In vitro propagation and DNA barcode analysis of the endangered Silene schimperiana in Saint Katherine protectorate
Background Anthropogenic activity, climate change, pollution, and exploitation of natural resources are some reasons that cause threatening of plant diversity. Silene schimperiana is an endangered plant species in Egypt and is endemic to the high mountain of Saint Katherine Protected Area in souther...
Gespeichert in:
Veröffentlicht in: | Journal of Genetic Engineering and Biotechnology 2020-08, Vol.18 (1), p.41-15, Article 41 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 15 |
---|---|
container_issue | 1 |
container_start_page | 41 |
container_title | Journal of Genetic Engineering and Biotechnology |
container_volume | 18 |
creator | Ghareb, Heba El-Sayed Ibrahim, Shafik Darwish Hegazi, Ghada Abd El-Moneim |
description | Background
Anthropogenic activity, climate change, pollution, and exploitation of natural resources are some reasons that cause threatening of plant diversity.
Silene schimperiana
is an endangered plant species in Egypt and is endemic to the high mountain of Saint Katherine Protected Area in southern Sinai. The purpose of the study was the ex situ conservation of
Silene schimperiana
through in vitro propagation and DNA barcode analysis.
Results
To develop an efficient ex situ conservation program of the plant, in vitro propagation protocol has been achieved from shoot tip and stem nodal segment explants of in vitro germinated seedlings. Explants were established in vitro on Murashige and Skoog (MS) medium supplemented with 2.89 μM gibberellic acid (GA
3
)
,
1.08 μM α-naphthaleneacetic acid (NAA), and 1.16 μM kinetin (Kin). The highest number of axillary shoots (9.27) was obtained when they were transferred to MS medium supplemented with 4.48 μM 6-benzyl adenine (BA). Hundred percent of multiple axillary shoots were rooted on quarter-strength MS medium supplemented with 4.92 μM indole-3-butyric acid (IBA) and 10.75 μM NAA. Rooted plants were transferred to pots containing a soil-peat mixture (1: 2 v/v) and successfully acclimatized in the greenhouse. Plant identification is a crucial aspect to understand and conserve plant diversity from extinction. DNA barcode analysis of
Silene schimperiana
was carried out using two chloroplast DNA markers (cpDNA): 1,5-bisphosphate carboxylase/oxygenase large subunit (
rbcL
) and RNA polymerase subunit (
rpoC1
) and a nuclear ribosome DNA marker (ncDNA), internal transcribed spacer (
ITS
). Phylogenetic analysis revealed a successful identification of
Silene schimperiana
on the species and genus levels and supported the inclusion of
Silene schimperiana
in genus
Silene.
Conclusions
In this study, a relevant in vitro propagation method was established to facilitate the recovery of
Silene schimperiana
, in addition to DNA barcoding of the plant as a tool for effective management and conservation of plant genetic resources. |
doi_str_mv | 10.1186/s43141-020-00052-8 |
format | Article |
