Effect of data length on time delay and embedding dimension for calculating the Lyapunov exponent in walking

The Lyapunov exponent (LyE) is a trending measure for characterizing gait stability. Previous studies have shown that data length has an effect on the resultant LyE, but the origin of why it changes is unknown. This study investigates if data length affects the choice of time delay and embedding dim...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the Royal Society interface 2020-07, Vol.17 (168), p.20200311-20200311
Hauptverfasser: Hussain, Victoria Smith, Spano, Mark L., Lockhart, Thurmon E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 20200311
container_issue 168
container_start_page 20200311
container_title Journal of the Royal Society interface
container_volume 17
creator Hussain, Victoria Smith
Spano, Mark L.
Lockhart, Thurmon E.
description The Lyapunov exponent (LyE) is a trending measure for characterizing gait stability. Previous studies have shown that data length has an effect on the resultant LyE, but the origin of why it changes is unknown. This study investigates if data length affects the choice of time delay and embedding dimension when reconstructing the phase space, which is a requirement for calculating the LyE. The effect of three different preprocessing methods on reconstructing the gait attractor was also investigated. Lumbar accelerometer data were collected from 10 healthy subjects walking on a treadmill at their preferred walking speed for 30 min. Our results show that time delay was not sensitive to the amount of data used during calculation. However, the embedding dimension had a minimum data requirement of 200 or 300 gait cycles, depending on the preprocessing method used, to determine the steady-state value of the embedding dimension. This study also found that preprocessing the data using a fixed number of strides or a fixed number of data points had significantly different values for time delay compared to a time series that used a fixed number of normalized gait cycles, which have a fixed number of data points per stride. Thus, comparing LyE values should match the method of calculation using either a fixed number of strides or a fixed number of data points.
doi_str_mv 10.1098/rsif.2020.0311
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7423422</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2424997624</sourcerecordid><originalsourceid>FETCH-LOGICAL-c411t-7a8b0f16c3e07a75f1fc0268488e3135bd3ae4ee9930373ea691a024a17a40ba3</originalsourceid><addsrcrecordid>eNpVkUtr3DAUhUVJyKRJtl1r2c1M9bJlbwol5FEY6CZZi2v5akatLE0tOen8-9hkCHR1L5yPcx-HkC-cbThrm29j9m4jmGAbJjn_RC65VmJd1bU4--ibdkU-5_ybMallVV2QlRS1VprzSxLunENbaHK0hwI0YNyVPU2RFj8g7THAkULsKQ4d9r2PO9rPQsx-RlwaqYVgpwBlUcoe6fYIhymmF4r_DiliLNRH-grhzwxck3MHIePNqV6R5_u7p9vH9fbXw8_bH9u1VZyXtYamY47XViLToCvHnWWiblTToOSy6noJqBDbVi4XIdQtByYUcA2KdSCvyPd338PUDdjbeYsRgjmMfoDxaBJ4878S_d7s0ouZ_yWVELPB15PBmP5OmIsZfLYYAkRMUzZCCdW2uhZqRjfvqB1TziO6jzGcmSUis0RklojMEpF8A3bshYU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2424997624</pqid></control><display><type>article</type><title>Effect of data length on time delay and embedding dimension for calculating the Lyapunov exponent in walking</title><source>PubMed Central</source><creator>Hussain, Victoria Smith ; Spano, Mark L. ; Lockhart, Thurmon E.</creator><creatorcontrib>Hussain, Victoria Smith ; Spano, Mark L. ; Lockhart, Thurmon E.</creatorcontrib><description>The Lyapunov exponent (LyE) is a trending measure for characterizing gait stability. Previous studies have shown that data length has an effect on the resultant LyE, but the origin of why it changes is unknown. This study investigates if data length affects the choice of time delay and embedding dimension when reconstructing the phase space, which is a requirement for calculating the LyE. The effect of three different preprocessing methods on reconstructing the gait attractor was also investigated. Lumbar accelerometer data were collected from 10 healthy subjects walking on a treadmill at their preferred walking speed for 30 min. Our results show that time delay was not