Intracranial EEG in the 21st Century

Intracranial electroencephalography (iEEG) has been the mainstay of identifying the seizure onset zone (SOZ), a key diagnostic procedure in addition to neuroimaging when considering epilepsy surgery. In many patients, iEEG has been the basis for resective epilepsy surgery, to date still the most suc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Epilepsy currents 2020-07, Vol.20 (4), p.180-188
Hauptverfasser: Jobst, Barbara C., Bartolomei, Fabrice, Diehl, Beate, Frauscher, Birgit, Kahane, Philippe, Minotti, Lorella, Sharan, Ashwini, Tardy, Nastasia, Worrell, Gregory, Gotman, Jean
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 188
container_issue 4
container_start_page 180
container_title Epilepsy currents
container_volume 20
creator Jobst, Barbara C.
Bartolomei, Fabrice
Diehl, Beate
Frauscher, Birgit
Kahane, Philippe
Minotti, Lorella
Sharan, Ashwini
Tardy, Nastasia
Worrell, Gregory
Gotman, Jean
description Intracranial electroencephalography (iEEG) has been the mainstay of identifying the seizure onset zone (SOZ), a key diagnostic procedure in addition to neuroimaging when considering epilepsy surgery. In many patients, iEEG has been the basis for resective epilepsy surgery, to date still the most successful treatment for drug-resistant epilepsy. Intracranial EEG determines the location and resectability of the SOZ. Advances in recording and implantation of iEEG provide multiple options in the 21st century. This not only includes the choice between subdural electrodes (SDE) and stereoelectroencephalography (SEEG) but also includes the implantation and recordings from microelectrodes. Before iEEG implantation, especially in magnetic resonance imaging -negative epilepsy, a clear hypothesis for seizure generation and propagation should be based on noninvasive methods. Intracranial EEG implantation should be planned by a multidisciplinary team considering epileptic networks. Recordings from SDE and SEEG have both their advantages and disadvantages. Stereo-EEG seems to have a lower rate of complications that are clinically significant, but has limitations in spatial sampling of the cortical surface. Stereo-EEG can sample deeper areas of the brain including deep sulci and hard to reach areas such as the insula.  To determine the epileptogenic zone, interictal and ictal information should be taken into consideration. Interictal spiking, low frequency slowing, as well as high frequency oscillations may inform about the epileptogenic zone. Ictally, high frequency onsets in the beta/gamma range are usually associated with the SOZ, but specialized recordings with combined macro and microelectrodes may in the future educate us about onset in higher frequency bands. Stimulation of intracranial electrodes triggering habitual seizures can assist in identifying the SOZ. Advanced computational methods such as determining the epileptogenicity index and similar measures may enhance standard clinical interpretation. Improved techniques to record and interpret iEEG may in the future lead to a greater proportion of patients being seizure free after epilepsy surgery.