fullrecord | <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7417468</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A679537872</galeid><doaj_id>oai_doaj_org_article_f4ff8e2a16964ba89b0f17af187da987</doaj_id><sourcerecordid>A679537872</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4998-2045f1d2da2c167c5053c40772c9707cb06d1219897e533cc48fcdf9d2971c963</originalsourceid><addsrcrecordid>eNp9kl9rFDEUxQdR7FL7BXwK-Dw1yWQmyYuwVKuLpX2ogm_hTv7MZplJ1mS20G9vtlMsCyJ5CMn93cNJ7qmq9wRfEiK6j5k1hJEaU1xjjFtai1fVimKJ61ZS_LpakU7wmrT811l1kfMOHykmSEveVmcN5VxILlZV3gT04OcU0T7FPQww-xgQBIM-365RD0lHY8sZxsfsM4oOzVuLbDAQBpusQfd-tMGirLd-2tvkC4p8QPfgw4y-Q6GTL_WiPls9xwSzfVe9cTBme_G8n1c_r7_8uPpW39x93Vytb2rNpBQ1xax1xFADVJOO6xa3jWaYc6olx1z3uDOEElkeYtum0ZoJp42ThkpOtOya82qz6JoIO7VPfoL0qCJ49XQR06AgzV6PVjnmnLAUSCc71oOQPXaEgyOCG5CCF61Pi9b-0E_WaBvmBOOJ6Gkl-K0a4oPijHDWiSLw4Vkgxd8Hm2e1i4dU_jUryqlsm7LICzVAceWDi0VMTz5rte54objgtFCX_6DKMnbyOgbrylBOG-jSoFPMOVn31zjB6hgntcRJlTippzipo-NmacoFPk77xfF_uv4AzxvK8g</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2729535351</pqid></control><display><type>article</type><title>In vitro propagation and DNA barcode analysis of the endangered Silene schimperiana in Saint Katherine protectorate</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Springer Nature OA Free Journals</source><creator>Ghareb, Heba El-Sayed ; Ibrahim, Shafik Darwish ; Hegazi, Ghada Abd El-Moneim</creator><creatorcontrib>Ghareb, Heba El-Sayed ; Ibrahim, Shafik Darwish ; Hegazi, Ghada Abd El-Moneim</creatorcontrib><description>Background
Anthropogenic activity, climate change, pollution, and exploitation of natural resources are some reasons that cause threatening of plant diversity.
Silene schimperiana
is an endangered plant species in Egypt and is endemic to the high mountain of Saint Katherine Protected Area in southern Sinai. The purpose of the study was the ex situ conservation of
Silene schimperiana
through in vitro propagation and DNA barcode analysis.
Results
To develop an efficient ex situ conservation program of the plant, in vitro propagation protocol has been achieved from shoot tip and stem nodal segment explants of in vitro germinated seedlings. Explants were established in vitro on Murashige and Skoog (MS) medium supplemented with 2.89 μM gibberellic acid (GA
3
)
,
1.08 μM α-naphthaleneacetic acid (NAA), and 1.16 μM kinetin (Kin). The highest number of axillary shoots (9.27) was obtained when they were transferred to MS medium supplemented with 4.48 μM 6-benzyl adenine (BA). Hundred percent of multiple axillary shoots were rooted on quarter-strength MS medium supplemented with 4.92 μM indole-3-butyric acid (IBA) and 10.75 μM NAA. Rooted plants were transferred to pots containing a soil-peat mixture (1: 2 v/v) and successfully acclimatized in the greenhouse. Plant identification is a crucial aspect to understand and conserve plant diversity from extinction. DNA barcode analysis of
Silene schimperiana
was carried out using two chloroplast DNA markers (cpDNA): 1,5-bisphosphate carboxylase/oxygenase large subunit (
rbcL
) and RNA polymerase subunit (
rpoC1
) and a nuclear ribosome DNA marker (ncDNA), internal transcribed spacer (
ITS
). Phylogenetic analysis revealed a successful identification of
Silene schimperiana
on the species and genus levels and supported the inclusion of
Silene schimperiana
in genus
Silene.
