Simulation-optimization methods for designing and assessing resilient supply chain networks under uncertainty scenarios: A review

The design of supply chain networks (SCNs) aims at determining the number, location, and capacity of production facilities, as well as the allocation of markets (customers) and suppliers to one or more of these facilities. This paper reviews the existing literature on the use of simulation-optimizat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Simulation modelling practice and theory 2021-01, Vol.106, p.102166-102166, Article 102166
Hauptverfasser: Tordecilla, Rafael D., Juan, Angel A., Montoya-Torres, Jairo R., Quintero-Araujo, Carlos L., Panadero, Javier
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 102166
container_issue
container_start_page 102166
container_title Simulation modelling practice and theory
container_volume 106
creator Tordecilla, Rafael D.
Juan, Angel A.
Montoya-Torres, Jairo R.
Quintero-Araujo, Carlos L.
Panadero, Javier
description The design of supply chain networks (SCNs) aims at determining the number, location, and capacity of production facilities, as well as the allocation of markets (customers) and suppliers to one or more of these facilities. This paper reviews the existing literature on the use of simulation-optimization methods in the design of resilient SCNs. From this review, we classify some of the many works in the topic according to factors such as their methodology, the approach they use to deal with uncertainty and risk, etc. The paper also identifies several research opportunities, such as the inclusion of multiple criteria (e.g., monetary, environmental, and social dimensions) during the design-optimization process and the convenience of considering hybrid approaches combining metaheuristic algorithms, simulation, and machine learning methods to account for uncertainty and dynamic conditions, respectively.
doi_str_mv 10.1016/j.simpat.2020.102166
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7417904</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1569190X20301052</els_id><sourcerecordid>2437118666</sourcerecordid><originalsourceid>FETCH-LOGICAL-c529t-3a710c0843fb1b26322b81d25dea0bd6c1495a081c10156f49ae439d9ae344b33</originalsourceid><addsrcrecordid>eNp9UcmO1DAQjRCIWeAPEPKRSxpvcRIOSKMRMEgjcQAkbpZjV3e7SezgcmbU3Phz3PQwwIWLy7W8Wt6rqmeMrhhl6uVuhX6aTV5xyg8hzpR6UJ2yru1qJhV_WP6N6mvW0y8n1RnijlLWdap9XJ0I3olWNvK0-vHRT8toso-hjnP2k__-yyET5G10SNYxEQfoN8GHDTHBEYMIiAcvlfjoIWSCyzyPe2K3xgcSIN_G9BXJEhyk8lpIuSTynqCFYJKP-IpcFPiNh9sn1aO1GRGe3tnz6vPbN58ur-rrD-_eX15c17bhfa6FaRm1tJNiPbCBK8H50DHHGweGDk5ZJvvG0I7Zwk6j1rI3IEXvihFSDkKcV6-PfedlmMCVRXIyo56Tn0za62i8_jcT_FZv4o1uJWt7KkuDF3cNUvy2AGY9-XLPOJoAcUHNpWgZ65RSpVQeS22KiAnW92MY1Qf19E4f1dMH9fRRvQJ7_veK96Dfcv25AQpRhbyk0Rb-LTifwGbtov__hJ9QjbId</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2437118666</pqid></control><display><type>article</type><title>Simulation-optimization methods for designing and assessing resilient supply chain networks under uncertainty scenarios: A review</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Tordecilla, Rafael D. ; Juan, Angel A. ; Montoya-Torres, Jairo R. ; Quintero-Araujo, Carlos L. ; Panadero, Javier</creator><creatorcontrib>Tordecilla, Rafael D. ; Juan, Angel A. ; Montoya-Torres, Jairo R. ; Quintero-Araujo, Carlos L. ; Panadero, Javier</creatorcontrib><description>The design of supply chain networks (SCNs) aims at determining the number, location, and capacity of production facilities, as well as the allocation of markets (customers) and suppliers to one or more of these facilities. This paper reviews the existing literature on the use of simulation-optimization methods in the design of resilient SCNs. From this review, we classify some of the many works in the topic according to factors such as their methodology, the approach they use to deal with uncertainty and risk, etc. The paper also identifies several research opportunities, such as the inclusion of multiple criteria (e.g., monetary, environmental, and social dimensions) during the design-optimization process and the convenience of considering hybrid approaches combining metaheuristic algorithms, simulation, and machine learning methods to account for uncertainty and dynamic conditions, respectively.