Humanities and Social Sciences
Land use
multidisciplinary
Reforestation
Remote sensing
Science
Science (multidisciplinary)
Spatial discrimination
Terrestrial ecosystems
Tropical forests
title Benchmark maps of 33 years of secondary forest age for Brazil
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T13%3A28%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Benchmark%20maps%20of%2033%20years%20of%20secondary%20forest%20age%20for%20Brazil&rft.jtitle=Scientific%20data&rft.au=Silva%20Junior,%20Celso%20H.%20L.&rft.date=2020-08-14&rft.volume=7&rft.issue=1&rft.spage=269&rft.epage=269&rft.pages=269-269&rft.artnum=269&rft.issn=2052-4463&rft.eissn=2052-4463&rft_id=info:doi/10.1038/s41597-020-00600-4&rft_dat=%3Cproquest_pubme%3E2489907948%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2434166483&rft_id=info:pmid/32796858&rfr_iscdi=true