Conclusions
In this study, a relevant in vitro propagation method was established to facilitate the recovery of
Silene schimperiana
, in addition to DNA barcoding of the plant as a tool for effective management and conservation of plant genetic resources.</description><identifier>ISSN: 1687-157X</identifier><identifier>EISSN: 2090-5920</identifier><identifier>DOI: 10.1186/s43141-020-00052-8</identifier><identifier>PMID: 32778978</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Acclimatization ; Adenine ; Analysis ; Bar codes ; Benzyladenine ; Biodiversity ; Biological diversity ; Biomarkers ; Biomedical Engineering and Bioengineering ; Butyric acid ; Caryophyllaceae ; Cell culture ; Chloroplast DNA ; Chloroplasts ; Climate change ; Conservation ; Deoxyribonucleic acid ; DNA ; DNA barcoding ; DNA-directed RNA polymerase ; Drought ; Egypt ; Endangered species ; Endemic species ; Engineering ; Experiments ; Explants ; Extinction (Biology) ; Flowers & plants ; Gene sequencing ; Genetic markers ; Genetic resources ; Genomes ; Germination ; Gibberellic acid ; Global temperature changes ; Humidity ; In vitro methods and tests ; Indole-3-butyric acid ; Kinetin ; Micropropagation ; Naphthaleneacetic acid ; Natural resources ; Oxygenase ; Peat ; Phylogeny ; Plant conservation ; Plant hormones ; Plants (botany) ; Plastics ; Propagation ; Protected areas ; RNA ; RNA polymerase ; Seedlings ; Seeds ; Shoots ; Silene ; Soil mixtures ; Southern Sinai ; Sucrose ; Taxonomy ; Variance analysis</subject><ispartof>Journal of Genetic Engineering and Biotechnology, 2020-08, Vol.18 (1), p.41-15, Article 41</ispartof><rights>The Author(s) 2020</rights><rights>COPYRIGHT 2020 Springer</rights><rights>The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4998-2045f1d2da2c167c5053c40772c9707cb06d1219897e533cc48fcdf9d2971c963</citedby><cites>FETCH-LOGICAL-c4998-2045f1d2da2c167c5053c40772c9707cb06d1219897e533cc48fcdf9d2971c963</cites><orcidid>0000-0001-8243-6024</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7417468/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7417468/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27901,27902,53766,53768</link.rule.ids></links><search><creatorcontrib>Ghareb, Heba El-Sayed</creatorcontrib><creatorcontrib>Ibrahim, Shafik Darwish</creatorcontrib><creatorcontrib>Hegazi, Ghada Abd El-Moneim</creatorcontrib><title>In vitro propagation and DNA barcode analysis of the endangered Silene schimperiana in Saint Katherine protectorate</title><title>Journal of Genetic Engineering and Biotechnology</title><addtitle>J Genet Eng Biotechnol</addtitle><description>Background
Anthropogenic activity, climate change, pollution, and exploitation of natural resources are some reasons that cause threatening of plant diversity.
Silene schimperiana
is an endangered plant species in Egypt and is endemic to the high mountain of Saint Katherine Protected Area in southern Sinai. The purpose of the study was the ex situ conservation of
Silene schimperiana
through in vitro propagation and DNA barcode analysis.
Results
To develop an efficient ex situ conservation program of the plant, in vitro propagation protocol has been achieved from shoot tip and stem nodal segment explants of in vitro germinated seedlings. Explants were established in vitro on Murashige and Skoog (MS) medium supplemented with 2.89 μM gibberellic acid (GA
3
)
,
1.08 μM α-naphthaleneacetic acid (NAA), and 1.16 μM kinetin (Kin). The highest number of axillary shoots (9.27) was obtained when they were transferred to MS medium supplemented with 4.48 μM 6-benzyl adenine (BA). Hundred percent of multiple axillary shoots were rooted on quarter-strength MS medium supplemented with 4.92 μM indole-3-butyric acid (IBA) and 10.75 μM NAA. Rooted plants were transferred to pots containing a soil-peat mixture (1: 2 v/v) and successfully acclimatized in the greenhouse. Plant identification is a crucial aspect to understand and conserve plant diversity from extinction. DNA barcode analysis of
Silene schimperiana
was carried out using two chloroplast DNA markers (cpDNA): 1,5-bisphosphate carboxylase/oxygenase large subunit (
rbcL
) and RNA polymerase subunit (
rpoC1
) and a nuclear ribosome DNA marker (ncDNA), internal transcribed spacer (
ITS
). Phylogenetic analysis revealed a successful identification of
Silene schimperiana
on the species and genus levels and supported the inclusion of
Silene schimperiana
in genus
Silene.