</description><identifier>ISSN: 1569-190X</identifier><identifier>EISSN: 1878-1462</identifier><identifier>DOI: 10.1016/j.simpat.2020.102166</identifier><identifier>PMID: 32837454</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Metaheuristics ; Resilient supply chain networks design ; Simulation-optimization methods ; Uncertainty scenarios</subject><ispartof>Simulation modelling practice and theory, 2021-01, Vol.106, p.102166-102166, Article 102166</ispartof><rights>2020 Elsevier B.V.</rights><rights>2020 Elsevier B.V. All rights reserved.</rights><rights>2020 Elsevier B.V. All rights reserved. 2020 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c529t-3a710c0843fb1b26322b81d25dea0bd6c1495a081c10156f49ae439d9ae344b33</citedby><cites>FETCH-LOGICAL-c529t-3a710c0843fb1b26322b81d25dea0bd6c1495a081c10156f49ae439d9ae344b33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.simpat.2020.102166$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3548,27923,27924,45994</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32837454$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tordecilla, Rafael D.</creatorcontrib><creatorcontrib>Juan, Angel A.</creatorcontrib><creatorcontrib>Montoya-Torres, Jairo R.</creatorcontrib><creatorcontrib>Quintero-Araujo, Carlos L.</creatorcontrib><creatorcontrib>Panadero, Javier</creatorcontrib><title>Simulation-optimization methods for designing and assessing resilient supply chain networks under uncertainty scenarios: A review</title><title>Simulation modelling practice and theory</title><addtitle>Simul Model Pract Theory</addtitle><description>The design of supply chain networks (SCNs) aims at determining the number, location, and capacity of production facilities, as well as the allocation of markets (customers) and suppliers to one or more of these facilities. This paper reviews the existing literature on the use of simulation-optimization methods in the design of resilient SCNs. From this review, we classify some of the many works in the topic according to factors such as their methodology, the approach they use to deal with uncertainty and risk, etc. The paper also identifies several research opportunities, such as the inclusion of multiple criteria (e.g., monetary, environmental, and social dimensions) during the design-optimization process and the convenience of considering hybrid approaches combining metaheuristic algorithms, simulation, and machine learning methods to account for uncertainty and dynamic conditions, respectively.</description><subject>Metaheuristics</subject><subject>Resilient supply chain networks design</subject><subject>Simulation-optimization methods</subject><subject>Uncertainty scenarios</subject><issn>1569-190X</issn><issn>1878-1462</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9UcmO1DAQjRCIWeAPEPKRSxpvcRIOSKMRMEgjcQAkbpZjV3e7SezgcmbU3Phz3PQwwIWLy7W8Wt6rqmeMrhhl6uVuhX6aTV5xyg8hzpR6UJ2yru1qJhV_WP6N6mvW0y8n1RnijlLWdap9XJ0I3olWNvK0-vHRT8toso-hjnP2k__-yyET5G10SNYxEQfoN8GHDTHBEYMIiAcvlfjoIWSCyzyPe2K3xgcSIN_G9BXJEhyk8lpIuSTynqCFYJKP-IpcFPiNh9sn1aO1GRGe3tnz6vPbN58ur-rrD-_eX15c17bhfa6FaRm1tJNiPbCBK8H50DHHGweGDk5ZJvvG0I7Zwk6j1rI3IEXvihFSDkKcV6-PfedlmMCVRXIyo56Tn0za62i8_jcT_FZv4o1uJWt7KkuDF3cNUvy2AGY9-XLPOJoAcUHNpWgZ65RSpVQeS22KiAnW92MY1Qf19E4f1dMH9fRRvQJ7_veK96Dfcv25AQpRhbyk0Rb-LTifwGbtov__hJ9QjbId</recordid><startdate>20210101</startdate><enddate>20210101</enddate><creator>Tordecilla, Rafael D.</creator><creator>Juan, Angel A.</creator><creator>Montoya-Torres, Jairo R.</creator><creator>Quintero-Araujo, Carlos L.