sensitive to the amount of data used during calculation. However, the embedding dimension had a minimum data requirement of 200 or 300 gait cycles, depending on the preprocessing method used, to determine the steady-state value of the embedding dimension. This study also found that preprocessing the data using a fixed number of strides or a fixed number of data points had significantly different values for time delay compared to a time series that used a fixed number of normalized gait cycles, which have a fixed number of data points per stride. Thus, comparing LyE values should match the method of calculation using either a fixed number of strides or a fixed number of data points.</description><identifier>ISSN: 1742-5689</identifier><identifier>EISSN: 1742-5662</identifier><identifier>DOI: 10.1098/rsif.2020.0311</identifier><identifier>PMID: 32674711</identifier><language>eng</language><publisher>The Royal Society</publisher><subject>Life Sciences–Engineering interface</subject><ispartof>Journal of the Royal Society interface, 2020-07, Vol.17 (168), p.20200311-20200311</ispartof><rights>2020 The Author(s) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c411t-7a8b0f16c3e07a75f1fc0268488e3135bd3ae4ee9930373ea691a024a17a40ba3</citedby><cites>FETCH-LOGICAL-c411t-7a8b0f16c3e07a75f1fc0268488e3135bd3ae4ee9930373ea691a024a17a40ba3</cites><orcidid>0000-0001-9652-8325 ; 0000-0002-7008-5711</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7423422/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7423422/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,27903,27904,53769,53771</link.rule.ids></links><search><creatorcontrib>Hussain, Victoria Smith</creatorcontrib><creatorcontrib>Spano, Mark L.</creatorcontrib><creatorcontrib>Lockhart, Thurmon E.</creatorcontrib><title>Effect of data length on time delay and embedding dimension for calculating the Lyapunov exponent in walking</title><title>Journal of the Royal Society interface</title><description>The Lyapunov exponent (LyE) is a trending measure for characterizing gait stability. Previous studies have shown that data length has an effect on the resultant LyE, but the origin of why it changes is unknown. This study investigates if data length affects the choice of time delay and embedding dimension when reconstructing the phase space, which is a requirement for calculating the LyE. The effect of three different preprocessing methods on reconstructing the gait attractor was also investigated. Lumbar accelerometer data were collected from 10 healthy subjects walking on a treadmill at their preferred walking speed for 30 min. Our results show that time delay was not sensitive to the amount of data used during calculation. However, the embedding dimension had a minimum data requirement of 200 or 300 gait cycles, depending on the preprocessing method used, to determine the steady-state value of the embedding dimension. This study also found that preprocessing the data using a fixed number of strides or a fixed number of data points had significantly different values for time delay compared to a time series that used a fixed number of normalized gait cycles, which have a fixed number of data points per stride. Thus, comparing LyE values should match the method of calculation using either a fixed number of strides or a fixed number of data points.</description><subject>Life Sciences–Engineering interface</subject><issn>1742-5689</issn><issn>1742-5662</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNpVkUtr3DAUhUVJyKRJtl1r2c1M9bJlbwol5FEY6CZZi2v5akatLE0tOen8-9hkCHR1L5yPcx-HkC-cbThrm29j9m4jmGAbJjn_RC65VmJd1bU4--ibdkU-5_ybMallVV2QlRS1VprzSxLunENbaHK0hwI0YNyVPU2RFj8g7THAkULsKQ4d9r2PO9rPQsx-RlwaqYVgpwBlUcoe6fYIhymmF4r_DiliLNRH-grhzwxck3MHIePNqV6R5_u7p9vH9fbXw8_bH9u1VZyXtYamY47XViLToCvHnWWiblTToOSy6noJqBDbVi4XIdQtByYUcA2KdSCvyPd338PUDdjbeYsRgjmMfoDxaBJ4878S_d7s0ouZ_yWVELPB15PBmP5OmIsZfLYYAkRMUzZCCdW2uhZqRjfvqB1TziO6jzGcmSUis0RklojMEpF8A3bshYU</recordid><startdate>20200701</startdate><enddate>20200701</enddate><creator>Hussain, Victoria Smith</creator><creator>Spano, Mark L.</creator><creator>Lockhart, Thurmon E.