Toxoplasma infection induces microglia‐neuron contact and the loss of perisomatic inhibitory synapses

Infection and inflammation within the brain induces changes in neuronal connectivity and function. The intracellular protozoan parasite, Toxoplasma gondii, is one pathogen that infects the brain and can cause encephalitis and seizures. Persistent infection by this parasite is also associated with be...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Glia 2020-10, Vol.68 (10), p.1968-1986
Hauptverfasser: Carrillo, Gabriela L., Ballard, Valerie A., Glausen, Taylor, Boone, Zack, Teamer, Joseph, Hinkson, Cyrus L., Wohlfert, Elizabeth A., Blader, Ira J., Fox, Michael A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1986
container_issue 10
container_start_page 1968
container_title Glia
container_volume 68
creator Carrillo, Gabriela L.
Ballard, Valerie A.
Glausen, Taylor
Boone, Zack
Teamer, Joseph
Hinkson, Cyrus L.
Wohlfert, Elizabeth A.
Blader, Ira J.
Fox, Michael A.
description Infection and inflammation within the brain induces changes in neuronal connectivity and function. The intracellular protozoan parasite, Toxoplasma gondii, is one pathogen that infects the brain and can cause encephalitis and seizures. Persistent infection by this parasite is also associated with behavioral alterations and an increased risk for developing psychiatric illness, including schizophrenia. Current evidence from studies in humans and mouse models suggest that both seizures and schizophrenia result from a loss or dysfunction of inhibitory synapses. In line with this, we recently reported that persistent T. gondii infection alters the distribution of glutamic acid decarboxylase 67 (GAD67), an enzyme that catalyzes GABA synthesis in inhibitory synapses. These changes could reflect a redistribution of presynaptic machinery in inhibitory neurons or a loss of inhibitory nerve terminals. To directly assess the latter possibility, we employed serial block face scanning electron microscopy (SBFSEM) and quantified inhibitory perisomatic synapses in neocortex and hippocampus following parasitic infection. Not only did persistent infection lead to a significant loss of perisomatic synapses, it induced the ensheathment of neuronal somata by myeloid‐derived cells. Immunohistochemical, genetic, and ultrastructural analyses revealed that these myeloid‐derived cells included activated microglia. Finally, ultrastructural analysis identified myeloid‐derived cells enveloping perisomatic nerve terminals, suggesting they may actively displace or phagocytose synaptic elements. Thus, these results suggest that activated microglia contribute to perisomatic inhibitory synapse loss following parasitic infection and offer a novel mechanism as to how persistent T. gondii infection may contribute to both seizures and psychiatric illness. Toxoplasma infection leads to the loss of perisomatic inhibitory synapses. Microglia ensheath neuronal somata following Toxoplasma‐infection. Microglia contact, envelop, and phagocytose GABAergic nerve terminals, suggesting they contribute to synapse loss following infection.