Conclusions
In this study, a relevant in vitro propagation method was established to facilitate the recovery of
Silene schimperiana
, in addition to DNA barcoding of the plant as a tool for effective management and conservation of plant genetic resources.</description><subject>Acclimatization</subject><subject>Adenine</subject><subject>Analysis</subject><subject>Bar codes</subject><subject>Benzyladenine</subject><subject>Biodiversity</subject><subject>Biological diversity</subject><subject>Biomarkers</subject><subject>Biomedical Engineering and Bioengineering</subject><subject>Butyric acid</subject><subject>Caryophyllaceae</subject><subject>Cell culture</subject><subject>Chloroplast DNA</subject><subject>Chloroplasts</subject><subject>Climate change</subject><subject>Conservation</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA barcoding</subject><subject>DNA-directed RNA polymerase</subject><subject>Drought</subject><subject>Egypt</subject><subject>Endangered species</subject><subject>Endemic species</subject><subject>Engineering</subject><subject>Experiments</subject><subject>Explants</subject><subject>Extinction (Biology)</subject><subject>Flowers & plants</subject><subject>Gene sequencing</subject><subject>Genetic markers</subject><subject>Genetic resources</subject><subject>Genomes</subject><subject>Germination</subject><subject>Gibberellic acid</subject><subject>Global temperature changes</subject><subject>Humidity</subject><subject>In vitro methods and tests</subject><subject>Indole-3-butyric acid</subject><subject>Kinetin</subject><subject>Micropropagation</subject><subject>Naphthaleneacetic acid</subject><subject>Natural resources</subject><subject>Oxygenase</subject><subject>Peat</subject><subject>Phylogeny</subject><subject>Plant conservation</subject><subject>Plant hormones</subject><subject>Plants (botany)</subject><subject>Plastics</subject><subject>Propagation</subject><subject>Protected areas</subject><subject>RNA</subject><subject>RNA polymerase</subject><subject>Seedlings</subject><subject>Seeds</subject><subject>Shoots</subject><subject>Silene</subject><subject>Soil mixtures</subject><subject>Southern Sinai</subject><subject>Sucrose</subject><subject>Taxonomy</subject><subject>Variance analysis</subject><issn>1687-157X</issn><issn>2090-5920</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNp9kl9rFDEUxQdR7FL7BXwK-Dw1yWQmyYuwVKuLpX2ogm_hTv7MZplJ1mS20G9vtlMsCyJ5CMn93cNJ7qmq9wRfEiK6j5k1hJEaU1xjjFtai1fVimKJ61ZS_LpakU7wmrT811l1kfMOHykmSEveVmcN5VxILlZV3gT04OcU0T7FPQww-xgQBIM-365RD0lHY8sZxsfsM4oOzVuLbDAQBpusQfd-tMGirLd-2tvkC4p8QPfgw4y-Q6GTL_WiPls9xwSzfVe9cTBme_G8n1c_r7_8uPpW39x93Vytb2rNpBQ1xax1xFADVJOO6xa3jWaYc6olx1z3uDOEElkeYtum0ZoJp42ThkpOtOya82qz6JoIO7VPfoL0qCJ49XQR06AgzV6PVjnmnLAUSCc71oOQPXaEgyOCG5CCF61Pi9b-0E_WaBvmBOOJ6Gkl-K0a4oPijHDWiSLw4Vkgxd8Hm2e1i4dU_jUryqlsm7LICzVAceWDi0VMTz5rte54objgtFCX_6DKMnbyOgbrylBOG-jSoFPMOVn31zjB6hgntcRJlTippzipo-NmacoFPk77xfF_uv4AzxvK8g</recordid><startdate>20200810</startdate><enddate>20200810</enddate><creator>Ghareb, Heba El-Sayed</creator><creator>Ibrahim, Shafik Darwish</creator><creator>Hegazi, Ghada Abd El-Moneim</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><general>Springer Nature B.V</general><general>Elsevier</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>LK8</scope><scope>M7P</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-8243-6024</orcidid></search><sort><creationdate>20200810</creationdate><title>In vitro propagation