Zero or not? Causes and consequences of zero‐flow stream gage readings

Streamflow observations can be used to understand, predict, and contextualize hydrologic, ecological, and biogeochemical processes and conditions in streams. Stream gages are point measurements along rivers where streamflow is measured, and are often used to infer upstream watershed‐scale processes....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Wiley interdisciplinary reviews. Water 2020-05, Vol.7 (3), p.e1436-n/a
Hauptverfasser: Zimmer, Margaret A., Kaiser, Kendra E., Blaszczak, Joanna R., Zipper, Samuel C., Hammond, John C., Fritz, Ken M., Costigan, Katie H., Hosen, Jacob, Godsey, Sarah E., Allen, George H., Kampf, Stephanie, Burrows, Ryan M., Krabbenhoft, Corey A., Dodds, Walter, Hale, Rebecca, Olden, Julian D., Shanafield, Margaret, DelVecchia, Amanda G., Ward, Adam S., Mims, Meryl C., Datry, Thibault, Bogan, Michael T., Boersma, Kate S., Busch, Michelle H., Jones, C. Nathan, Burgin, Amy J., Allen, Daniel C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 3
container_start_page e1436
container_title Wiley interdisciplinary reviews. Water
container_volume 7
creator Zimmer, Margaret A.
Kaiser, Kendra E.
Blaszczak, Joanna R.
Zipper, Samuel C.
Hammond, John C.
Fritz, Ken M.
Costigan, Katie H.
Hosen, Jacob
Godsey, Sarah E.
Allen, George H.
Kampf, Stephanie
Burrows, Ryan M.
Krabbenhoft, Corey A.
Dodds, Walter
Hale, Rebecca
Olden, Julian D.
Shanafield, Margaret
DelVecchia, Amanda G.
Ward, Adam S.
Mims, Meryl C.
Datry, Thibault
Bogan, Michael T.
Boersma, Kate S.
Busch, Michelle H.
Jones, C. Nathan
Burgin, Amy J.
Allen, Daniel C.
description Streamflow observations can be used to understand, predict, and contextualize hydrologic, ecological, and biogeochemical processes and conditions in streams. Stream gages are point measurements along rivers where streamflow is measured, and are often used to infer upstream watershed‐scale processes. When stream gages read zero, this may indicate that the stream has dried at this location; however, zero‐flow readings can also be caused by a wide range of other factors. Our ability to identify whether or not a zero‐flow gage reading indicates a dry fluvial system has far reaching environmental implications. Incorrect identification and interpretation by the data user can lead to inaccurate hydrologic, ecological, and/or biogeochemical predictions from models and analyses. Here, we describe several causes of zero‐flow gage readings: frozen surface water, flow reversals, instrument error, and natural or human‐driven upstream source losses or bypass flow. For these examples, we discuss the implications of zero‐flow interpretations. We also highlight additional methods for determining flow presence, including direct observations, statistical methods, and hydrologic models, which can be applied to interpret causes of zero‐flow gage readings and implications for reach‐ and watershed‐scale dynamics. Such efforts are necessary to improve our ability to understand and predict surface flow activation, cessation, and connectivity across river networks. Developing this integrated understanding of the wide range of possible meanings of zero‐flows will only attain greater importance in a more variable and changing hydrologic climate. This article is categorized under: Science of Water > Methods Science of Water > Hydrological Processes Water and Life > Conservation, Management, and Awareness Common scenarios of zero‐flow readings at gages that may be misinterpreted without stream conditions or network‐scale context. Many of these scenarios have distinct natural and anthropogenic drivers as well as implications for local and network‐scale stream ecosystems and hydrology.
