In vitro propagation and DNA barcode analysis of the endangered Silene schimperiana in Saint Katherine protectorate

Background Anthropogenic activity, climate change, pollution, and exploitation of natural resources are some reasons that cause threatening of plant diversity. Silene schimperiana is an endangered plant species in Egypt and is endemic to the high mountain of Saint Katherine Protected Area in souther...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Genetic Engineering and Biotechnology 2020-08, Vol.18 (1), p.41-15, Article 41
Hauptverfasser: Ghareb, Heba El-Sayed, Ibrahim, Shafik Darwish, Hegazi, Ghada Abd El-Moneim
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 15
container_issue 1
container_start_page 41
container_title Journal of Genetic Engineering and Biotechnology
container_volume 18
creator Ghareb, Heba El-Sayed
Ibrahim, Shafik Darwish
Hegazi, Ghada Abd El-Moneim
description Background Anthropogenic activity, climate change, pollution, and exploitation of natural resources are some reasons that cause threatening of plant diversity. Silene schimperiana is an endangered plant species in Egypt and is endemic to the high mountain of Saint Katherine Protected Area in southern Sinai. The purpose of the study was the ex situ conservation of Silene schimperiana through in vitro propagation and DNA barcode analysis. Results To develop an efficient ex situ conservation program of the plant, in vitro propagation protocol has been achieved from shoot tip and stem nodal segment explants of in vitro germinated seedlings. Explants were established in vitro on Murashige and Skoog (MS) medium supplemented with 2.89 μM gibberellic acid (GA 3 ) , 1.08 μM α-naphthaleneacetic acid (NAA), and 1.16 μM kinetin (Kin). The highest number of axillary shoots (9.27) was obtained when they were transferred to MS medium supplemented with 4.48 μM 6-benzyl adenine (BA). Hundred percent of multiple axillary shoots were rooted on quarter-strength MS medium supplemented with 4.92 μM indole-3-butyric acid (IBA) and 10.75 μM NAA. Rooted plants were transferred to pots containing a soil-peat mixture (1: 2 v/v) and successfully acclimatized in the greenhouse. Plant identification is a crucial aspect to understand and conserve plant diversity from extinction. DNA barcode analysis of Silene schimperiana was carried out using two chloroplast DNA markers (cpDNA): 1,5-bisphosphate carboxylase/oxygenase large subunit ( rbcL ) and RNA polymerase subunit ( rpoC1 ) and a nuclear ribosome DNA marker (ncDNA), internal transcribed spacer ( ITS ). Phylogenetic analysis revealed a successful identification of Silene schimperiana on the species and genus levels and supported the inclusion of Silene schimperiana in genus Silene. Conclusions In this study, a relevant in vitro propagation method was established to facilitate the recovery of Silene schimperiana , in addition to DNA barcoding of the plant as a tool for effective management and conservation of plant genetic resources.