doi_str_mv 10.1002/glia.23816
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7423646</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2376235370</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4296-686dd72268a0b87ca67e030fdf8c9f8aed146b2dfb416257d690ed3964a97aa83</originalsourceid><addsrcrecordid>eNp9kc9u1DAQhy1ERZfChQdAkbggpBT_i-1ckKoKSqWVeilna2I7u64SO9hJYW88As_Ik-BlS1U49GRb8_nTzPwQekXwKcGYvt8MHk4pU0Q8QSuCW1UTwsRTtMKq5TXhLTlGz3O-wZiUh3yGjhkljZS8WaHNdfwepwHyCJUPvTOzj6Hc7GJcrkZvUtzrf_34GdySSsnEMIOZKwi2mreuGmLOVeyrySWf4wizN-X71nd-jmlX5V2AKbv8Ah31MGT38u48QV8-fbw-_1yvry4uz8_WteG0FbVQwlpJqVCAOyUNCOkww73tlWl7Bc4SLjpq-44TQRtpRYudZa3g0EoAxU7Qh4N3WrrRWePCnGDQU_IjpJ2O4PW_leC3ehNvteSUCS6K4O2dIMWvi8uzHn02bhgguLhkTZkUlDVM4oK--Q-9iUsKZTxNOSOywVLIQr07UGWVOSfX3zdDsN7np_cL1n_yK_Drh-3fo38DKwA5AN_84HaPqPTF-vLsIP0NG7-pZw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2431750767</pqid></control><display><type>article</type><title>Toxoplasma infection induces microglia‐neuron contact and the loss of perisomatic inhibitory synapses</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Carrillo, Gabriela L. ; Ballard, Valerie A. ; Glausen, Taylor ; Boone, Zack ; Teamer, Joseph ; Hinkson, Cyrus L. ; Wohlfert, Elizabeth A. ; Blader, Ira J. ; Fox, Michael A.</creator><creatorcontrib>Carrillo, Gabriela L. ; Ballard, Valerie A. ; Glausen, Taylor ; Boone, Zack ; Teamer, Joseph ; Hinkson, Cyrus L. ; Wohlfert, Elizabeth A. ; Blader, Ira J. ; Fox, Michael A.</creatorcontrib><description>Infection and inflammation within the brain induces changes in neuronal connectivity and function. The intracellular protozoan parasite, Toxoplasma gondii, is one pathogen that infects the brain and can cause encephalitis and seizures. Persistent infection by this parasite is also associated with behavioral alterations and an increased risk for developing psychiatric illness, including schizophrenia. Current evidence from studies in humans and mouse models suggest that both seizures and schizophrenia result from a loss or dysfunction of inhibitory synapses. In line with this, we recently reported that persistent T. gondii infection alters the distribution of glutamic acid decarboxylase 67 (GAD67), an enzyme that catalyzes GABA synthesis in inhibitory synapses. These changes could reflect a redistribution of presynaptic machinery in inhibitory neurons or a loss of inhibitory nerve terminals. To directly assess the latter possibility, we employed serial block face scanning electron microscopy (SBFSEM) and quantified inhibitory perisomatic synapses in neocortex and hippocampus following parasitic infection. Not only did persistent infection lead to a significant loss of perisomatic synapses, it induced the ensheathment of neuronal somata by myeloid‐derived cells. Immunohistochemical, genetic, and ultrastructural analyses revealed that these myeloid‐derived cells included activated microglia. Finally, ultrastructural analysis identified myeloid‐derived cells enveloping perisomatic nerve terminals, suggesting they may actively displace or phagocytose synaptic elements. Thus, these results suggest that activated microglia contribute to perisomatic inhibitory synapse loss following parasitic infection and offer a novel mechanism as to how persistent T. gondii infection may contribute to both seizures and psychiatric illness. Toxoplasma infection leads to the loss of perisomatic inhibitory synapses. Microglia ensheath neuronal somata following Toxoplasma‐infection. Microglia contact, envelop, and phagocytose GABAergic nerve terminals, suggesting they contribute to synapse loss following infection.</description><identifier>ISSN: 0894-1491</identifier><identifier>EISSN: 1098-1136</identifier><identifier>DOI: 10.1002/glia.23816</identifier><identifier>PMID: 32157745</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley &amp; Sons, Inc</publisher><subject>Animal models ; Brain ; Cerebral cortex ; Chemical synthesis ; Encephalitis ; Genetic analysis ; Glutamate decarboxylase ; Glutamic acid ; hippocampus ; Illnesses ; Infections ; inhibitory synapse ; Mental disorders ; Microglia ; Neocortex ; Nerve endings ; Neural networks ; Parasites ; Parasitic diseases ; perisomatic synapse ; Persistent infection ; Protozoa ; Scanning electron microscopy ; Schizophrenia ; Seizures ; Synapses ; Terminals ; Toxoplasma gondii ; γ-Aminobutyric acid</subject><ispartof>Glia, 2020-10, Vol.68 (10), p.1968-1986</ispartof><rights>2020 Wiley Periodicals, Inc.