doi_str_mv 10.1002/wat2.1436
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7425737</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2434755572</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5436-d8fb35484689226d4da4d1f0251ed7b4deb0db352064bb8c8410938ae38423fe3</originalsourceid><addsrcrecordid>eNp1kc1uEzEUhUeIilalC14AWbChi7TXfzOeDSiKSoMUiU0REhvLY99JpprYxZ5pVFY8As_Ik-A0bSmVWPnq-tPx8TlF8YrCCQVgpxszsBMqePmsOGAg6gmthXr-aN4vjlK6BABKQfJavij2OVPAOCsPivk3jIGESHwYPpCZGRMmYrwjNviE30f0Ni9CS35k7vfPX20fNiQNEc2aLM0SSZ5c55fpZbHXmj7h0d15WHz5eHYxm08Wn88_zaaLiZXZ48SptuFSKFGqmrHSCWeEoy0wSdFVjXDYgMsEg1I0jbJKUKi5MsiVYLxFfli83-lejc0anUU_RNPrq9itTbzRwXT63xvfrfQyXOtKMFnxKgu82QmENHQ62W5Au8q_9WgHTUtacg4ZOt5Bqyfa8-lCb3fAapBCqGua2Xd3jmLIgaVBr7tkse-NxzAmzQQXlZSyYhl9-wS9DGP0OS_NcjNU1BzY38dtDClFbB8cUNDbzvW2c73tPLOvH8fxQN43nIHTHbDperz5v5L-Or1gt5J_APIstEY</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2395149302</pqid></control><display><type>article</type><title>Zero or not? Causes and consequences of zero‐flow stream gage readings</title><source>Access via Wiley Online Library</source><creator>Zimmer, Margaret A. ; Kaiser, Kendra E. ; Blaszczak, Joanna R. ; Zipper, Samuel C. ; Hammond, John C. ; Fritz, Ken M. ; Costigan, Katie H. ; Hosen, Jacob ; Godsey, Sarah E. ; Allen, George H. ; Kampf, Stephanie ; Burrows, Ryan M. ; Krabbenhoft, Corey A. ; Dodds, Walter ; Hale, Rebecca ; Olden, Julian D. ; Shanafield, Margaret ; DelVecchia, Amanda G. ; Ward, Adam S. ; Mims, Meryl C. ; Datry, Thibault ; Bogan, Michael T. ; Boersma, Kate S. ; Busch, Michelle H. ; Jones, C. Nathan ; Burgin, Amy J. ; Allen, Daniel C.</creator><creatorcontrib>Zimmer, Margaret A. ; Kaiser, Kendra E. ; Blaszczak, Joanna R. ; Zipper, Samuel C. ; Hammond, John C. ; Fritz, Ken M. ; Costigan, Katie H. ; Hosen, Jacob ; Godsey, Sarah E. ; Allen, George H. ; Kampf, Stephanie ; Burrows, Ryan M. ; Krabbenhoft, Corey A. ; Dodds, Walter ; Hale, Rebecca ; Olden, Julian D. ; Shanafield, Margaret ; DelVecchia, Amanda G. ; Ward, Adam S. ; Mims, Meryl C. ; Datry, Thibault ; Bogan, Michael T. ; Boersma, Kate S. ; Busch, Michelle H. ; Jones, C. Nathan ; Burgin, Amy J. ; Allen, Daniel C.</creatorcontrib><description>Streamflow observations can be used to understand, predict, and contextualize hydrologic, ecological, and biogeochemical processes and conditions in streams. Stream gages are point measurements along rivers where streamflow is measured, and are often used to infer upstream watershed‐scale processes. When stream gages read zero, this may indicate that the stream has dried at this location; however, zero‐flow readings can also be caused by a wide range of other factors. Our ability to identify whether or not a zero‐flow gage reading indicates a dry fluvial system has far reaching environmental implications. Incorrect identification and interpretation by the data user can lead to inaccurate hydrologic, ecological, and/or biogeochemical predictions from models and analyses. Here, we describe several causes of zero‐flow gage readings: frozen surface water, flow reversals, instrument error, and natural or human‐driven upstream source losses or bypass flow. For these examples, we discuss the implications of zero‐flow interpretations. We also highlight additional methods for determining flow presence, including direct observations, statistical methods, and hydrologic models, which can be applied to interpret causes of zero‐flow gage readings and implications for reach‐ and watershed‐scale dynamics. Such efforts are necessary to improve our ability to understand and predict surface flow activation, cessation, and connectivity across river networks. Developing this integrated understanding of the wide range of possible meanings of zero‐flows will only attain greater importance in a more variable and changing hydrologic climate. This article is categorized under: Science of Water &gt; Methods Science of Water &gt; Hydrological Processes Water and Life &gt; Conservation, Management, and Awareness Common scenarios of zero‐flow readings at gages that may be misinterpreted without stream conditions or network‐scale context. Many of these scenarios have distinct natural and anthropogenic drivers as well as implications for local and network‐scale stream ecosystems and hydrology.