Simulation-optimization methods for designing and assessing resilient supply chain networks under uncertainty scenarios: A review
The design of supply chain networks (SCNs) aims at determining the number, location, and capacity of production facilities, as well as the allocation of markets (customers) and suppliers to one or more of these facilities. This paper reviews the existing literature on the use of simulation-optimizat...
Gespeichert in:
Veröffentlicht in: | Simulation modelling practice and theory 2021-01, Vol.106, p.102166-102166, Article 102166 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 102166 |
---|---|
container_issue | |
container_start_page | 102166 |
container_title | Simulation modelling practice and theory |
container_volume | 106 |
creator | Tordecilla, Rafael D. Juan, Angel A. Montoya-Torres, Jairo R. Quintero-Araujo, Carlos L. Panadero, Javier |
description | The design of supply chain networks (SCNs) aims at determining the number, location, and capacity of production facilities, as well as the allocation of markets (customers) and suppliers to one or more of these facilities. This paper reviews the existing literature on the use of simulation-optimization methods in the design of resilient SCNs. From this review, we classify some of the many works in the topic according to factors such as their methodology, the approach they use to deal with uncertainty and risk, etc. The paper also identifies several research opportunities, such as the inclusion of multiple criteria (e.g., monetary, environmental, and social dimensions) during the design-optimization process and the convenience of considering hybrid approaches combining metaheuristic algorithms, simulation, and machine learning methods to account for uncertainty and dynamic conditions, respectively. |
doi_str_mv | 10.1016/j.simpat.2020.102166 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7417904</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1569190X20301052</els_id><sourcerecordid>2437118666</sourcerecordid><originalsourceid>FETCH-LOGICAL-c529t-3a710c0843fb1b26322b81d25dea0bd6c1495a081c10156f49ae439d9ae344b33</originalsourceid><addsrcrecordid>eNp9UcmO1DAQjRCIWeAPEPKRSxpvcRIOSKMRMEgjcQAkbpZjV3e7SezgcmbU3Phz3PQwwIWLy7W8Wt6rqmeMrhhl6uVuhX6aTV5xyg8hzpR6UJ2yru1qJhV_WP6N6mvW0y8n1RnijlLWdap9XJ0I3olWNvK0-vHRT8toso-hjnP2k__-yyET5G10SNYxEQfoN8GHDTHBEYMIiAcvlfjoIWSCyzyPe2K3xgcSIN_G9BXJEhyk8lpIuSTynqCFYJKP-IpcFPiNh9sn1aO1GRGe3tnz6vPbN58ur-rrD-_eX15c17bhfa6FaRm1tJNiPbCBK8H50DHHGweGDk5ZJvvG0I7Zwk6j1rI3IEXvihFSDkKcV6-PfedlmMCVRXIyo56Tn0za62i8_jcT_FZv4o1uJWt7KkuDF3cNUvy2AGY9-XLPOJoAcUHNpWgZ65RSpVQeS22KiAnW92MY1Qf19E4f1dMH9fRRvQJ7_veK96Dfcv25AQpRhbyk0Rb-LTifwGbtov__hJ9QjbId</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2437118666</pqid></control><display><type>article</type><title>Simulation-optimization methods for designing and assessing resilient supply chain networks under uncertainty scenarios: A review</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Tordecilla, Rafael D. ; Juan, Angel A. ; Montoya-Torres, Jairo R. ; Quintero-Araujo, Carlos L. ; Panadero, Javier</creator><creatorcontrib>Tordecilla, Rafael D. ; Juan, Angel A. ; Montoya-Torres, Jairo R. ; Quintero-Araujo, Carlos L. ; Panadero, Javier</creatorcontrib><description>The design of supply chain networks (SCNs) aims at determining the number, location, and capacity of production facilities, as well as the allocation of markets (customers) and suppliers to one or more of these facilities. This paper reviews the existing literature on the use of simulation-optimization methods in the design of resilient SCNs. From this review, we classify some of the many works in the topic according to factors such as their methodology, the approach they use to deal with uncertainty and risk, etc. The paper also identifies several research opportunities, such as the inclusion of multiple criteria (e.g., monetary, environmental, and social dimensions) during the design-optimization process and the convenience of considering hybrid approaches combining metaheuristic algorithms, simulation, and machine learning methods to account for uncertainty and dynamic conditions, respectively.