doi_str_mv 10.1177/1535759720934852
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7427159</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_1535759720934852</sage_id><sourcerecordid>2430339983</sourcerecordid><originalsourceid>FETCH-LOGICAL-c539t-39c58603f8ba5945c27089be9158ca5ada03d06a07fbec2863bbf35e3b0316d53</originalsourceid><addsrcrecordid>eNp1kdFLwzAQxoMobk7ffSzogz5Uk1zTJC_CGHMbDHzR55Cm6dbRtTNpB_vvbemYOPDpjrvf991xh9A9wS-EcP5KGDDOJKdYQiQYvUDDrhRyRsjlKZd8gG6832BMOHB6jQZAY84jEQ3R46KsnTZOl7kugul0FuRlUK9tQImvg4kt68YdbtFVpgtv745xhL7ep5-Tebj8mC0m42VoGMg6BGmYiDFkItFMRsxQjoVMrCRMGM10qjGkONaYZ4k1VMSQJBkwCwkGEqcMRuit9901ydamxna7FWrn8q12B1XpXP3tlPlaraq94hHlhMnW4Lk3WJ_J5uOl6mq4vZfAIPekZZ-Ow1z13Vhfq23ujS0KXdqq8YpGNJJScsZb9OEM3VSNK9tTtBRgACkFtBTuKeMq753NThsQrLp3qfN3tZKwl3i9sr-m__I_NriPeg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2430339983</pqid></control><display><type>article</type><title>Intracranial EEG in the 21st Century</title><source>Sage Journals GOLD Open Access 2024</source><source>Wiley Online Library Journals Frontfile Complete</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Jobst, Barbara C. ; Bartolomei, Fabrice ; Diehl, Beate ; Frauscher, Birgit ; Kahane, Philippe ; Minotti, Lorella ; Sharan, Ashwini ; Tardy, Nastasia ; Worrell, Gregory ; Gotman, Jean</creator><creatorcontrib>Jobst, Barbara C. ; Bartolomei, Fabrice ; Diehl, Beate ; Frauscher, Birgit ; Kahane, Philippe ; Minotti, Lorella ; Sharan, Ashwini ; Tardy, Nastasia ; Worrell, Gregory ; Gotman, Jean</creatorcontrib><description>Intracranial electroencephalography (iEEG) has been the mainstay of identifying the seizure onset zone (SOZ), a key diagnostic procedure in addition to neuroimaging when considering epilepsy surgery. In many patients, iEEG has been the basis for resective epilepsy surgery, to date still the most successful treatment for drug-resistant epilepsy. Intracranial EEG determines the location and resectability of the SOZ. Advances in recording and implantation of iEEG provide multiple options in the 21st century. This not only includes the choice between subdural electrodes (SDE) and stereoelectroencephalography (SEEG) but also includes the implantation and recordings from microelectrodes. Before iEEG implantation, especially in magnetic resonance imaging -negative epilepsy, a clear hypothesis for seizure generation and propagation should be based on noninvasive methods. Intracranial EEG implantation should be planned by a multidisciplinary team considering epileptic networks. Recordings from SDE and SEEG have both their advantages and disadvantages. Stereo-EEG seems to have a lower rate of complications that are clinically significant, but has limitations in spatial sampling of the cortical surface. Stereo-EEG can sample deeper areas of the brain including deep sulci and hard to reach areas such as the insula.  To determine the epileptogenic zone, interictal and ictal information should be taken into consideration. Interictal spiking, low frequency slowing, as well as high frequency oscillations may inform about the epileptogenic zone. Ictally, high frequency onsets in the beta/gamma range are usually associated with the SOZ, but specialized recordings with combined macro and microelectrodes may in the future educate us about onset in higher frequency bands. Stimulation of intracranial electrodes triggering habitual seizures can assist in identifying the SOZ. Advanced computational methods such as determining the epileptogenicity index and similar measures may enhance standard clinical interpretation. Improved techniques to record and interpret iEEG may in the future lead to a greater proportion of patients being seizure free after epilepsy surgery.