</description><identifier>ISSN: 2049-1948</identifier><identifier>EISSN: 2049-1948</identifier><identifier>DOI: 10.1002/wat2.1436</identifier><identifier>PMID: 32802326</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley &amp; Sons, Inc</publisher><subject>aquatic network ; Biodiversity and Ecology ; Biogeochemistry ; Climate change ; Discharge measurement ; Earth Sciences ; Environmental Sciences ; Gauges ; Hydrologic data ; Hydrologic models ; Hydrology ; Instrument errors ; Mathematical models ; non‐perennial ; River networks ; Rivers ; Sciences of the Universe ; Statistical analysis ; Statistical methods ; Stream discharge ; Stream flow ; stream gages ; streamflow ; Streams ; Surface flow ; Surface water ; Upstream ; Water conservation ; Water flow ; Watersheds ; zero flow</subject><ispartof>Wiley interdisciplinary reviews. Water, 2020-05, Vol.7 (3), p.e1436-n/a</ispartof><rights>2020 Wiley Periodicals, Inc.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5436-d8fb35484689226d4da4d1f0251ed7b4deb0db352064bb8c8410938ae38423fe3</citedby><cites>FETCH-LOGICAL-c5436-d8fb35484689226d4da4d1f0251ed7b4deb0db352064bb8c8410938ae38423fe3</cites><orcidid>0000-0002-6666-8930 ; 0000-0001-8287-1923 ; 0000-0002-3831-2531 ; 0000-0001-8301-5301 ; 0000-0001-6529-7886 ; 0000-0003-4536-3000 ; 0000-0003-1390-6736 ; 0000-0003-1710-1548 ; 0000-0003-0570-988X ; 0000-0002-3552-3691 ; 0000-0002-5706-7439 ; 0000-0001-5122-0829 ; 0000-0002-2630-8287 ; 0000-0002-4935-0736 ; 0000-0002-0707-3283 ; 0000-0003-1773-6236 ; 0000-0003-4252-5991 ; 0000-0002-6376-0061 ; 0000-0002-8735-5757 ; 0000-0002-8150-8476 ; 0000-0002-0451-0564 ; 0000-0003-2143-1187 ; 0000-0001-8991-2679 ; 0000-0002-5804-0510 ; 0000-0003-2559-0687 ; 0000-0002-3296-1864 ; 0000-0001-8489-4002 ; 0000000204510564 ; 0000000266668930 ; 0000000325590687 ; 0000000345363000 ; 0000000321431187 ; 0000000342525991 ; 0000000151220829 ; 0000000317101548 ; 0000000235523691 ; 0000000313906736 ; 0000000182871923 ; 0000000207073283 ; 0000000165297886 ; 0000000258040510 ; 000000030570988X ; 0000000184894002 ; 0000000317736236 ; 0000000263760061 ; 0000000249350736 ; 0000000257067439 ; 0000000189912679 ; 0000000287355757 ; 0000000183015301 ; 0000000226308287 ; 0000000281508476 ; 0000000232961864 ; 0000000238312531</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fwat2.1436$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fwat2.1436$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,780,784,885,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32802326$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-02905448$$DView record in HAL$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1616330$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Zimmer, Margaret A.</creatorcontrib><creatorcontrib>Kaiser, Kendra E.</creatorcontrib><creatorcontrib>Blaszczak, Joanna R.</creatorcontrib><creatorcontrib>Zipper, Samuel C.</creatorcontrib><creatorcontrib>Hammond, John C.</creatorcontrib><creatorcontrib>Fritz, Ken M.</creatorcontrib><creatorcontrib>Costigan, Katie H.</creatorcontrib><creatorcontrib>Hosen, Jacob</creatorcontrib><creatorcontrib>Godsey, Sarah E.</creatorcontrib><creatorcontrib>Allen, George H.</creatorcontrib><creatorcontrib>Kampf, Stephanie</creatorcontrib><creatorcontrib>Burrows, Ryan M.</creatorcontrib><creatorcontrib>Krabbenhoft, Corey A.</creatorcontrib><creatorcontrib>Dodds, Walter</creatorcontrib><creatorcontrib>Hale, Rebecca</creatorcontrib><creatorcontrib>Olden, Julian D.</creatorcontrib><creatorcontrib>Shanafield, Margaret</creatorcontrib><creatorcontrib>DelVecchia, Amanda G.</creatorcontrib><creatorcontrib>Ward, Adam S.