A high-contiguity Brassica nigra genome localizes active centromeres and defines the ancestral Brassica genome

It is only recently, with the advent of long-read sequencing technologies, that we are beginning to uncover previously uncharted regions of complex and inherently recursive plant genomes. To comprehensively study and exploit the genome of the neglected oilseed Brassica nigra , we generated two high-...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature plants 2020-08, Vol.6 (8), p.929-941
Hauptverfasser: Perumal, Sampath, Koh, Chu Shin, Jin, Lingling, Buchwaldt, Miles, Higgins, Erin E., Zheng, Chunfang, Sankoff, David, Robinson, Stephen J., Kagale, Sateesh, Navabi, Zahra-Katy, Tang, Lily, Horner, Kyla N., He, Zhesi, Bancroft, Ian, Chalhoub, Boulos, Sharpe, Andrew G., Parkin, Isobel A. P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 941
container_issue 8
container_start_page 929
container_title Nature plants
container_volume 6
creator Perumal, Sampath
Koh, Chu Shin
Jin, Lingling
Buchwaldt, Miles
Higgins, Erin E.
Zheng, Chunfang
Sankoff, David
Robinson, Stephen J.
Kagale, Sateesh
Navabi, Zahra-Katy
Tang, Lily
Horner, Kyla N.
He, Zhesi
Bancroft, Ian
Chalhoub, Boulos
Sharpe, Andrew G.
Parkin, Isobel A. P.
description It is only recently, with the advent of long-read sequencing technologies, that we are beginning to uncover previously uncharted regions of complex and inherently recursive plant genomes. To comprehensively study and exploit the genome of the neglected oilseed Brassica nigra , we generated two high-quality nanopore de novo genome assemblies. The N50 contig lengths for the two assemblies were 17.1 Mb (12 contigs), one of the best among 324 sequenced plant genomes, and 0.29 Mb (424 contigs), respectively, reflecting recent improvements in the technology. Comparison with a de novo short-read assembly corroborated genome integrity and quantified sequence-related error rates (0.2%). The contiguity and coverage allowed unprecedented access to low-complexity regions of the genome. Pericentromeric regions and coincidence of hypomethylation enabled localization of active centromeres and identified centromere-associated ALE family retro-elements that appear to have proliferated through relatively recent nested transposition events (
doi_str_mv 10.1038/s41477-020-0735-y
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7419231</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2433238887</sourcerecordid><originalsourceid>FETCH-LOGICAL-c470t-4c7bd8fbd9c1c9e310cd622768ea52b698128b69efc0c16c2abb5074e38519f3</originalsourceid><addsrcrecordid>eNp1kU1LxDAQhoMoKro_wIsUvHip5qNp0oug4hcIXvYe0nTajXQTTVph_fVmrd_gaSYzz7yZ4UXogOATgpk8jQUphMgxxTkWjOerDbRLMeepIuTmj3wHzWJ8xBgTwTkr8TbaYalMCyx3kTvPFrZb5Ma7wXajHVbZRdAxWqMzZ7ugsw6cX0LWe6N7-wox02awL5AZcENInbAuuSZroLUu5cMC0ttAHILuv8UmmX201eo-wuwj7qH59dX88ja_f7i5uzy_z00h8JAXRtSNbOumMsRUwAg2TUmpKCVoTuuykoTKFKA12JDSUF3XHIsCmOSkatkeOptkn8Z6Cc37qrpXT8EudVgpr6363XF2oTr_okRBKspIEjj-EAj-eUy3qKWNBvpeO_BjVLRgjDIppUjo0R_00Y_BpevWFC0lZ5ImikyUCT7GAO3XMgSrtZ9q8lMlP9XaT7VKM4c_r_ia-HQvAXQCYmq5DsL31_-rvgGhcK3J</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2432685382</pqid></control><display><type>article</type><title>A high-contiguity Brassica nigra genome localizes active centromeres and defines the ancestral Brassica genome</title><source>MEDLINE</source><source>Nature</source><source>SpringerNature Complete Journals</source><creator>Perumal, Sampath ; Koh, Chu Shin ; Jin, Lingling ; Buchwaldt, Miles ; Higgins, Erin E. ; Zheng, Chunfang ; Sankoff, David ; Robinson, Stephen J. ; Kagale, Sateesh ; Navabi, Zahra-Katy ; Tang, Lily ; Horner, Kyla N. ; He, Zhesi ; Bancroft, Ian ; Chalhoub, Boulos ; Sharpe, Andrew G. ; Parkin, Isobel A. P.