</description><identifier>ISSN: 1535-7597</identifier><identifier>EISSN: 1535-7511</identifier><identifier>EISSN: 1535-7597</identifier><identifier>DOI: 10.1177/1535759720934852</identifier><identifier>PMID: 32677484</identifier><language>eng</language><publisher>Los Angeles, CA: SAGE Publications</publisher><subject>21st century ; Cognitive science ; Computational neuroscience ; Convulsions &amp; seizures ; Current Review in Clinical Science ; Drug resistance ; EEG ; Electrodes ; Electroencephalography ; Epilepsy ; Magnetic resonance imaging ; Microelectrodes ; Neuroimaging ; Neuroscience ; Oscillations ; Patients ; Seizures ; Surgery</subject><ispartof>Epilepsy currents, 2020-07, Vol.20 (4), p.180-188</ispartof><rights>The Author(s) 2020</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><rights>The Author(s) 2020 2020 SAGE Publications</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c539t-39c58603f8ba5945c27089be9158ca5ada03d06a07fbec2863bbf35e3b0316d53</citedby><cites>FETCH-LOGICAL-c539t-39c58603f8ba5945c27089be9158ca5ada03d06a07fbec2863bbf35e3b0316d53</cites><orcidid>0000-0001-9243-2238 ; 0000-0002-9796-5946 ; 0000-0002-1678-0297 ; 0000-0003-2916-0553</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7427159/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7427159/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,21965,27852,27923,27924,44944,45332,53790,53792</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03578039$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Jobst, Barbara C.</creatorcontrib><creatorcontrib>Bartolomei, Fabrice</creatorcontrib><creatorcontrib>Diehl, Beate</creatorcontrib><creatorcontrib>Frauscher, Birgit</creatorcontrib><creatorcontrib>Kahane, Philippe</creatorcontrib><creatorcontrib>Minotti, Lorella</creatorcontrib><creatorcontrib>Sharan, Ashwini</creatorcontrib><creatorcontrib>Tardy, Nastasia</creatorcontrib><creatorcontrib>Worrell, Gregory</creatorcontrib><creatorcontrib>Gotman, Jean</creatorcontrib><title>Intracranial EEG in the 21st Century</title><title>Epilepsy currents</title><description>Intracranial electroencephalography (iEEG) has been the mainstay of identifying the seizure onset zone (SOZ), a key diagnostic procedure in addition to neuroimaging when considering epilepsy surgery. In many patients, iEEG has been the basis for resective epilepsy surgery, to date still the most successful treatment for drug-resistant epilepsy. Intracranial EEG determines the location and resectability of the SOZ. Advances in recording and implantation of iEEG provide multiple options in the 21st century. This not only includes the choice between subdural electrodes (SDE) and stereoelectroencephalography (SEEG) but also includes the implantation and recordings from microelectrodes. Before iEEG implantation, especially in magnetic resonance imaging -negative epilepsy, a clear hypothesis for seizure generation and propagation should be based on noninvasive methods. Intracranial EEG implantation should be planned by a multidisciplinary team considering epileptic networks. Recordings from SDE and SEEG have both their advantages and disadvantages. Stereo-EEG seems to have a lower rate of complications that are clinically significant, but has limitations in spatial sampling of the cortical surface. Stereo-EEG can sample deeper areas of the brain including deep sulci and hard to reach areas such as the insula.  To determine the epileptogenic zone, interictal and ictal information should be taken into consideration. Interictal spiking, low frequency slowing, as well as high frequency oscillations may inform about the epileptogenic zone. Ictally, high frequency onsets in the beta/gamma range are usually associated with the SOZ, but specialized recordings with combined macro and microelectrodes may in the future educate us about onset in higher frequency bands. Stimulation of intracranial electrodes triggering habitual seizures can assist in identifying the SOZ. Advanced computational methods such as determining the epileptogenicity index and similar measures may enhance standard clinical interpretation. Improved techniques to record and interpret iEEG may in the future lead to a greater proportion of patients being seizure free after epilepsy surgery.