</creatorcontrib><creatorcontrib>Mims, Meryl C.</creatorcontrib><creatorcontrib>Datry, Thibault</creatorcontrib><creatorcontrib>Bogan, Michael T.</creatorcontrib><creatorcontrib>Boersma, Kate S.</creatorcontrib><creatorcontrib>Busch, Michelle H.</creatorcontrib><creatorcontrib>Jones, C. Nathan</creatorcontrib><creatorcontrib>Burgin, Amy J.</creatorcontrib><creatorcontrib>Allen, Daniel C.</creatorcontrib><title>Zero or not? Causes and consequences of zero‐flow stream gage readings</title><title>Wiley interdisciplinary reviews. Water</title><addtitle>WIREs Water</addtitle><description>Streamflow observations can be used to understand, predict, and contextualize hydrologic, ecological, and biogeochemical processes and conditions in streams. Stream gages are point measurements along rivers where streamflow is measured, and are often used to infer upstream watershed‐scale processes. When stream gages read zero, this may indicate that the stream has dried at this location; however, zero‐flow readings can also be caused by a wide range of other factors. Our ability to identify whether or not a zero‐flow gage reading indicates a dry fluvial system has far reaching environmental implications. Incorrect identification and interpretation by the data user can lead to inaccurate hydrologic, ecological, and/or biogeochemical predictions from models and analyses. Here, we describe several causes of zero‐flow gage readings: frozen surface water, flow reversals, instrument error, and natural or human‐driven upstream source losses or bypass flow. For these examples, we discuss the implications of zero‐flow interpretations. We also highlight additional methods for determining flow presence, including direct observations, statistical methods, and hydrologic models, which can be applied to interpret causes of zero‐flow gage readings and implications for reach‐ and watershed‐scale dynamics. Such efforts are necessary to improve our ability to understand and predict surface flow activation, cessation, and connectivity across river networks. Developing this integrated understanding of the wide range of possible meanings of zero‐flows will only attain greater importance in a more variable and changing hydrologic climate. This article is categorized under: Science of Water &gt; Methods Science of Water &gt; Hydrological Processes Water and Life &gt; Conservation, Management, and Awareness Common scenarios of zero‐flow readings at gages that may be misinterpreted without stream conditions or network‐scale context. Many of these scenarios have distinct natural and anthropogenic drivers as well as implications for local and network‐scale stream ecosystems and hydrology.</description><subject>aquatic network</subject><subject>Biodiversity and Ecology</subject><subject>Biogeochemistry</subject><subject>Climate change</subject><subject>Discharge measurement</subject><subject>Earth Sciences</subject><subject>Environmental Sciences</subject><subject>Gauges</subject><subject>Hydrologic data</subject><subject>Hydrologic models</subject><subject>Hydrology</subject><subject>Instrument errors</subject><subject>Mathematical models</subject><subject>non‐perennial</subject><subject>River networks</subject><subject>Rivers</subject><subject>Sciences of the Universe</subject><subject>Statistical analysis</subject><subject>Statistical methods</subject><subject>Stream discharge</subject><subject>Stream flow</subject><subject>stream gages</subject><subject>streamflow</subject><subject>Streams</subject><subject>Surface flow</subject><subject>Surface water</subject><subject>Upstream</subject><subject>Water conservation</subject><subject>Water flow</subject><subject>Watersheds</subject><subject>zero flow</subject><issn>2049-1948</issn><issn>2049-1948</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kc1uEzEUhUeIilalC14AWbChi7TXfzOeDSiKSoMUiU0REhvLY99JpprYxZ5pVFY8As_Ik-A0bSmVWPnq-tPx8TlF8YrCCQVgpxszsBMqePmsOGAg6gmthXr-aN4vjlK6BABKQfJavij2OVPAOCsPivk3jIGESHwYPpCZGRMmYrwjNviE30f0Ni9CS35k7vfPX20fNiQNEc2aLM0SSZ5c55fpZbHXmj7h0d15WHz5eHYxm08Wn88_zaaLiZXZ48SptuFSKFGqmrHSCWeEoy0wSdFVjXDYgMsEg1I0jbJKUKi5MsiVYLxFfli83-lejc0anUU_RNPrq9itTbzRwXT63xvfrfQyXOtKMFnxKgu82QmENHQ62W5Au8q_9WgHTUtacg4ZOt5Bqyfa8-lCb3fAapBCqGua2Xd3jmLIgaVBr7tkse-NxzAmzQQXlZSyYhl9-wS9DGP0OS_NcjNU1BzY38dtDClFbB8cUNDbzvW2c73tPLOvH8fxQN43nIHTHbDperz5v5L-Or1gt5J_APIstEY</recordid><startdate>202005</startdate><enddate>202005</enddate><creator>Zimmer, Margaret A.