</creator><general>The Royal Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-9652-8325</orcidid><orcidid>https://orcid.org/0000-0002-7008-5711</orcidid></search><sort><creationdate>20200701</creationdate><title>Effect of data length on time delay and embedding dimension for calculating the Lyapunov exponent in walking</title><author>Hussain, Victoria Smith ; Spano, Mark L. ; Lockhart, Thurmon E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c411t-7a8b0f16c3e07a75f1fc0268488e3135bd3ae4ee9930373ea691a024a17a40ba3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Life Sciences–Engineering interface</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hussain, Victoria Smith</creatorcontrib><creatorcontrib>Spano, Mark L.</creatorcontrib><creatorcontrib>Lockhart, Thurmon E.</creatorcontrib><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of the Royal Society interface</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hussain, Victoria Smith</au><au>Spano, Mark L.</au><au>Lockhart, Thurmon E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effect of data length on time delay and embedding dimension for calculating the Lyapunov exponent in walking</atitle><jtitle>Journal of the Royal Society interface</jtitle><date>2020-07-01</date><risdate>2020</risdate><volume>17</volume><issue>168</issue><spage>20200311</spage><epage>20200311</epage><pages>20200311-20200311</pages><issn>1742-5689</issn><eissn>1742-5662</eissn><abstract>The Lyapunov exponent (LyE) is a trending measure for characterizing gait stability. Previous studies have shown that data length has an effect on the resultant LyE, but the origin of why it changes is unknown. This study investigates if data length affects the choice of time delay and embedding dimension when reconstructing the phase space, which is a requirement for calculating the LyE. The effect of three different preprocessing methods on reconstructing the gait attractor was also investigated. Lumbar accelerometer data were collected from 10 healthy subjects walking on a treadmill at their preferred walking speed for 30 min. Our results show that time delay was not sensitive to the amount of data used during calculation. However, the embedding dimension had a minimum data requirement of 200 or 300 gait cycles, depending on the preprocessing method used, to determine the steady-state value of the embedding dimension. This study also found that preprocessing the data using a fixed number of strides or a fixed number of data points had significantly different values for time delay compared to a time series that used a fixed number of normalized gait cycles, which have a fixed number of data points per stride. Thus, comparing LyE values should match the method of calculation using either a fixed number of strides or a fixed number of data points.</abstract><pub>The Royal Society</pub><pmid>32674711</pmid><doi>10.1098/rsif.2020.0311</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0001-9652-8325</orcidid><orcidid>https://orcid.org/0000-0002-7008-5711</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1742-5689
ispartof Journal of the Royal Society interface, 2020-07, Vol.17 (168), p.20200311-20200311
issn 1742-5689
1742-5662
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7423422
source PubMed Central
subjects Life Sciences–Engineering interface
title Effect of data length on time delay and embedding dimension for calculating the Lyapunov exponent in walking
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T11%3A44%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effect%20of%20data%20length%20on%20time%20delay%20and%20embedding%20dimension%20for%20calculating%20the%20Lyapunov%20exponent%20in%20walking&rft.jtitle=Journal%20of%20the%20Royal%20Society%20interface&rft.au=Hussain,%20Victoria%20Smith&rft.date=2020-07-01&rft.volume=17&rft.issue=168&rft.spage=20200311&rft.epage=20200311&rft.pages=20200311-20200311&rft.issn=1742-5689&rft.eissn=1742-5662&rft_id=info:doi/10.1098/rsif.2020.0311&rft_dat=%3Cproquest_pubme%3E2424997624%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2424997624&rft_id=info:pmid/32674711&rfr_iscdi=true