</description><subject>21st century</subject><subject>Cognitive science</subject><subject>Computational neuroscience</subject><subject>Convulsions &amp; seizures</subject><subject>Current Review in Clinical Science</subject><subject>Drug resistance</subject><subject>EEG</subject><subject>Electrodes</subject><subject>Electroencephalography</subject><subject>Epilepsy</subject><subject>Magnetic resonance imaging</subject><subject>Microelectrodes</subject><subject>Neuroimaging</subject><subject>Neuroscience</subject><subject>Oscillations</subject><subject>Patients</subject><subject>Seizures</subject><subject>Surgery</subject><issn>1535-7597</issn><issn>1535-7511</issn><issn>1535-7597</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AFRWT</sourceid><recordid>eNp1kdFLwzAQxoMobk7ffSzogz5Uk1zTJC_CGHMbDHzR55Cm6dbRtTNpB_vvbemYOPDpjrvf991xh9A9wS-EcP5KGDDOJKdYQiQYvUDDrhRyRsjlKZd8gG6832BMOHB6jQZAY84jEQ3R46KsnTZOl7kugul0FuRlUK9tQImvg4kt68YdbtFVpgtv745xhL7ep5-Tebj8mC0m42VoGMg6BGmYiDFkItFMRsxQjoVMrCRMGM10qjGkONaYZ4k1VMSQJBkwCwkGEqcMRuit9901ydamxna7FWrn8q12B1XpXP3tlPlaraq94hHlhMnW4Lk3WJ_J5uOl6mq4vZfAIPekZZ-Ow1z13Vhfq23ujS0KXdqq8YpGNJJScsZb9OEM3VSNK9tTtBRgACkFtBTuKeMq753NThsQrLp3qfN3tZKwl3i9sr-m__I_NriPeg</recordid><startdate>20200701</startdate><enddate>20200701</enddate><creator>Jobst, Barbara C.</creator><creator>Bartolomei, Fabrice</creator><creator>Diehl, Beate</creator><creator>Frauscher, Birgit</creator><creator>Kahane, Philippe</creator><creator>Minotti, Lorella</creator><creator>Sharan, Ashwini</creator><creator>Tardy, Nastasia</creator><creator>Worrell, Gregory</creator><creator>Gotman, Jean</creator><general>SAGE Publications</general><general>Sage Publications Ltd</general><general>Wiley</general><scope>AFRWT</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-9243-2238</orcidid><orcidid>https://orcid.org/0000-0002-9796-5946</orcidid><orcidid>https://orcid.org/0000-0002-1678-0297</orcidid><orcidid>https://orcid.org/0000-0003-2916-0553</orcidid></search><sort><creationdate>20200701</creationdate><title>Intracranial EEG in the 21st Century</title><author>Jobst, Barbara C. ; Bartolomei, Fabrice ; Diehl, Beate ; Frauscher, Birgit ; Kahane, Philippe ; Minotti, Lorella ; Sharan, Ashwini ; Tardy, Nastasia ; Worrell, Gregory ; Gotman, Jean</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c539t-39c58603f8ba5945c27089be9158ca5ada03d06a07fbec2863bbf35e3b0316d53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>21st century</topic><topic>Cognitive science</topic><topic>Computational neuroscience</topic><topic>Convulsions &amp; seizures</topic><topic>Current Review in Clinical Science</topic><topic>Drug resistance</topic><topic>EEG</topic><topic>Electrodes</topic><topic>Electroencephalography</topic><topic>Epilepsy</topic><topic>Magnetic resonance imaging</topic><topic>Microelectrodes</topic><topic>Neuroimaging</topic><topic>Neuroscience</topic><topic>Oscillations</topic><topic>Patients</topic><topic>Seizures</topic><topic>Surgery</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jobst, Barbara C.</creatorcontrib><creatorcontrib>Bartolomei, Fabrice</creatorcontrib><creatorcontrib>Diehl, Beate</creatorcontrib><creatorcontrib>Frauscher, Birgit</creatorcontrib><creatorcontrib>Kahane, Philippe</creatorcontrib><creatorcontrib>Minotti, Lorella</creatorcontrib><creatorcontrib>Sharan, Ashwini</creatorcontrib><creatorcontrib>Tardy, Nastasia</creatorcontrib><creatorcontrib>Worrell, Gregory</creatorcontrib><creatorcontrib>Gotman, Jean</creatorcontrib><collection>Sage Journals GOLD Open Access 2024</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Epilepsy currents</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jobst, Barbara C.