</creator><creator>Kaiser, Kendra E.</creator><creator>Blaszczak, Joanna R.</creator><creator>Zipper, Samuel C.</creator><creator>Hammond, John C.</creator><creator>Fritz, Ken M.</creator><creator>Costigan, Katie H.</creator><creator>Hosen, Jacob</creator><creator>Godsey, Sarah E.</creator><creator>Allen, George H.</creator><creator>Kampf, Stephanie</creator><creator>Burrows, Ryan M.</creator><creator>Krabbenhoft, Corey A.</creator><creator>Dodds, Walter</creator><creator>Hale, Rebecca</creator><creator>Olden, Julian D.</creator><creator>Shanafield, Margaret</creator><creator>DelVecchia, Amanda G.</creator><creator>Ward, Adam S.</creator><creator>Mims, Meryl C.</creator><creator>Datry, Thibault</creator><creator>Bogan, Michael T.</creator><creator>Boersma, Kate S.</creator><creator>Busch, Michelle H.</creator><creator>Jones, C. Nathan</creator><creator>Burgin, Amy J.</creator><creator>Allen, Daniel C.</creator><general>John Wiley &amp; Sons, Inc</general><general>Wiley Subscription Services, Inc</general><general>Wiley</general><general>Wiley Blackwell (John Wiley &amp; Sons)</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7ST</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H97</scope><scope>L.G</scope><scope>SOI</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><scope>OTOTI</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-6666-8930</orcidid><orcidid>https://orcid.org/0000-0001-8287-1923</orcidid><orcidid>https://orcid.org/0000-0002-3831-2531</orcidid><orcidid>https://orcid.org/0000-0001-8301-5301</orcidid><orcidid>https://orcid.org/0000-0001-6529-7886</orcidid><orcidid>https://orcid.org/0000-0003-4536-3000</orcidid><orcidid>https://orcid.org/0000-0003-1390-6736</orcidid><orcidid>https://orcid.org/0000-0003-1710-1548</orcidid><orcidid>https://orcid.org/0000-0003-0570-988X</orcidid><orcidid>https://orcid.org/0000-0002-3552-3691</orcidid><orcidid>https://orcid.org/0000-0002-5706-7439</orcidid><orcidid>https://orcid.org/0000-0001-5122-0829</orcidid><orcidid>https://orcid.org/0000-0002-2630-8287</orcidid><orcidid>https://orcid.org/0000-0002-4935-0736</orcidid><orcidid>https://orcid.org/0000-0002-0707-3283</orcidid><orcidid>https://orcid.org/0000-0003-1773-6236</orcidid><orcidid>https://orcid.org/0000-0003-4252-5991</orcidid><orcidid>https://orcid.org/0000-0002-6376-0061</orcidid><orcidid>https://orcid.org/0000-0002-8735-5757</orcidid><orcidid>https://orcid.org/0000-0002-8150-8476</orcidid><orcidid>https://orcid.org/0000-0002-0451-0564</orcidid><orcidid>https://orcid.org/0000-0003-2143-1187</orcidid><orcidid>https://orcid.org/0000-0001-8991-2679</orcidid><orcidid>https://orcid.org/0000-0002-5804-0510</orcidid><orcidid>https://orcid.org/0000-0003-2559-0687</orcidid><orcidid>https://orcid.org/0000-0002-3296-1864</orcidid><orcidid>https://orcid.org/0000-0001-8489-4002</orcidid><orcidid>https://orcid.org/0000000204510564</orcidid><orcidid>https://orcid.org/0000000266668930</orcidid><orcidid>https://orcid.org/0000000325590687</orcidid><orcidid>https://orcid.org/0000000345363000</orcidid><orcidid>https://orcid.org/0000000321431187</orcidid><orcidid>https://orcid.org/0000000342525991</orcidid><orcidid>https://orcid.org/0000000151220829</orcidid><orcidid>https://orcid.org/0000000317101548</orcidid><orcidid>https://orcid.org/0000000235523691</orcidid><orcidid>https://orcid.org/0000000313906736</orcidid><orcidid>https://orcid.org/0000000182871923</orcidid><orcidid>https://orcid.org/0000000207073283</orcidid><orcidid