</creator><creatorcontrib>Perumal, Sampath ; Koh, Chu Shin ; Jin, Lingling ; Buchwaldt, Miles ; Higgins, Erin E. ; Zheng, Chunfang ; Sankoff, David ; Robinson, Stephen J. ; Kagale, Sateesh ; Navabi, Zahra-Katy ; Tang, Lily ; Horner, Kyla N. ; He, Zhesi ; Bancroft, Ian ; Chalhoub, Boulos ; Sharpe, Andrew G. ; Parkin, Isobel A. P.</creatorcontrib><description>It is only recently, with the advent of long-read sequencing technologies, that we are beginning to uncover previously uncharted regions of complex and inherently recursive plant genomes. To comprehensively study and exploit the genome of the neglected oilseed Brassica nigra , we generated two high-quality nanopore de novo genome assemblies. The N50 contig lengths for the two assemblies were 17.1 Mb (12 contigs), one of the best among 324 sequenced plant genomes, and 0.29 Mb (424 contigs), respectively, reflecting recent improvements in the technology. Comparison with a de novo short-read assembly corroborated genome integrity and quantified sequence-related error rates (0.2%). The contiguity and coverage allowed unprecedented access to low-complexity regions of the genome. Pericentromeric regions and coincidence of hypomethylation enabled localization of active centromeres and identified centromere-associated ALE family retro-elements that appear to have proliferated through relatively recent nested transposition events (&lt;1 Ma). Genomic distances calculated based on synteny relationships were used to define a post-triplication Brassica- specific ancestral genome, and to calculate the extensive rearrangements that define the evolutionary distance separating B. nigra from its diploid relatives. Two high-quality nanopore genome assemblies of Brassica nigra are reported, one of which has particularly high contiguity with a contig N50 of 17.1 Mb, allowing localization of active centromeres and reconstruction of the ancestral Brassica genome.</description><identifier>ISSN: 2055-0278</identifier><identifier>EISSN: 2055-0278</identifier><identifier>DOI: 10.1038/s41477-020-0735-y</identifier><identifier>PMID: 32782408</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>45 ; 45/23 ; 45/91 ; 631/208/2491 ; 631/208/514/2254 ; Assemblies ; Biomedical and Life Sciences ; Brassica ; Brassica - genetics ; Brassica nigra ; Centromere - genetics ; Complexity ; Diploids ; DNA, Plant - genetics ; Evolution, Molecular ; Genome, Plant - genetics ; Genomes ; High-Throughput Nucleotide Sequencing ; Life Sciences ; Mathematical analysis ; Mustard Plant - genetics ; Plant Sciences</subject><ispartof>Nature plants, 2020-08, Vol.6 (8), p.929-941</ispartof><rights>Crown 2020</rights><rights>Crown 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c470t-4c7bd8fbd9c1c9e310cd622768ea52b698128b69efc0c16c2abb5074e38519f3</citedby><cites>FETCH-LOGICAL-c470t-4c7bd8fbd9c1c9e310cd622768ea52b698128b69efc0c16c2abb5074e38519f3</cites><orcidid>0000-0001-8415-5189 ; 0000-0001-8335-9876 ; 0000-0001-7707-1171 ; 0000-0002-1832-4009 ; 0000-0002-7213-1590 ; 0000-0002-5807-9466</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41477-020-0735-y$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41477-020-0735-y$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32782408$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Perumal, Sampath</creatorcontrib><creatorcontrib>Koh, Chu Shin</creatorcontrib><creatorcontrib>Jin, Lingling</creatorcontrib><creatorcontrib>Buchwaldt, Miles</creatorcontrib><creatorcontrib>Higgins, Erin E.</creatorcontrib><creatorcontrib>Zheng, Chunfang</creatorcontrib><creatorcontrib>Sankoff, David</creatorcontrib><creatorcontrib>Robinson, Stephen J.