</au><au>Bartolomei, Fabrice</au><au>Diehl, Beate</au><au>Frauscher, Birgit</au><au>Kahane, Philippe</au><au>Minotti, Lorella</au><au>Sharan, Ashwini</au><au>Tardy, Nastasia</au><au>Worrell, Gregory</au><au>Gotman, Jean</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Intracranial EEG in the 21st Century</atitle><jtitle>Epilepsy currents</jtitle><date>2020-07-01</date><risdate>2020</risdate><volume>20</volume><issue>4</issue><spage>180</spage><epage>188</epage><pages>180-188</pages><issn>1535-7597</issn><eissn>1535-7511</eissn><eissn>1535-7597</eissn><abstract>Intracranial electroencephalography (iEEG) has been the mainstay of identifying the seizure onset zone (SOZ), a key diagnostic procedure in addition to neuroimaging when considering epilepsy surgery. In many patients, iEEG has been the basis for resective epilepsy surgery, to date still the most successful treatment for drug-resistant epilepsy. Intracranial EEG determines the location and resectability of the SOZ. Advances in recording and implantation of iEEG provide multiple options in the 21st century. This not only includes the choice between subdural electrodes (SDE) and stereoelectroencephalography (SEEG) but also includes the implantation and recordings from microelectrodes. Before iEEG implantation, especially in magnetic resonance imaging -negative epilepsy, a clear hypothesis for seizure generation and propagation should be based on noninvasive methods. Intracranial EEG implantation should be planned by a multidisciplinary team considering epileptic networks. Recordings from SDE and SEEG have both their advantages and disadvantages. Stereo-EEG seems to have a lower rate of complications that are clinically significant, but has limitations in spatial sampling of the cortical surface. Stereo-EEG can sample deeper areas of the brain including deep sulci and hard to reach areas such as the insula.  To determine the epileptogenic zone, interictal and ictal information should be taken into consideration. Interictal spiking, low frequency slowing, as well as high frequency oscillations may inform about the epileptogenic zone. Ictally, high frequency onsets in the beta/gamma range are usually associated with the SOZ, but specialized recordings with combined macro and microelectrodes may in the future educate us about onset in higher frequency bands. Stimulation of intracranial electrodes triggering habitual seizures can assist in identifying the SOZ. Advanced computational methods such as determining the epileptogenicity index and similar measures may enhance standard clinical interpretation. Improved techniques to record and interpret iEEG may in the future lead to a greater proportion of patients being seizure free after epilepsy surgery.</abstract><cop>Los Angeles, CA</cop><pub>SAGE Publications</pub><pmid>32677484</pmid><doi>10.1177/1535759720934852</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-9243-2238</orcidid><orcidid>https://orcid.org/0000-0002-9796-5946</orcidid><orcidid>https://orcid.org/0000-0002-1678-0297</orcidid><orcidid>https://orcid.org/0000-0003-2916-0553</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1535-7597
ispartof Epilepsy currents, 2020-07, Vol.20 (4), p.180-188
issn 1535-7597
1535-7511
1535-7597
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7427159
source Sage Journals GOLD Open Access 2024; Wiley Online Library Journals Frontfile Complete; EZB-FREE-00999 freely available EZB journals; PubMed Central
subjects 21st century
Cognitive science
Computational neuroscience
Convulsions & seizures
Current Review in Clinical Science
Drug resistance
EEG
Electrodes
Electroencephalography
Epilepsy
Magnetic resonance imaging
Microelectrodes
Neuroimaging
Neuroscience
Oscillations
Patients
Seizures
Surgery
title Intracranial EEG in the 21st Century
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T07%3A00%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Intracranial%20EEG%20in%20the%2021st%20Century&rft.jtitle=Epilepsy%20currents&rft.au=Jobst,%20Barbara%20C.&rft.date=2020-07-01&rft.volume=20&rft.issue=4&rft.spage=180&rft.epage=188&rft.pages=180-188&rft.issn=1535-7597&rft.eissn=1535-7511&rft_id=info:doi/10.1177/1535759720934852&rft_dat=%3Cproquest_pubme%3E2430339983%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2430339983&rft_id=info:pmid/32677484&rft_sage_id=10.1177_1535759720934852&rfr_iscdi=true