>https://orcid.org/0000000165297886</orcidid><orcidid>https://orcid.org/0000000258040510</orcidid><orcidid>https://orcid.org/000000030570988X</orcidid><orcidid>https://orcid.org/0000000184894002</orcidid><orcidid>https://orcid.org/0000000317736236</orcidid><orcidid>https://orcid.org/0000000263760061</orcidid><orcidid>https://orcid.org/0000000249350736</orcidid><orcidid>https://orcid.org/0000000257067439</orcidid><orcidid>https://orcid.org/0000000189912679</orcidid><orcidid>https://orcid.org/0000000287355757</orcidid><orcidid>https://orcid.org/0000000183015301</orcidid><orcidid>https://orcid.org/0000000226308287</orcidid><orcidid>https://orcid.org/0000000281508476</orcidid><orcidid>https://orcid.org/0000000232961864</orcidid><orcidid>https://orcid.org/0000000238312531</orcidid></search><sort><creationdate>202005</creationdate><title>Zero or not? Causes and consequences of zero‐flow stream gage readings</title><author>Zimmer, Margaret A. ; Kaiser, Kendra E. ; Blaszczak, Joanna R. ; Zipper, Samuel C. ; Hammond, John C. ; Fritz, Ken M. ; Costigan, Katie H. ; Hosen, Jacob ; Godsey, Sarah E. ; Allen, George H. ; Kampf, Stephanie ; Burrows, Ryan M. ; Krabbenhoft, Corey A. ; Dodds, Walter ; Hale, Rebecca ; Olden, Julian D. ; Shanafield, Margaret ; DelVecchia, Amanda G. ; Ward, Adam S. ; Mims, Meryl C. ; Datry, Thibault ; Bogan, Michael T. ; Boersma, Kate S. ; Busch, Michelle H. ; Jones, C. Nathan ; Burgin, Amy J. ; Allen, Daniel C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5436-d8fb35484689226d4da4d1f0251ed7b4deb0db352064bb8c8410938ae38423fe3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>aquatic network</topic><topic>Biodiversity and Ecology</topic><topic>Biogeochemistry</topic><topic>Climate change</topic><topic>Discharge measurement</topic><topic>Earth Sciences</topic><topic>Environmental Sciences</topic><topic>Gauges</topic><topic>Hydrologic data</topic><topic>Hydrologic models</topic><topic>Hydrology</topic><topic>Instrument errors</topic><topic>Mathematical models</topic><topic>non‐perennial</topic><topic>River networks</topic><topic>Rivers</topic><topic>Sciences of the Universe</topic><topic>Statistical analysis</topic><topic>Statistical methods</topic><topic>Stream discharge</topic><topic>Stream flow</topic><topic>stream gages</topic><topic>streamflow</topic><topic>Streams</topic><topic>Surface flow</topic><topic>Surface water</topic><topic>Upstream</topic><topic>Water conservation</topic><topic>Water flow</topic><topic>Watersheds</topic><topic>zero flow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zimmer, Margaret A.</creatorcontrib><creatorcontrib>Kaiser, Kendra E.</creatorcontrib><creatorcontrib>Blaszczak, Joanna R.</creatorcontrib><creatorcontrib>Zipper, Samuel C.</creatorcontrib><creatorcontrib>Hammond, John C.</creatorcontrib><creatorcontrib>Fritz, Ken M.</creatorcontrib><creatorcontrib>Costigan, Katie H.</creatorcontrib><creatorcontrib>Hosen, Jacob</creatorcontrib><creatorcontrib>Godsey, Sarah E.</creatorcontrib><creatorcontrib>Allen, George H.</creatorcontrib><creatorcontrib>Kampf, Stephanie</creatorcontrib><creatorcontrib>Burrows, Ryan M.</creatorcontrib><creatorcontrib>Krabbenhoft, Corey A.</creatorcontrib><creatorcontrib>Dodds, Walter</creatorcontrib><creatorcontrib>Hale, Rebecca</creatorcontrib><creatorcontrib>Olden, Julian D.</creatorcontrib><creatorcontrib>Shanafield, Margaret</creatorcontrib><creatorcontrib>DelVecchia, Amanda G.</creatorcontrib><creatorcontrib>Ward, Adam S.</creatorcontrib><creatorcontrib>Mims, Meryl C.</creatorcontrib><creatorcontrib>Datry, Thibault</creatorcontrib><creatorcontrib>Bogan, Michael T.</creatorcontrib><creatorcontrib>Boersma, Kate S.</creatorcontrib><creatorcontrib>Busch, Michelle H.</creatorcontrib><creatorcontrib>Jones, C. Nathan</creatorcontrib><creatorcontrib>Burgin, Amy J.</creatorcontrib><creatorcontrib>Allen, Daniel C.