and DNA barcode analysis of the endangered Silene schimperiana in Saint Katherine protectorate</title><author>Ghareb, Heba El-Sayed ; Ibrahim, Shafik Darwish ; Hegazi, Ghada Abd El-Moneim</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4998-2045f1d2da2c167c5053c40772c9707cb06d1219897e533cc48fcdf9d2971c963</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Acclimatization</topic><topic>Adenine</topic><topic>Analysis</topic><topic>Bar codes</topic><topic>Benzyladenine</topic><topic>Biodiversity</topic><topic>Biological diversity</topic><topic>Biomarkers</topic><topic>Biomedical Engineering and Bioengineering</topic><topic>Butyric acid</topic><topic>Caryophyllaceae</topic><topic>Cell culture</topic><topic>Chloroplast DNA</topic><topic>Chloroplasts</topic><topic>Climate change</topic><topic>Conservation</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA barcoding</topic><topic>DNA-directed RNA polymerase</topic><topic>Drought</topic><topic>Egypt</topic><topic>Endangered species</topic><topic>Endemic species</topic><topic>Engineering</topic><topic>Experiments</topic><topic>Explants</topic><topic>Extinction (Biology)</topic><topic>Flowers & plants</topic><topic>Gene sequencing</topic><topic>Genetic markers</topic><topic>Genetic resources</topic><topic>Genomes</topic><topic>Germination</topic><topic>Gibberellic acid</topic><topic>Global temperature changes</topic><topic>Humidity</topic><topic>In vitro methods and tests</topic><topic>Indole-3-butyric acid</topic><topic>Kinetin</topic><topic>Micropropagation</topic><topic>Naphthaleneacetic acid</topic><topic>Natural resources</topic><topic>Oxygenase</topic><topic>Peat</topic><topic>Phylogeny</topic><topic>Plant conservation</topic><topic>Plant hormones</topic><topic>Plants (botany)</topic><topic>Plastics</topic><topic>Propagation</topic><topic>Protected areas</topic><topic>RNA</topic><topic>RNA polymerase</topic><topic>Seedlings</topic><topic>Seeds</topic><topic>Shoots</topic><topic>Silene</topic><topic>Soil mixtures</topic><topic>Southern Sinai</topic><topic>Sucrose</topic><topic>Taxonomy</topic><topic>Variance analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ghareb, Heba El-Sayed</creatorcontrib><creatorcontrib>Ibrahim, Shafik Darwish</creatorcontrib><creatorcontrib>Hegazi, Ghada Abd El-Moneim</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Journal of Genetic Engineering and Biotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ghareb, Heba El-Sayed</au><au>Ibrahim, Shafik Darwish</au><au>Hegazi, Ghada Abd El-Moneim</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>In vitro propagation and DNA barcode analysis of the endangered Silene schimperiana in Saint Katherine protectorate</atitle><jtitle>Journal of Genetic Engineering and Biotechnology</jtitle><stitle>J Genet Eng Biotechnol</stitle><date>2020-08-10</date><risdate>2020</risdate><volume>18</volume><issue>1</issue><spage>41</spage><epage>15</epage><pages>41-15</pages><artnum>41</artnum><issn>1687-157X</issn><eissn>2090-5920</eissn><abstract>Background
Anthropogenic activity, climate change, pollution, and exploitation of natural resources are some reasons that cause threatening of plant diversity.
Silene schimperiana
is an endangered plant species in Egypt and is endemic to the high mountain of Saint Katherine Protected Area in southern Sinai. The purpose of the study was the ex situ conservation of
Silene schimperiana
through in vitro propagation and DNA barcode analysis.