</description><identifier>ISSN: 1569-190X</identifier><identifier>EISSN: 1878-1462</identifier><identifier>DOI: 10.1016/j.simpat.2020.102166</identifier><identifier>PMID: 32837454</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Metaheuristics ; Resilient supply chain networks design ; Simulation-optimization methods ; Uncertainty scenarios</subject><ispartof>Simulation modelling practice and theory, 2021-01, Vol.106, p.102166-102166, Article 102166</ispartof><rights>2020 Elsevier B.V.</rights><rights>2020 Elsevier B.V. All rights reserved.</rights><rights>2020 Elsevier B.V. All rights reserved. 2020 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c529t-3a710c0843fb1b26322b81d25dea0bd6c1495a081c10156f49ae439d9ae344b33</citedby><cites>FETCH-LOGICAL-c529t-3a710c0843fb1b26322b81d25dea0bd6c1495a081c10156f49ae439d9ae344b33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.simpat.2020.102166$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3548,27923,27924,45994</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32837454$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tordecilla, Rafael D.</creatorcontrib><creatorcontrib>Juan, Angel A.</creatorcontrib><creatorcontrib>Montoya-Torres, Jairo R.</creatorcontrib><creatorcontrib>Quintero-Araujo, Carlos L.</creatorcontrib><creatorcontrib>Panadero, Javier</creatorcontrib><title>Simulation-optimization methods for designing and assessing resilient supply chain networks under uncertainty scenarios: A review</title><title>Simulation modelling practice and theory</title><addtitle>Simul Model Pract Theory</addtitle><description>The design of supply chain networks (SCNs) aims at determining the number, location, and capacity of production facilities, as well as the allocation of markets (customers) and suppliers to one or more of these facilities. This paper reviews the existing literature on the use of simulation-optimization methods in the design of resilient SCNs. From this review, we classify some of the many works in the topic according to factors such as their methodology, the approach they use to deal with uncertainty and risk, etc. The paper also identifies several research opportunities, such as the inclusion of multiple criteria (e.g., monetary, environmental, and social dimensions) during the design-optimization process and the convenience of considering hybrid approaches combining metaheuristic algorithms, simulation, and machine learning methods to account for uncertainty and dynamic conditions, respectively.</description><subject>Metaheuristics</subject><subject>Resilient supply chain networks design</subject><subject>Simulation-optimization methods</subject><subject>Uncertainty scenarios</subject><issn>1569-190X</issn><issn>1878-1462</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9UcmO1DAQjRCIWeAPEPKRSxpvcRIOSKMRMEgjcQAkbpZjV3e7SezgcmbU3Phz3PQwwIWLy7W8Wt6rqmeMrhhl6uVuhX6aTV5xyg8hzpR6UJ2yru1qJhV_WP6N6mvW0y8n1RnijlLWdap9XJ0I3olWNvK0-vHRT8toso-hjnP2k__-yyET5G10SNYxEQfoN8GHDTHBEYMIiAcvlfjoIWSCyzyPe2K3xgcSIN_G9BXJEhyk8lpIuSTynqCFYJKP-IpcFPiNh9sn1aO1GRGe3tnz6vPbN58ur-rrD-_eX15c17bhfa6FaRm1tJNiPbCBK8H50DHHGweGDk5ZJvvG0I7Zwk6j1rI3IEXvihFSDkKcV6-PfedlmMCVRXIyo56Tn0za62i8_jcT_FZv4o1uJWt7KkuDF3cNUvy2AGY9-XLPOJoAcUHNpWgZ65RSpVQeS22KiAnW92MY1Qf19E4f1dMH9fRRvQJ7_veK96Dfcv25AQpRhbyk0Rb-LTifwGbtov__hJ9QjbId</recordid><startdate>20210101</startdate><enddate>20210101</enddate><creator>Tordecilla, Rafael D.</creator><creator>Juan, Angel A.</creator><creator>Montoya-Torres, Jairo R.</creator><creator>Quintero-Araujo, Carlos L.