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Aqualine</collection><collection>Environment Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 3: Aquatic Pollution &amp; Environmental Quality</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Wiley interdisciplinary reviews. Water</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zimmer, Margaret A.</au><au>Kaiser, Kendra E.</au><au>Blaszczak, Joanna R.</au><au>Zipper, Samuel C.</au><au>Hammond, John C.</au><au>Fritz, Ken M.</au><au>Costigan, Katie H.</au><au>Hosen, Jacob</au><au>Godsey, Sarah E.</au><au>Allen, George H.</au><au>Kampf, Stephanie</au><au>Burrows, Ryan M.</au><au>Krabbenhoft, Corey A.</au><au>Dodds, Walter</au><au>Hale, Rebecca</au><au>Olden, Julian D.</au><au>Shanafield, Margaret</au><au>DelVecchia, Amanda G.</au><au>Ward, Adam S.</au><au>Mims, Meryl C.</au><au>Datry, Thibault</au><au>Bogan, Michael T.</au><au>Boersma, Kate S.</au><au>Busch, Michelle H.</au><au>Jones, C. Nathan</au><au>Burgin, Amy J.</au><au>Allen, Daniel C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Zero or not? Causes and consequences of zero‐flow stream gage readings</atitle><jtitle>Wiley interdisciplinary reviews. Water</jtitle><addtitle>WIREs Water</addtitle><date>2020-05</date><risdate>2020</risdate><volume>7</volume><issue>3</issue><spage>e1436</spage><epage>n/a</epage><pages>e1436-n/a</pages><issn>2049-1948</issn><eissn>2049-1948</eissn><abstract>Streamflow observations can be used to understand, predict, and contextualize hydrologic, ecological, and biogeochemical processes and conditions in streams. Stream gages are point measurements along rivers where streamflow is measured, and are often used to infer upstream watershed‐scale processes. When stream gages read zero, this may indicate that the stream has dried at this location; however, zero‐flow readings can also be caused by a wide range of other factors. Our ability to identify whether or not a zero‐flow gage reading indicates a dry fluvial system has far reaching environmental implications. Incorrect identification and interpretation by the data user can lead to inaccurate hydrologic, ecological, and/or biogeochemical predictions from models and analyses. Here, we describe several causes of zero‐flow gage readings: frozen surface water, flow reversals, instrument error, and natural or human‐driven upstream source losses or bypass flow. For these examples, we discuss the implications of zero‐flow interpretations. We also highlight additional methods for determining flow presence, including direct observations, statistical methods, and hydrologic models, which can be applied to interpret causes of zero‐flow gage readings and implications for reach‐ and watershed‐scale dynamics. Such efforts are necessary to improve our ability to understand and predict surface flow activation, cessation, and connectivity across river networks. Developing this integrated understanding of the wide range of possible meanings of zero‐flows will only attain greater importance in a more variable and changing hydrologic climate. This article is categorized under: Science of Water &gt; Methods Science of Water &gt; Hydrological Processes Water and Life &gt; Conservation, Management, and Awareness Common scenarios of zero‐flow readings at gages that may be misinterpreted without stream conditions or network‐scale context. Many of these scenarios have distinct natural and anthropogenic drivers as well as implications for local and network‐scale stream ecosystems and hydrology.