</creatorcontrib><creatorcontrib>Kagale, Sateesh</creatorcontrib><creatorcontrib>Navabi, Zahra-Katy</creatorcontrib><creatorcontrib>Tang, Lily</creatorcontrib><creatorcontrib>Horner, Kyla N.</creatorcontrib><creatorcontrib>He, Zhesi</creatorcontrib><creatorcontrib>Bancroft, Ian</creatorcontrib><creatorcontrib>Chalhoub, Boulos</creatorcontrib><creatorcontrib>Sharpe, Andrew G.</creatorcontrib><creatorcontrib>Parkin, Isobel A. P.</creatorcontrib><title>A high-contiguity Brassica nigra genome localizes active centromeres and defines the ancestral Brassica genome</title><title>Nature plants</title><addtitle>Nat. Plants</addtitle><addtitle>Nat Plants</addtitle><description>It is only recently, with the advent of long-read sequencing technologies, that we are beginning to uncover previously uncharted regions of complex and inherently recursive plant genomes. To comprehensively study and exploit the genome of the neglected oilseed Brassica nigra , we generated two high-quality nanopore de novo genome assemblies. The N50 contig lengths for the two assemblies were 17.1 Mb (12 contigs), one of the best among 324 sequenced plant genomes, and 0.29 Mb (424 contigs), respectively, reflecting recent improvements in the technology. Comparison with a de novo short-read assembly corroborated genome integrity and quantified sequence-related error rates (0.2%). The contiguity and coverage allowed unprecedented access to low-complexity regions of the genome. Pericentromeric regions and coincidence of hypomethylation enabled localization of active centromeres and identified centromere-associated ALE family retro-elements that appear to have proliferated through relatively recent nested transposition events (&lt;1 Ma). Genomic distances calculated based on synteny relationships were used to define a post-triplication Brassica- specific ancestral genome, and to calculate the extensive rearrangements that define the evolutionary distance separating B. nigra from its diploid relatives. Two high-quality nanopore genome assemblies of Brassica nigra are reported, one of which has particularly high contiguity with a contig N50 of 17.1 Mb, allowing localization of active centromeres and reconstruction of the ancestral Brassica genome.</description><subject>45</subject><subject>45/23</subject><subject>45/91</subject><subject>631/208/2491</subject><subject>631/208/514/2254</subject><subject>Assemblies</subject><subject>Biomedical and Life Sciences</subject><subject>Brassica</subject><subject>Brassica - genetics</subject><subject>Brassica nigra</subject><subject>Centromere - genetics</subject><subject>Complexity</subject><subject>Diploids</subject><subject>DNA, Plant - genetics</subject><subject>Evolution, Molecular</subject><subject>Genome, Plant - genetics</subject><subject>Genomes</subject><subject>High-Throughput Nucleotide Sequencing</subject><subject>Life Sciences</subject><subject>Mathematical analysis</subject><subject>Mustard Plant - genetics</subject><subject>Plant Sciences</subject><issn>2055-0278</issn><issn>2055-0278</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNp1kU1LxDAQhoMoKro_wIsUvHip5qNp0oug4hcIXvYe0nTajXQTTVph_fVmrd_gaSYzz7yZ4UXogOATgpk8jQUphMgxxTkWjOerDbRLMeepIuTmj3wHzWJ8xBgTwTkr8TbaYalMCyx3kTvPFrZb5Ma7wXajHVbZRdAxWqMzZ7ugsw6cX0LWe6N7-wox02awL5AZcENInbAuuSZroLUu5cMC0ttAHILuv8UmmX201eo-wuwj7qH59dX88ja_f7i5uzy_z00h8JAXRtSNbOumMsRUwAg2TUmpKCVoTuuykoTKFKA12JDSUF3XHIsCmOSkatkeOptkn8Z6Cc37qrpXT8EudVgpr6363XF2oTr_okRBKspIEjj-EAj-eUy3qKWNBvpeO_BjVLRgjDIppUjo0R_00Y_BpevWFC0lZ5ImikyUCT7GAO3XMgSrtZ9q8lMlP9XaT7VKM4c_r_ia-HQvAXQCYmq5DsL31_-rvgGhcK3J</recordid><startdate>20200801</startdate><enddate>20200801</enddate><creator>Perumal, Sampath</creator><creator>Koh, Chu Shin</creator><creator>Jin, Lingling</creator><creator>Buchwaldt, Miles</creator><creator>Higgins, Erin E.