</creator><creator>Panadero, Javier</creator><general>Elsevier B.V</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20210101</creationdate><title>Simulation-optimization methods for designing and assessing resilient supply chain networks under uncertainty scenarios: A review</title><author>Tordecilla, Rafael D. ; Juan, Angel A. ; Montoya-Torres, Jairo R. ; Quintero-Araujo, Carlos L. ; Panadero, Javier</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c529t-3a710c0843fb1b26322b81d25dea0bd6c1495a081c10156f49ae439d9ae344b33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Metaheuristics</topic><topic>Resilient supply chain networks design</topic><topic>Simulation-optimization methods</topic><topic>Uncertainty scenarios</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tordecilla, Rafael D.</creatorcontrib><creatorcontrib>Juan, Angel A.</creatorcontrib><creatorcontrib>Montoya-Torres, Jairo R.</creatorcontrib><creatorcontrib>Quintero-Araujo, Carlos L.</creatorcontrib><creatorcontrib>Panadero, Javier</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Simulation modelling practice and theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tordecilla, Rafael D.</au><au>Juan, Angel A.</au><au>Montoya-Torres, Jairo R.</au><au>Quintero-Araujo, Carlos L.</au><au>Panadero, Javier</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Simulation-optimization methods for designing and assessing resilient supply chain networks under uncertainty scenarios: A review</atitle><jtitle>Simulation modelling practice and theory</jtitle><addtitle>Simul Model Pract Theory</addtitle><date>2021-01-01</date><risdate>2021</risdate><volume>106</volume><spage>102166</spage><epage>102166</epage><pages>102166-102166</pages><artnum>102166</artnum><issn>1569-190X</issn><eissn>1878-1462</eissn><abstract>The design of supply chain networks (SCNs) aims at determining the number, location, and capacity of production facilities, as well as the allocation of markets (customers) and suppliers to one or more of these facilities. This paper reviews the existing literature on the use of simulation-optimization methods in the design of resilient SCNs. From this review, we classify some of the many works in the topic according to factors such as their methodology, the approach they use to deal with uncertainty and risk, etc. The paper also identifies several research opportunities, such as the inclusion of multiple criteria (e.g., monetary, environmental, and social dimensions) during the design-optimization process and the convenience of considering hybrid approaches combining metaheuristic algorithms, simulation, and machine learning methods to account for uncertainty and dynamic conditions, respectively.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>32837454</pmid><doi>10.1016/j.simpat.2020.102166</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1569-190X |
ispartof | Simulation modelling practice and theory, 2021-01, Vol.106, p.102166-102166, Article 102166 |
issn | 1569-190X 1878-1462 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7417904 |
source | ScienceDirect Journals (5 years ago - present) |
subjects | Metaheuristics Resilient supply chain networks design Simulation-optimization methods Uncertainty scenarios |
title | Simulation-optimization methods for designing and assessing resilient supply chain networks under uncertainty scenarios: A review |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T21%3A12%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Simulation-optimization%20methods%20for%20designing%20and%20assessing%20resilient%20supply%20chain%20networks%20under%20uncertainty%20scenarios:%20A%20review&rft.jtitle=Simulation%20modelling%20practice%20and%20theory&rft.au=Tordecilla,%20Rafael%20D.&rft.date=2021-01-01&rft.volume=106&rft.spage=102166&rft.epage=102166&rft.pages=102166-102166&rft.artnum=102166&rft.issn=1569-190X&rft.eissn=1878-1462&rft_id=info:doi/10.1016/j.simpat.2020.102166&rft_dat=%3Cproquest_pubme%3E2437118666%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2437118666&rft_id=info:pmid/32837454&rft_els_id=S1569190X20301052&rfr_iscdi=true |