</abstract><cop>Hoboken, USA</cop><pub>John Wiley &amp; Sons, Inc</pub><pmid>32802326</pmid><doi>10.1002/wat2.1436</doi><tpages>25</tpages><orcidid>https://orcid.org/0000-0002-6666-8930</orcidid><orcidid>https://orcid.org/0000-0001-8287-1923</orcidid><orcidid>https://orcid.org/0000-0002-3831-2531</orcidid><orcidid>https://orcid.org/0000-0001-8301-5301</orcidid><orcidid>https://orcid.org/0000-0001-6529-7886</orcidid><orcidid>https://orcid.org/0000-0003-4536-3000</orcidid><orcidid>https://orcid.org/0000-0003-1390-6736</orcidid><orcidid>https://orcid.org/0000-0003-1710-1548</orcidid><orcidid>https://orcid.org/0000-0003-0570-988X</orcidid><orcidid>https://orcid.org/0000-0002-3552-3691</orcidid><orcidid>https://orcid.org/0000-0002-5706-7439</orcidid><orcidid>https://orcid.org/0000-0001-5122-0829</orcidid><orcidid>https://orcid.org/0000-0002-2630-8287</orcidid><orcidid>https://orcid.org/0000-0002-4935-0736</orcidid><orcidid>https://orcid.org/0000-0002-0707-3283</orcidid><orcidid>https://orcid.org/0000-0003-1773-6236</orcidid><orcidid>https://orcid.org/0000-0003-4252-5991</orcidid><orcidid>https://orcid.org/0000-0002-6376-0061</orcidid><orcidid>https://orcid.org/0000-0002-8735-5757</orcidid><orcidid>https://orcid.org/0000-0002-8150-8476</orcidid><orcidid>https://orcid.org/0000-0002-0451-0564</orcidid><orcidid>https://orcid.org/0000-0003-2143-1187</orcidid><orcidid>https://orcid.org/0000-0001-8991-2679</orcidid><orcidid>https://orcid.org/0000-0002-5804-0510</orcidid><orcidid>https://orcid.org/0000-0003-2559-0687</orcidid><orcidid>https://orcid.org/0000-0002-3296-1864</orcidid><orcidid>https://orcid.org/0000-0001-8489-4002</orcidid><orcidid>https://orcid.org/0000000204510564</orcidid><orcidid>https://orcid.org/0000000266668930</orcidid><orcidid>https://orcid.org/0000000325590687</orcidid><orcidid>https://orcid.org/0000000345363000</orcidid><orcidid>https://orcid.org/0000000321431187</orcidid><orcidid>https://orcid.org/0000000342525991</orcidid><orcidid>https://orcid.org/0000000151220829</orcidid><orcidid>https://orcid.org/0000000317101548</orcidid><orcidid>https://orcid.org/0000000235523691</orcidid><orcidid>https://orcid.org/0000000313906736</orcidid><orcidid>https://orcid.org/0000000182871923</orcidid><orcidid>https://orcid.org/0000000207073283</orcidid><orcidid>https://orcid.org/0000000165297886</orcidid><orcidid>https://orcid.org/0000000258040510</orcidid><orcidid>https://orcid.org/000000030570988X</orcidid><orcidid>https://orcid.org/0000000184894002</orcidid><orcidid>https://orcid.org/0000000317736236</orcidid><orcidid>https://orcid.org/0000000263760061</orcidid><orcidid>https://orcid.org/0000000249350736</orcidid><orcidid>https://orcid.org/0000000257067439</orcidid><orcidid>https://orcid.org/0000000189912679</orcidid><orcidid>https://orcid.org/0000000287355757</orcidid><orcidid>https://orcid.org/0000000183015301</orcidid><orcidid>https://orcid.org/0000000226308287</orcidid><orcidid>https://orcid.org/0000000281508476</orcidid><orcidid>https://orcid.org/0000000232961864</orcidid><orcidid>https://orcid.org/0000000238312531</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2049-1948
ispartof Wiley interdisciplinary reviews. Water, 2020-05, Vol.7 (3), p.e1436-n/a
issn 2049-1948
2049-1948
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7425737
source Access via Wiley Online Library
subjects aquatic network
Biodiversity and Ecology
Biogeochemistry
Climate change
Discharge measurement
Earth Sciences
Environmental Sciences
Gauges
Hydrologic data
Hydrologic models
Hydrology
Instrument errors
Mathematical models
non‐perennial
River networks
Rivers
Sciences of the Universe
Statistical analysis
Statistical methods
Stream discharge
Stream flow
stream gages
streamflow
Streams
Surface flow
Surface water
Upstream
Water conservation
Water flow
Watersheds
zero flow
title Zero or not? Causes and consequences of zero‐flow stream gage readings
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T17%3A18%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Zero%20or%20not?%20Causes%20and%20consequences%20of%20zero%E2%80%90flow%20stream%20gage%20readings&rft.jtitle=Wiley%20interdisciplinary%20reviews.%20Water&rft.au=Zimmer,%20Margaret%20A.&rft.date=2020-05&rft.volume=7&rft.issue=3&rft.spage=e1436&rft.epage=n/a&rft.pages=e1436-n/a&rft.issn=2049-1948&rft.eissn=2049-1948&rft_id=info:doi/10.1002/wat2.1436&rft_dat=%3Cproquest_pubme%3E2434755572%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2395149302&rft_id=info:pmid/32802326&rfr_iscdi=true