doi_str_mv 10.1186/s43141-020-00052-8
format Article
fullrecord <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7417468</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A679537872</galeid><doaj_id>oai_doaj_org_article_f4ff8e2a16964ba89b0f17af187da987</doaj_id><sourcerecordid>A679537872</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4998-2045f1d2da2c167c5053c40772c9707cb06d1219897e533cc48fcdf9d2971c963</originalsourceid><addsrcrecordid>eNp9kl9rFDEUxQdR7FL7BXwK-Dw1yWQmyYuwVKuLpX2ogm_hTv7MZplJ1mS20G9vtlMsCyJ5CMn93cNJ7qmq9wRfEiK6j5k1hJEaU1xjjFtai1fVimKJ61ZS_LpakU7wmrT811l1kfMOHykmSEveVmcN5VxILlZV3gT04OcU0T7FPQww-xgQBIM-365RD0lHY8sZxsfsM4oOzVuLbDAQBpusQfd-tMGirLd-2tvkC4p8QPfgw4y-Q6GTL_WiPls9xwSzfVe9cTBme_G8n1c_r7_8uPpW39x93Vytb2rNpBQ1xax1xFADVJOO6xa3jWaYc6olx1z3uDOEElkeYtum0ZoJp42ThkpOtOya82qz6JoIO7VPfoL0qCJ49XQR06AgzV6PVjnmnLAUSCc71oOQPXaEgyOCG5CCF61Pi9b-0E_WaBvmBOOJ6Gkl-K0a4oPijHDWiSLw4Vkgxd8Hm2e1i4dU_jUryqlsm7LICzVAceWDi0VMTz5rte54objgtFCX_6DKMnbyOgbrylBOG-jSoFPMOVn31zjB6hgntcRJlTippzipo-NmacoFPk77xfF_uv4AzxvK8g</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2729535351</pqid></control><display><type>article</type><title>In vitro propagation and DNA barcode analysis of the endangered Silene schimperiana in Saint Katherine protectorate</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Springer Nature OA Free Journals</source><creator>Ghareb, Heba El-Sayed ; Ibrahim, Shafik Darwish ; Hegazi, Ghada Abd El-Moneim</creator><creatorcontrib>Ghareb, Heba El-Sayed ; Ibrahim, Shafik Darwish ; Hegazi, Ghada Abd El-Moneim</creatorcontrib><description>Background Anthropogenic activity, climate change, pollution, and exploitation of natural resources are some reasons that cause threatening of plant diversity. Silene schimperiana is an endangered plant species in Egypt and is endemic to the high mountain of Saint Katherine Protected Area in southern Sinai. The purpose of the study was the ex situ conservation of Silene schimperiana through in vitro propagation and DNA barcode analysis. Results To develop an efficient ex situ conservation program of the plant, in vitro propagation protocol has been achieved from shoot tip and stem nodal segment explants of in vitro germinated seedlings. Explants were established in vitro on Murashige and Skoog (MS) medium supplemented with 2.89 μM gibberellic acid (GA 3 ) , 1.08 μM α-naphthaleneacetic acid (NAA), and 1.16 μM kinetin (Kin). The highest number of axillary shoots (9.27) was obtained when they were transferred to MS medium supplemented with 4.48 μM 6-benzyl adenine (BA). Hundred percent of multiple axillary shoots were rooted on quarter-strength MS medium supplemented with 4.92 μM indole-3-butyric acid (IBA) and 10.75 μM NAA. Rooted plants were transferred to pots containing a soil-peat mixture (1: 2 v/v) and successfully acclimatized in the greenhouse. Plant identification is a crucial aspect to understand and conserve plant diversity from extinction. DNA barcode analysis of Silene schimperiana was carried out using two chloroplast DNA markers (cpDNA): 1,5-bisphosphate carboxylase/oxygenase large subunit ( rbcL ) and RNA polymerase subunit ( rpoC1 ) and a nuclear ribosome DNA marker (ncDNA), internal transcribed spacer ( ITS ). Phylogenetic analysis revealed a successful identification of Silene schimperiana on the species and genus levels and supported the inclusion of Silene schimperiana in genus Silene. Conclusions In this study, a relevant in vitro propagation method was established to facilitate the recovery of Silene schimperiana , in addition to DNA barcoding of the plant as a tool for effective management and conservation of plant genetic resources.