</rights><rights>2020 Wiley Periodicals LLC</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4296-686dd72268a0b87ca67e030fdf8c9f8aed146b2dfb416257d690ed3964a97aa83</citedby><cites>FETCH-LOGICAL-c4296-686dd72268a0b87ca67e030fdf8c9f8aed146b2dfb416257d690ed3964a97aa83</cites><orcidid>0000-0002-1649-7782</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fglia.23816$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fglia.23816$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,776,780,881,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32157745$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Carrillo, Gabriela L.</creatorcontrib><creatorcontrib>Ballard, Valerie A.</creatorcontrib><creatorcontrib>Glausen, Taylor</creatorcontrib><creatorcontrib>Boone, Zack</creatorcontrib><creatorcontrib>Teamer, Joseph</creatorcontrib><creatorcontrib>Hinkson, Cyrus L.</creatorcontrib><creatorcontrib>Wohlfert, Elizabeth A.</creatorcontrib><creatorcontrib>Blader, Ira J.</creatorcontrib><creatorcontrib>Fox, Michael A.</creatorcontrib><title>Toxoplasma infection induces microglia‐neuron contact and the loss of perisomatic inhibitory synapses</title><title>Glia</title><addtitle>Glia</addtitle><description>Infection and inflammation within the brain induces changes in neuronal connectivity and function. The intracellular protozoan parasite, Toxoplasma gondii, is one pathogen that infects the brain and can cause encephalitis and seizures. Persistent infection by this parasite is also associated with behavioral alterations and an increased risk for developing psychiatric illness, including schizophrenia. Current evidence from studies in humans and mouse models suggest that both seizures and schizophrenia result from a loss or dysfunction of inhibitory synapses. In line with this, we recently reported that persistent T. gondii infection alters the distribution of glutamic acid decarboxylase 67 (GAD67), an enzyme that catalyzes GABA synthesis in inhibitory synapses. These changes could reflect a redistribution of presynaptic machinery in inhibitory neurons or a loss of inhibitory nerve terminals. To directly assess the latter possibility, we employed serial block face scanning electron microscopy (SBFSEM) and quantified inhibitory perisomatic synapses in neocortex and hippocampus following parasitic infection. Not only did persistent infection lead to a significant loss of perisomatic synapses, it induced the ensheathment of neuronal somata by myeloid‐derived cells. Immunohistochemical, genetic, and ultrastructural analyses revealed that these myeloid‐derived cells included activated microglia. Finally, ultrastructural analysis identified myeloid‐derived cells enveloping perisomatic nerve terminals, suggesting they may actively displace or phagocytose synaptic elements. Thus, these results suggest that activated microglia contribute to perisomatic inhibitory synapse loss following parasitic infection and offer a novel mechanism as to how persistent T. gondii infection may contribute to both seizures and psychiatric illness. Toxoplasma infection leads to the loss of perisomatic inhibitory synapses. Microglia ensheath neuronal somata following Toxoplasma‐infection. Microglia contact, envelop, and phagocytose GABAergic nerve terminals, suggesting they contribute to synapse loss following infection.