Results
To develop an efficient ex situ conservation program of the plant, in vitro propagation protocol has been achieved from shoot tip and stem nodal segment explants of in vitro germinated seedlings. Explants were established in vitro on Murashige and Skoog (MS) medium supplemented with 2.89 μM gibberellic acid (GA
3
)
,
1.08 μM α-naphthaleneacetic acid (NAA), and 1.16 μM kinetin (Kin). The highest number of axillary shoots (9.27) was obtained when they were transferred to MS medium supplemented with 4.48 μM 6-benzyl adenine (BA). Hundred percent of multiple axillary shoots were rooted on quarter-strength MS medium supplemented with 4.92 μM indole-3-butyric acid (IBA) and 10.75 μM NAA. Rooted plants were transferred to pots containing a soil-peat mixture (1: 2 v/v) and successfully acclimatized in the greenhouse. Plant identification is a crucial aspect to understand and conserve plant diversity from extinction. DNA barcode analysis of
Silene schimperiana
was carried out using two chloroplast DNA markers (cpDNA): 1,5-bisphosphate carboxylase/oxygenase large subunit (
rbcL
) and RNA polymerase subunit (
rpoC1
) and a nuclear ribosome DNA marker (ncDNA), internal transcribed spacer (
ITS
). Phylogenetic analysis revealed a successful identification of
Silene schimperiana
on the species and genus levels and supported the inclusion of
Silene schimperiana
in genus
Silene.
Conclusions
In this study, a relevant in vitro propagation method was established to facilitate the recovery of
Silene schimperiana
, in addition to DNA barcoding of the plant as a tool for effective management and conservation of plant genetic resources.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>32778978</pmid><doi>10.1186/s43141-020-00052-8</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0001-8243-6024</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1687-157X |
ispartof | Journal of Genetic Engineering and Biotechnology, 2020-08, Vol.18 (1), p.41-15, Article 41 |
issn | 1687-157X 2090-5920 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7417468 |
source | DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Alma/SFX Local Collection; Springer Nature OA Free Journals |
subjects | Acclimatization Adenine Analysis Bar codes Benzyladenine Biodiversity Biological diversity Biomarkers Biomedical Engineering and Bioengineering Butyric acid Caryophyllaceae Cell culture Chloroplast DNA Chloroplasts Climate change Conservation Deoxyribonucleic acid DNA DNA barcoding DNA-directed RNA polymerase Drought Egypt Endangered species Endemic species Engineering Experiments Explants Extinction (Biology) Flowers & plants Gene sequencing Genetic markers Genetic resources Genomes Germination Gibberellic acid Global temperature changes Humidity In vitro methods and tests Indole-3-butyric acid Kinetin Micropropagation Naphthaleneacetic acid Natural resources Oxygenase Peat Phylogeny Plant conservation Plant hormones Plants (botany) Plastics Propagation Protected areas RNA RNA polymerase Seedlings Seeds Shoots Silene Soil mixtures Southern Sinai Sucrose Taxonomy Variance analysis |
title | In vitro propagation and DNA barcode analysis of the endangered Silene schimperiana in Saint Katherine protectorate |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T04%3A16%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=In%20vitro%20propagation%20and%20DNA%20barcode%20analysis%20of%20the%20endangered%20Silene%20schimperiana%20in%20Saint%20Katherine%20protectorate&rft.jtitle=Journal%20of%20Genetic%20Engineering%20and%20Biotechnology&rft.au=Ghareb,%20Heba%20El-Sayed&rft.date=2020-08-10&rft.volume=18&rft.issue=1&rft.spage=41&rft.epage=15&rft.pages=41-15&rft.artnum=41&rft.issn=1687-157X&rft.eissn=2090-5920&rft_id=info:doi/10.1186/s43141-020-00052-8&rft_dat=%3Cgale_doaj_%3EA679537872%3C/gale_doaj_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2729535351&rft_id=info:pmid/32778978&rft_galeid=A679537872&rft_doaj_id=oai_doaj_org_article_f4ff8e2a16964ba89b0f17af187da987&rfr_iscdi=true |