</description><identifier>ISSN: 1687-157X</identifier><identifier>EISSN: 2090-5920</identifier><identifier>DOI: 10.1186/s43141-020-00052-8</identifier><identifier>PMID: 32778978</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Acclimatization ; Adenine ; Analysis ; Bar codes ; Benzyladenine ; Biodiversity ; Biological diversity ; Biomarkers ; Biomedical Engineering and Bioengineering ; Butyric acid ; Caryophyllaceae ; Cell culture ; Chloroplast DNA ; Chloroplasts ; Climate change ; Conservation ; Deoxyribonucleic acid ; DNA ; DNA barcoding ; DNA-directed RNA polymerase ; Drought ; Egypt ; Endangered species ; Endemic species ; Engineering ; Experiments ; Explants ; Extinction (Biology) ; Flowers &amp; plants ; Gene sequencing ; Genetic markers ; Genetic resources ; Genomes ; Germination ; Gibberellic acid ; Global temperature changes ; Humidity ; In vitro methods and tests ; Indole-3-butyric acid ; Kinetin ; Micropropagation ; Naphthaleneacetic acid ; Natural resources ; Oxygenase ; Peat ; Phylogeny ; Plant conservation ; Plant hormones ; Plants (botany) ; Plastics ; Propagation ; Protected areas ; RNA ; RNA polymerase ; Seedlings ; Seeds ; Shoots ; Silene ; Soil mixtures ; Southern Sinai ; Sucrose ; Taxonomy ; Variance analysis</subject><ispartof>Journal of Genetic Engineering and Biotechnology, 2020-08, Vol.18 (1), p.41-15, Article 41</ispartof><rights>The Author(s) 2020</rights><rights>COPYRIGHT 2020 Springer</rights><rights>The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4998-2045f1d2da2c167c5053c40772c9707cb06d1219897e533cc48fcdf9d2971c963</citedby><cites>FETCH-LOGICAL-c4998-2045f1d2da2c167c5053c40772c9707cb06d1219897e533cc48fcdf9d2971c963</cites><orcidid>0000-0001-8243-6024</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7417468/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7417468/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27901,27902,53766,53768</link.rule.ids></links><search><creatorcontrib>Ghareb, Heba El-Sayed</creatorcontrib><creatorcontrib>Ibrahim, Shafik Darwish</creatorcontrib><creatorcontrib>Hegazi, Ghada Abd El-Moneim</creatorcontrib><title>In vitro propagation and DNA barcode analysis of the endangered Silene schimperiana in Saint Katherine protectorate</title><title>Journal of Genetic Engineering and Biotechnology</title><addtitle>J Genet Eng Biotechnol</addtitle><description>Background Anthropogenic activity, climate change, pollution, and exploitation of natural resources are some reasons that cause threatening of plant diversity. Silene schimperiana is an endangered plant species in Egypt and is endemic to the high mountain of Saint Katherine Protected Area in southern Sinai. The purpose of the study was the ex situ conservation of Silene schimperiana through in vitro propagation and DNA barcode analysis. Results To develop an efficient ex situ conservation program of the plant, in vitro propagation protocol has been achieved from shoot tip and stem nodal segment explants of in vitro germinated seedlings. Explants were established in vitro on Murashige and Skoog (MS) medium supplemented with 2.89 μM gibberellic acid (GA 3 ) , 1.08 μM α-naphthaleneacetic acid (NAA), and 1.16 μM kinetin (Kin). The highest number of axillary shoots (9.27) was obtained when they were transferred to MS medium supplemented with 4.48 μM 6-benzyl adenine (BA). Hundred percent of multiple axillary shoots were rooted on quarter-strength MS medium supplemented with 4.92 μM indole-3-butyric acid (IBA) and 10.75 μM NAA. Rooted plants were transferred to pots containing a soil-peat mixture (1: 2 v/v) and successfully acclimatized in the greenhouse. Plant identification is a crucial aspect to understand and conserve plant diversity from extinction. DNA barcode analysis of Silene schimperiana was carried out using two chloroplast DNA markers (cpDNA): 1,5-bisphosphate