</description><subject>Animal models</subject><subject>Brain</subject><subject>Cerebral cortex</subject><subject>Chemical synthesis</subject><subject>Encephalitis</subject><subject>Genetic analysis</subject><subject>Glutamate decarboxylase</subject><subject>Glutamic acid</subject><subject>hippocampus</subject><subject>Illnesses</subject><subject>Infections</subject><subject>inhibitory synapse</subject><subject>Mental disorders</subject><subject>Microglia</subject><subject>Neocortex</subject><subject>Nerve endings</subject><subject>Neural networks</subject><subject>Parasites</subject><subject>Parasitic diseases</subject><subject>perisomatic synapse</subject><subject>Persistent infection</subject><subject>Protozoa</subject><subject>Scanning electron microscopy</subject><subject>Schizophrenia</subject><subject>Seizures</subject><subject>Synapses</subject><subject>Terminals</subject><subject>Toxoplasma gondii</subject><subject>γ-Aminobutyric acid</subject><issn>0894-1491</issn><issn>1098-1136</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kc9u1DAQhy1ERZfChQdAkbggpBT_i-1ckKoKSqWVeilna2I7u64SO9hJYW88As_Ik-BlS1U49GRb8_nTzPwQekXwKcGYvt8MHk4pU0Q8QSuCW1UTwsRTtMKq5TXhLTlGz3O-wZiUh3yGjhkljZS8WaHNdfwepwHyCJUPvTOzj6Hc7GJcrkZvUtzrf_34GdySSsnEMIOZKwi2mreuGmLOVeyrySWf4wizN-X71nd-jmlX5V2AKbv8Ah31MGT38u48QV8-fbw-_1yvry4uz8_WteG0FbVQwlpJqVCAOyUNCOkww73tlWl7Bc4SLjpq-44TQRtpRYudZa3g0EoAxU7Qh4N3WrrRWePCnGDQU_IjpJ2O4PW_leC3ehNvteSUCS6K4O2dIMWvi8uzHn02bhgguLhkTZkUlDVM4oK--Q-9iUsKZTxNOSOywVLIQr07UGWVOSfX3zdDsN7np_cL1n_yK_Drh-3fo38DKwA5AN_84HaPqPTF-vLsIP0NG7-pZw</recordid><startdate>202010</startdate><enddate>202010</enddate><creator>Carrillo, Gabriela L.</creator><creator>Ballard, Valerie A.</creator><creator>Glausen, Taylor</creator><creator>Boone, Zack</creator><creator>Teamer, Joseph</creator><creator>Hinkson, Cyrus L.</creator><creator>Wohlfert, Elizabeth A.</creator><creator>Blader, Ira J.</creator><creator>Fox, Michael A.</creator><general>John Wiley &amp; Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7T7</scope><scope>7TK</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>M7N</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-1649-7782</orcidid></search><sort><creationdate>202010</creationdate><title>Toxoplasma infection induces microglia‐neuron contact and the loss of perisomatic inhibitory synapses</title><author>Carrillo, Gabriela L. ; Ballard, Valerie A. ; Glausen, Taylor ; Boone, Zack ; Teamer, Joseph ; Hinkson, Cyrus L. ; Wohlfert, Elizabeth A. ; Blader, Ira J. ; Fox, Michael A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4296-686dd72268a0b87ca67e030fdf8c9f8aed146b2dfb416257d690ed3964a97aa83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Animal models</topic><topic>Brain</topic><topic>Cerebral cortex</topic><topic>Chemical synthesis</topic><topic>Encephalitis</topic><topic>Genetic analysis</topic><topic>Glutamate decarboxylase</topic><topic>Glutamic acid</topic><topic>hippocampus</topic><topic>Illnesses</topic><topic>Infections</topic><topic>inhibitory synapse</topic><topic>Mental disorders</topic><topic>Microglia</topic><topic>Neocortex</topic><topic>Nerve endings</topic><topic>Neural networks</topic><topic>Parasites</topic><topic>Parasitic diseases</topic><topic>perisomatic synapse</topic><topic>Persistent infection</topic><topic>Protozoa</topic><topic>Scanning electron microscopy</topic><topic>Schizophrenia</topic><topic>Seizures</topic><topic>Synapses</topic><topic>Terminals</topic><topic>Toxoplasma gondii</topic><topic>γ-Aminobutyric acid</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Carrillo, Gabriela L.</creatorcontrib><creatorcontrib>Ballard, Valerie A.</creatorcontrib><creatorcontrib>Glausen, Taylor</creatorcontrib><creatorcontrib>Boone, Zack</creatorcontrib><creatorcontrib>Teamer, Joseph</creatorcontrib><creatorcontrib>Hinkson, Cyrus L.</creatorcontrib><creatorcontrib>Wohlfert, Elizabeth A.</creatorcontrib><creatorcontrib>Blader, Ira J.</creatorcontrib><creatorcontrib>Fox, Michael A.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Neurosciences Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Glia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Carrillo, Gabriela L.</au><au>Ballard, Valerie A.</au><au>Glausen, Taylor</au><au>Boone, Zack</au><au>Teamer, Joseph</au><au>Hinkson, Cyrus L.</au><au>Wohlfert, Elizabeth A.</au><au>Blader, Ira J.