</creator><creator>Zheng, Chunfang</creator><creator>Sankoff, David</creator><creator>Robinson, Stephen J.</creator><creator>Kagale, Sateesh</creator><creator>Navabi, Zahra-Katy</creator><creator>Tang, Lily</creator><creator>Horner, Kyla N.</creator><creator>He, Zhesi</creator><creator>Bancroft, Ian</creator><creator>Chalhoub, Boulos</creator><creator>Sharpe, Andrew G.</creator><creator>Parkin, Isobel A. P.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SN</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-8415-5189</orcidid><orcidid>https://orcid.org/0000-0001-8335-9876</orcidid><orcidid>https://orcid.org/0000-0001-7707-1171</orcidid><orcidid>https://orcid.org/0000-0002-1832-4009</orcidid><orcidid>https://orcid.org/0000-0002-7213-1590</orcidid><orcidid>https://orcid.org/0000-0002-5807-9466</orcidid></search><sort><creationdate>20200801</creationdate><title>A high-contiguity Brassica nigra genome localizes active centromeres and defines the ancestral Brassica genome</title><author>Perumal, Sampath ; Koh, Chu Shin ; Jin, Lingling ; Buchwaldt, Miles ; Higgins, Erin E. ; Zheng, Chunfang ; Sankoff, David ; Robinson, Stephen J. ; Kagale, Sateesh ; Navabi, Zahra-Katy ; Tang, Lily ; Horner, Kyla N. ; He, Zhesi ; Bancroft, Ian ; Chalhoub, Boulos ; Sharpe, Andrew G. ; Parkin, Isobel A. P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c470t-4c7bd8fbd9c1c9e310cd622768ea52b698128b69efc0c16c2abb5074e38519f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>45</topic><topic>45/23</topic><topic>45/91</topic><topic>631/208/2491</topic><topic>631/208/514/2254</topic><topic>Assemblies</topic><topic>Biomedical and Life Sciences</topic><topic>Brassica</topic><topic>Brassica - genetics</topic><topic>Brassica nigra</topic><topic>Centromere - genetics</topic><topic>Complexity</topic><topic>Diploids</topic><topic>DNA, Plant - genetics</topic><topic>Evolution, Molecular</topic><topic>Genome, Plant - genetics</topic><topic>Genomes</topic><topic>High-Throughput Nucleotide Sequencing</topic><topic>Life Sciences</topic><topic>Mathematical analysis</topic><topic>Mustard Plant - genetics</topic><topic>Plant Sciences</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Perumal, Sampath</creatorcontrib><creatorcontrib>Koh, Chu Shin</creatorcontrib><creatorcontrib>Jin, Lingling</creatorcontrib><creatorcontrib>Buchwaldt, Miles</creatorcontrib><creatorcontrib>Higgins, Erin E.</creatorcontrib><creatorcontrib>Zheng, Chunfang</creatorcontrib><creatorcontrib>Sankoff, David</creatorcontrib><creatorcontrib>Robinson, Stephen J.</creatorcontrib><creatorcontrib>Kagale, Sateesh</creatorcontrib><creatorcontrib>Navabi, Zahra-Katy</creatorcontrib><creatorcontrib>Tang, Lily</creatorcontrib><creatorcontrib>Horner, Kyla N.</creatorcontrib><creatorcontrib>He, Zhesi</creatorcontrib><creatorcontrib>Bancroft, Ian</creatorcontrib><creatorcontrib>Chalhoub, Boulos</creatorcontrib><creatorcontrib>Sharpe, Andrew G.</creatorcontrib><creatorcontrib>Parkin, Isobel A. P.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Ecology Abstracts</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nature plants</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Perumal, Sampath</au><au>Koh, Chu Shin</au><au>Jin, Lingling</au><au>Buchwaldt, Miles</au><au>Higgins, Erin E.</au><au>Zheng, Chunfang</au><au>Sankoff, David</au><au>Robinson, Stephen J.</au><au>Kagale, Sateesh</au><au>Navabi, Zahra-Katy</au><au>Tang, Lily</au><au>Horner, Kyla N.</au><au>He, Zhesi</au><au>Bancroft, Ian</au><au>Chalhoub, Boulos</au><au>Sharpe, Andrew G.