carboxylase/oxygenase large subunit ( rbcL ) and RNA polymerase subunit ( rpoC1 ) and a nuclear ribosome DNA marker (ncDNA), internal transcribed spacer ( ITS ). Phylogenetic analysis revealed a successful identification of Silene schimperiana on the species and genus levels and supported the inclusion of Silene schimperiana in genus Silene. Conclusions In this study, a relevant in vitro propagation method was established to facilitate the recovery of Silene schimperiana , in addition to DNA barcoding of the plant as a tool for effective management and conservation of plant genetic resources.</description><subject>Acclimatization</subject><subject>Adenine</subject><subject>Analysis</subject><subject>Bar codes</subject><subject>Benzyladenine</subject><subject>Biodiversity</subject><subject>Biological diversity</subject><subject>Biomarkers</subject><subject>Biomedical Engineering and Bioengineering</subject><subject>Butyric acid</subject><subject>Caryophyllaceae</subject><subject>Cell culture</subject><subject>Chloroplast DNA</subject><subject>Chloroplasts</subject><subject>Climate change</subject><subject>Conservation</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA barcoding</subject><subject>DNA-directed RNA polymerase</subject><subject>Drought</subject><subject>Egypt</subject><subject>Endangered species</subject><subject>Endemic species</subject><subject>Engineering</subject><subject>Experiments</subject><subject>Explants</subject><subject>Extinction (Biology)</subject><subject>Flowers &amp; plants</subject><subject>Gene sequencing</subject><subject>Genetic markers</subject><subject>Genetic resources</subject><subject>Genomes</subject><subject>Germination</subject><subject>Gibberellic acid</subject><subject>Global temperature changes</subject><subject>Humidity</subject><subject>In vitro methods and tests</subject><subject>Indole-3-butyric acid</subject><subject>Kinetin</subject><subject>Micropropagation</subject><subject>Naphthaleneacetic acid</subject><subject>Natural resources</subject><subject>Oxygenase</subject><subject>Peat</subject><subject>Phylogeny</subject><subject>Plant conservation</subject><subject>Plant hormones</subject><subject>Plants (botany)</subject><subject>Plastics</subject><subject>Propagation</subject><subject>Protected areas</subject><subject>RNA</subject><subject>RNA polymerase</subject><subject>Seedlings</subject><subject>Seeds</subject><subject>Shoots</subject><subject>Silene</subject><subject>Soil mixtures</subject><subject>Southern Sinai</subject><subject>Sucrose</subject><subject>Taxonomy</subject><subject>Variance analysis</subject><issn>1687-157X</issn><issn>2090-5920</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNp9kl9rFDEUxQdR7FL7BXwK-Dw1yWQmyYuwVKuLpX2ogm_hTv7MZplJ1mS20G9vtlMsCyJ5CMn93cNJ7qmq9wRfEiK6j5k1hJEaU1xjjFtai1fVimKJ61ZS_LpakU7wmrT811l1kfMOHykmSEveVmcN5VxILlZV3gT04OcU0T7FPQww-xgQBIM-365RD0lHY8sZxsfsM4oOzVuLbDAQBpusQfd-tMGirLd-2tvkC4p8QPfgw4y-Q6GTL_WiPls9xwSzfVe9cTBme_G8n1c_r7_8uPpW39x93Vytb2rNpBQ1xax1xFADVJOO6xa3jWaYc6olx1z3uDOEElkeYtum0ZoJp42ThkpOtOya82qz6JoIO7VPfoL0qCJ49XQR06AgzV6PVjnmnLAUSCc71oOQPXaEgyOCG5CCF61Pi9b-0E_WaBvmBOOJ6Gkl-K0a4oPijHDWiSLw4Vkgxd8Hm2e1i4dU_jUryqlsm7LICzVAceWDi0VMTz5rte54objgtFCX_6DKMnbyOgbrylBOG-jSoFPMOVn31zjB6hgntcRJlTippzipo-NmacoFPk77xfF_uv4AzxvK8g</recordid><startdate>20200810</startdate><enddate>20200810</enddate><creator>Ghareb, Heba El-Sayed</creator><creator>Ibrahim, Shafik Darwish</creator><creator>Hegazi, Ghada Abd El-Moneim</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><general>Springer Nature B.V</general><general>Elsevier</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>LK8</scope><scope>M7P</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-8243-6024</orcidid></search><sort><creationdate>20200810</creationdate><title>In