</au><au>Fox, Michael A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Toxoplasma infection induces microglia‐neuron contact and the loss of perisomatic inhibitory synapses</atitle><jtitle>Glia</jtitle><addtitle>Glia</addtitle><date>2020-10</date><risdate>2020</risdate><volume>68</volume><issue>10</issue><spage>1968</spage><epage>1986</epage><pages>1968-1986</pages><issn>0894-1491</issn><eissn>1098-1136</eissn><abstract>Infection and inflammation within the brain induces changes in neuronal connectivity and function. The intracellular protozoan parasite, Toxoplasma gondii, is one pathogen that infects the brain and can cause encephalitis and seizures. Persistent infection by this parasite is also associated with behavioral alterations and an increased risk for developing psychiatric illness, including schizophrenia. Current evidence from studies in humans and mouse models suggest that both seizures and schizophrenia result from a loss or dysfunction of inhibitory synapses. In line with this, we recently reported that persistent T. gondii infection alters the distribution of glutamic acid decarboxylase 67 (GAD67), an enzyme that catalyzes GABA synthesis in inhibitory synapses. These changes could reflect a redistribution of presynaptic machinery in inhibitory neurons or a loss of inhibitory nerve terminals. To directly assess the latter possibility, we employed serial block face scanning electron microscopy (SBFSEM) and quantified inhibitory perisomatic synapses in neocortex and hippocampus following parasitic infection. Not only did persistent infection lead to a significant loss of perisomatic synapses, it induced the ensheathment of neuronal somata by myeloid‐derived cells. Immunohistochemical, genetic, and ultrastructural analyses revealed that these myeloid‐derived cells included activated microglia. Finally, ultrastructural analysis identified myeloid‐derived cells enveloping perisomatic nerve terminals, suggesting they may actively displace or phagocytose synaptic elements. Thus, these results suggest that activated microglia contribute to perisomatic inhibitory synapse loss following parasitic infection and offer a novel mechanism as to how persistent T. gondii infection may contribute to both seizures and psychiatric illness. Toxoplasma infection leads to the loss of perisomatic inhibitory synapses. Microglia ensheath neuronal somata following Toxoplasma‐infection. Microglia contact, envelop, and phagocytose GABAergic nerve terminals, suggesting they contribute to synapse loss following infection.</abstract><cop>Hoboken, USA</cop><pub>John Wiley &amp; Sons, Inc</pub><pmid>32157745</pmid><doi>10.1002/glia.23816</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0002-1649-7782</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0894-1491
ispartof Glia, 2020-10, Vol.68 (10), p.1968-1986
issn 0894-1491
1098-1136
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7423646
source Wiley Online Library Journals Frontfile Complete
subjects Animal models
Brain
Cerebral cortex
Chemical synthesis
Encephalitis
Genetic analysis
Glutamate decarboxylase
Glutamic acid
hippocampus
Illnesses
Infections
inhibitory synapse
Mental disorders
Microglia
Neocortex
Nerve endings
Neural networks
Parasites
Parasitic diseases
perisomatic synapse
Persistent infection
Protozoa
Scanning electron microscopy
Schizophrenia
Seizures
Synapses
Terminals
Toxoplasma gondii
γ-Aminobutyric acid
title Toxoplasma infection induces microglia‐neuron contact and the loss of perisomatic inhibitory synapses
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T22%3A03%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Toxoplasma%20infection%20induces%20microglia%E2%80%90neuron%20contact%20and%20the%20loss%20of%20perisomatic%20inhibitory%20synapses&rft.jtitle=Glia&rft.au=Carrillo,%20Gabriela%20L.&rft.date=2020-10&rft.volume=68&rft.issue=10&rft.spage=1968&rft.epage=1986&rft.pages=1968-1986&rft.issn=0894-1491&rft.eissn=1098-1136&rft_id=info:doi/10.1002/glia.23816&rft_dat=%3Cproquest_pubme%3E2376235370%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2431750767&rft_id=info:pmid/32157745&rfr_iscdi=true