</au><au>Parkin, Isobel A. P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A high-contiguity Brassica nigra genome localizes active centromeres and defines the ancestral Brassica genome</atitle><jtitle>Nature plants</jtitle><stitle>Nat. Plants</stitle><addtitle>Nat Plants</addtitle><date>2020-08-01</date><risdate>2020</risdate><volume>6</volume><issue>8</issue><spage>929</spage><epage>941</epage><pages>929-941</pages><issn>2055-0278</issn><eissn>2055-0278</eissn><abstract>It is only recently, with the advent of long-read sequencing technologies, that we are beginning to uncover previously uncharted regions of complex and inherently recursive plant genomes. To comprehensively study and exploit the genome of the neglected oilseed Brassica nigra , we generated two high-quality nanopore de novo genome assemblies. The N50 contig lengths for the two assemblies were 17.1 Mb (12 contigs), one of the best among 324 sequenced plant genomes, and 0.29 Mb (424 contigs), respectively, reflecting recent improvements in the technology. Comparison with a de novo short-read assembly corroborated genome integrity and quantified sequence-related error rates (0.2%). The contiguity and coverage allowed unprecedented access to low-complexity regions of the genome. Pericentromeric regions and coincidence of hypomethylation enabled localization of active centromeres and identified centromere-associated ALE family retro-elements that appear to have proliferated through relatively recent nested transposition events (&lt;1 Ma). Genomic distances calculated based on synteny relationships were used to define a post-triplication Brassica- specific ancestral genome, and to calculate the extensive rearrangements that define the evolutionary distance separating B. nigra from its diploid relatives. Two high-quality nanopore genome assemblies of Brassica nigra are reported, one of which has particularly high contiguity with a contig N50 of 17.1 Mb, allowing localization of active centromeres and reconstruction of the ancestral Brassica genome.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>32782408</pmid><doi>10.1038/s41477-020-0735-y</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-8415-5189</orcidid><orcidid>https://orcid.org/0000-0001-8335-9876</orcidid><orcidid>https://orcid.org/0000-0001-7707-1171</orcidid><orcidid>https://orcid.org/0000-0002-1832-4009</orcidid><orcidid>https://orcid.org/0000-0002-7213-1590</orcidid><orcidid>https://orcid.org/0000-0002-5807-9466</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2055-0278
ispartof Nature plants, 2020-08, Vol.6 (8), p.929-941
issn 2055-0278
2055-0278
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7419231
source MEDLINE; Nature; SpringerNature Complete Journals
subjects 45
45/23
45/91
631/208/2491
631/208/514/2254
Assemblies
Biomedical and Life Sciences
Brassica
Brassica - genetics
Brassica nigra
Centromere - genetics
Complexity
Diploids
DNA, Plant - genetics
Evolution, Molecular
Genome, Plant - genetics
Genomes
High-Throughput Nucleotide Sequencing
Life Sciences
Mathematical analysis
Mustard Plant - genetics
Plant Sciences
title A high-contiguity Brassica nigra genome localizes active centromeres and defines the ancestral Brassica genome
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T01%3A39%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20high-contiguity%20Brassica%20nigra%20genome%20localizes%20active%20centromeres%20and%20defines%20the%20ancestral%20Brassica%20genome&rft.jtitle=Nature%20plants&rft.au=Perumal,%20Sampath&rft.date=2020-08-01&rft.volume=6&rft.issue=8&rft.spage=929&rft.epage=941&rft.pages=929-941&rft.issn=2055-0278&rft.eissn=2055-0278&rft_id=info:doi/10.1038/s41477-020-0735-y&rft_dat=%3Cproquest_pubme%3E2433238887%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2432685382&rft_id=info:pmid/32782408&rfr_iscdi=true