vitro propagation and DNA barcode analysis of the endangered Silene schimperiana in Saint Katherine protectorate</title><author>Ghareb, Heba El-Sayed ; Ibrahim, Shafik Darwish ; Hegazi, Ghada Abd El-Moneim</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4998-2045f1d2da2c167c5053c40772c9707cb06d1219897e533cc48fcdf9d2971c963</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Acclimatization</topic><topic>Adenine</topic><topic>Analysis</topic><topic>Bar codes</topic><topic>Benzyladenine</topic><topic>Biodiversity</topic><topic>Biological diversity</topic><topic>Biomarkers</topic><topic>Biomedical Engineering and Bioengineering</topic><topic>Butyric acid</topic><topic>Caryophyllaceae</topic><topic>Cell culture</topic><topic>Chloroplast DNA</topic><topic>Chloroplasts</topic><topic>Climate change</topic><topic>Conservation</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA barcoding</topic><topic>DNA-directed RNA polymerase</topic><topic>Drought</topic><topic>Egypt</topic><topic>Endangered species</topic><topic>Endemic species</topic><topic>Engineering</topic><topic>Experiments</topic><topic>Explants</topic><topic>Extinction (Biology)</topic><topic>Flowers &amp; plants</topic><topic>Gene sequencing</topic><topic>Genetic markers</topic><topic>Genetic resources</topic><topic>Genomes</topic><topic>Germination</topic><topic>Gibberellic acid</topic><topic>Global temperature changes</topic><topic>Humidity</topic><topic>In vitro methods and tests</topic><topic>Indole-3-butyric acid</topic><topic>Kinetin</topic><topic>Micropropagation</topic><topic>Naphthaleneacetic acid</topic><topic>Natural resources</topic><topic>Oxygenase</topic><topic>Peat</topic><topic>Phylogeny</topic><topic>Plant conservation</topic><topic>Plant hormones</topic><topic>Plants (botany)</topic><topic>Plastics</topic><topic>Propagation</topic><topic>Protected areas</topic><topic>RNA</topic><topic>RNA polymerase</topic><topic>Seedlings</topic><topic>Seeds</topic><topic>Shoots</topic><topic>Silene</topic><topic>Soil mixtures</topic><topic>Southern Sinai</topic><topic>Sucrose</topic><topic>Taxonomy</topic><topic>Variance analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ghareb, Heba El-Sayed</creatorcontrib><creatorcontrib>Ibrahim, Shafik Darwish</creatorcontrib><creatorcontrib>Hegazi, Ghada Abd El-Moneim</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Journal of Genetic Engineering and Biotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ghareb, Heba El-Sayed</au><au>Ibrahim, Shafik Darwish</au><au>Hegazi, Ghada Abd El-Moneim</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>In vitro propagation and DNA barcode analysis of the endangered Silene schimperiana in Saint Katherine protectorate</atitle><jtitle>Journal of Genetic Engineering and Biotechnology</jtitle><stitle>J Genet Eng Biotechnol</stitle><date>2020-08-10</date><risdate>2020</risdate><volume>18</volume><issue>1</issue><spage>41</spage><epage>15</epage><pages>41-15</pages><artnum>41</artnum><issn>1687-157X</issn><eissn>2090-5920</eissn><abstract>Background Anthropogenic activity, climate change, pollution, and exploitation of natural resources are some reasons that cause threatening of plant diversity. Silene schimperiana is an endangered plant species in Egypt and is endemic to the high mountain of Saint Katherine Protected Area in southern Sinai. The purpose of the study was the ex situ conservation of Silene schimperiana through in vitro propagation and DNA barcode analysis. Results To develop an efficient ex situ conservation program of the plant, in vitro propagation protocol has been achieved from shoot tip and stem nodal segment explants of in vitro germinated seedlings. Explants were established in