</creator><creator>Panadero, Javier</creator><general>Elsevier B.V</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20210101</creationdate><title>Simulation-optimization methods for designing and assessing resilient supply chain networks under uncertainty scenarios: A review</title><author>Tordecilla, Rafael D. ; Juan, Angel A. ; Montoya-Torres, Jairo R. ; Quintero-Araujo, Carlos L. ; Panadero, Javier</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c529t-3a710c0843fb1b26322b81d25dea0bd6c1495a081c10156f49ae439d9ae344b33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Metaheuristics</topic><topic>Resilient supply chain networks design</topic><topic>Simulation-optimization methods</topic><topic>Uncertainty scenarios</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tordecilla, Rafael D.</creatorcontrib><creatorcontrib>Juan, Angel A.</creatorcontrib><creatorcontrib>Montoya-Torres, Jairo R.</creatorcontrib><creatorcontrib>Quintero-Araujo, Carlos L.</creatorcontrib><creatorcontrib>Panadero, Javier</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Simulation modelling practice and theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tordecilla, Rafael D.</au><au>Juan, Angel A.</au><au>Montoya-Torres, Jairo R.</au><au>Quintero-Araujo, Carlos L.</au><au>Panadero, Javier</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Simulation-optimization methods for designing and assessing resilient supply chain networks under uncertainty scenarios: A review</atitle><jtitle>Simulation modelling practice and theory</jtitle><addtitle>Simul Model Pract Theory</addtitle><date>2021-01-01</date><risdate>2021</risdate><volume>106</volume><spage>102166</spage><epage>102166</epage><pages>102166-102166</pages><artnum>102166</artnum><issn>1569-190X</issn><eissn>1878-1462</eissn><abstract>The design of supply chain networks (SCNs) aims at determining the number, location, and capacity of production facilities, as well as the allocation of markets (customers) and suppliers to one or more of these facilities. This paper reviews the existing literature on the use of simulation-optimization methods in the design of resilient SCNs. From this review, we classify some of the many works in the topic according to factors such as their methodology, the approach they use to deal with uncertainty and risk, etc. The paper also identifies several research opportunities, such as the inclusion of multiple criteria (e.g., monetary, environmental, and social dimensions) during the design-optimization process and the convenience of considering hybrid approaches combining metaheuristic algorithms, simulation, and machine learning methods to account for uncertainty and dynamic conditions, respectively.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>32837454</pmid><doi>10.1016/j.simpat.2020.102166</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1569-190X
ispartof Simulation modelling practice and theory, 2021-01, Vol.106, p.102166-102166, Article 102166
issn 1569-190X
1878-1462
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7417904
source ScienceDirect Journals (5 years ago - present)
subjects Metaheuristics
Resilient supply chain networks design
Simulation-optimization methods
Uncertainty scenarios
title Simulation-optimization methods for designing and assessing resilient supply chain networks under uncertainty scenarios: A review
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T21%3A12%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Simulation-optimization%20methods%20for%20designing%20and%20assessing%20resilient%20supply%20chain%20networks%20under%20uncertainty%20scenarios:%20A%20review&rft.jtitle=Simulation%20modelling%20practice%20and%20theory&rft.au=Tordecilla,%20Rafael%20D.&rft.date=2021-01-01&rft.volume=106&rft.spage=102166&rft.epage=102166&rft.pages=102166-102166&rft.artnum=102166&rft.issn=1569-190X&rft.eissn=1878-1462&rft_id=info:doi/10.1016/j.simpat.2020.102166&rft_dat=%3Cproquest_pubme%3E2437118666%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2437118666&rft_id=info:pmid/32837454&rft_els_id=S1569190X20301052&rfr_iscdi=true