vitro on Murashige and Skoog (MS) medium supplemented with 2.89 μM gibberellic acid (GA 3 ) , 1.08 μM α-naphthaleneacetic acid (NAA), and 1.16 μM kinetin (Kin). The highest number of axillary shoots (9.27) was obtained when they were transferred to MS medium supplemented with 4.48 μM 6-benzyl adenine (BA). Hundred percent of multiple axillary shoots were rooted on quarter-strength MS medium supplemented with 4.92 μM indole-3-butyric acid (IBA) and 10.75 μM NAA. Rooted plants were transferred to pots containing a soil-peat mixture (1: 2 v/v) and successfully acclimatized in the greenhouse. Plant identification is a crucial aspect to understand and conserve plant diversity from extinction. DNA barcode analysis of Silene schimperiana was carried out using two chloroplast DNA markers (cpDNA): 1,5-bisphosphate carboxylase/oxygenase large subunit ( rbcL ) and RNA polymerase subunit ( rpoC1 ) and a nuclear ribosome DNA marker (ncDNA), internal transcribed spacer ( ITS ). Phylogenetic analysis revealed a successful identification of Silene schimperiana on the species and genus levels and supported the inclusion of Silene schimperiana in genus Silene. Conclusions In this study, a relevant in vitro propagation method was established to facilitate the recovery of Silene schimperiana , in addition to DNA barcoding of the plant as a tool for effective management and conservation of plant genetic resources.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>32778978</pmid><doi>10.1186/s43141-020-00052-8</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0001-8243-6024</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1687-157X
ispartof Journal of Genetic Engineering and Biotechnology, 2020-08, Vol.18 (1), p.41-15, Article 41
issn 1687-157X
2090-5920
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7417468
source DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Alma/SFX Local Collection; Springer Nature OA Free Journals
subjects Acclimatization
Adenine
Analysis
Bar codes
Benzyladenine
Biodiversity
Biological diversity
Biomarkers
Biomedical Engineering and Bioengineering
Butyric acid
Caryophyllaceae
Cell culture
Chloroplast DNA
Chloroplasts
Climate change
Conservation
Deoxyribonucleic acid
DNA
DNA barcoding
DNA-directed RNA polymerase
Drought
Egypt
Endangered species
Endemic species
Engineering
Experiments
Explants
Extinction (Biology)
Flowers & plants
Gene sequencing
Genetic markers
Genetic resources
Genomes
Germination
Gibberellic acid
Global temperature changes
Humidity
In vitro methods and tests
Indole-3-butyric acid
Kinetin
Micropropagation
Naphthaleneacetic acid
Natural resources
Oxygenase
Peat
Phylogeny
Plant conservation
Plant hormones
Plants (botany)
Plastics
Propagation
Protected areas
RNA
RNA polymerase
Seedlings
Seeds
Shoots
Silene
Soil mixtures
Southern Sinai
Sucrose
Taxonomy
Variance analysis
title In vitro propagation and DNA barcode analysis of the endangered Silene schimperiana in Saint Katherine protectorate
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T04%3A16%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=In%20vitro%20propagation%20and%20DNA%20barcode%20analysis%20of%20the%20endangered%20Silene%20schimperiana%20in%20Saint%20Katherine%20protectorate&rft.jtitle=Journal%20of%20Genetic%20Engineering%20and%20Biotechnology&rft.au=Ghareb,%20Heba%20El-Sayed&rft.date=2020-08-10&rft.volume=18&rft.issue=1&rft.spage=41&rft.epage=15&rft.pages=41-15&rft.artnum=41&rft.issn=1687-157X&rft.eissn=2090-5920&rft_id=info:doi/10.1186/s43141-020-00052-8&rft_dat=%3Cgale_doaj_%3EA679537872%3C/gale_doaj_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2729535351&rft_id=info:pmid/32778978&rft_galeid=A679537872&rft_doaj_id=oai_doaj_org_article_f4ff8e2a16964ba89b0f17af187da987&rfr_iscdi=true