Effect of computed tomography perfusion post-processing algorithms on optimal threshold selection for final infarct volume prediction

In acute ischemic stroke (AIS) patients, eligibility for endovascular intervention is commonly determined through computed tomography perfusion (CTP) analysis by quantifying ischemic tissue using perfusion parameter thresholds. However, thresholds are not uniform across all analysis methods due to d...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The neuroradiology journal 2020-08, Vol.33 (4), p.273-285
Hauptverfasser: Rava, Ryan A, Snyder, Kenneth V, Mokin, Maxim, Waqas, Muhammad, Allman, Ariana B, Senko, Jillian L, Podgorsak, Alexander R, Bhurwani, Mohammad Mahdi Shiraz, Davies, Jason M, Levy, Elad I, Siddiqui, Adnan H, Ionita, Ciprian N
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 285
container_issue 4
container_start_page 273
container_title The neuroradiology journal
container_volume 33
creator Rava, Ryan A
Snyder, Kenneth V
Mokin, Maxim
Waqas, Muhammad
Allman, Ariana B
Senko, Jillian L
Podgorsak, Alexander R
Bhurwani, Mohammad Mahdi Shiraz
Davies, Jason M
Levy, Elad I
Siddiqui, Adnan H
Ionita, Ciprian N
description In acute ischemic stroke (AIS) patients, eligibility for endovascular intervention is commonly determined through computed tomography perfusion (CTP) analysis by quantifying ischemic tissue using perfusion parameter thresholds. However, thresholds are not uniform across all analysis methods due to dependencies on patient demographics and computational algorithms. This study aimed to investigate optimal perfusion thresholds for quantifying infarct and penumbra volumes using two post-processing CTP algorithms: Vitrea Bayesian and singular value decomposition plus (SVD+). We utilized 107 AIS patients (67 non-intervention patients and 40 successful reperfusion of thrombolysis in cerebral infarction (2b/3) patients). Infarct volumes were predicted for both post-processing algorithms through contralateral hemisphere comparisons using absolute time-to-peak (TTP) and relative regional cerebral blood volume (rCBV) thresholds ranging from +2.8 seconds to +9.3 seconds and –0.23 to –0.56 respectively. Optimal thresholds were determined by minimizing differences between predicted CTP and 24-hour fluid-attenuation inversion recovery magnetic resonance imaging infarct. Optimal thresholds were tested on 60 validation patients (30 intervention and 30 non-intervention) and compared using RAPID CTP software. Among the 67 non-intervention and 40 intervention patients, the following optimal thresholds were determined: intervention Bayesian: TTP = +4.8 seconds, rCBV = –0.29; intervention SVD+: TTP = +5.8 seconds, rCBV = –0.29; non-intervention Bayesian: TTP = +5.3 seconds, rCBV = –0.32; non-intervention SVD+: TTP = +6.3 seconds, rCBV = –0.26. When comparing SVD+ and Bayesian post-processing algorithms, optimal thresholds for TTP were significantly different for intervention and non-intervention patients. rCBV optimal thresholds were equal for intervention patients and significantly different for non-intervention patients. Comparison with commercially utilized software indicated similar performance.
doi_str_mv 10.1177/1971400920934122
format Article
fullrecord <record><control><sourceid>sage_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7416348</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_1971400920934122</sage_id><sourcerecordid>10.1177_1971400920934122</sourcerecordid><originalsourceid>FETCH-LOGICAL-c434t-6705ceeb327105a5aab56acaecb1218af6e25ada6f1d5b5f24ca2876e36087103</originalsourceid><addsrcrecordid>eNp1kc1u1TAQhS1E1V6V7rtCfoGAf-I42SChqhSkSmxgHU2cceIqiS3bqdQH4L3x5ZYKkJjNLL5zzlg-hFxz9o5zrd_zTvOasU6wTtZciFfkIGSrKt51zWtyOOLqyC_IVUoPrIxsO1W35-RCCqWllPpAftxaiyZTb6nxa9gzjjT71U8RwvxEA0a7J-c3GnzKVYjeYEpumygsk48uz2uihfqQ3QoLzXPENPtlpAmXknt0Wh-pdVuhbrMQy7FHv-wr0hBxdL80b8iZhSXh1fO-JN8_3X67-Vzdf737cvPxvjK1rHPVaKYM4iCF5kyBAhhUAwbQDFzwFmyDQsEIjeWjGpQVtQHR6gZlw9pikZfkwyk37MOKo8EtR1j6EMvj41PvwfV_k83N_eQfe13zRtZtCWCnABN9ShHti5ez_thK_28rxfL2z5svht8dFEF1EiSYsH_weyx_lf4f-BNueZoj</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Effect of computed tomography perfusion post-processing algorithms on optimal threshold selection for final infarct volume prediction</title><source>MEDLINE</source><source>SAGE Complete</source><source>PubMed Central</source><creator>Rava, Ryan A ; Snyder, Kenneth V ; Mokin, Maxim ; Waqas, Muhammad ; Allman, Ariana B ; Senko, Jillian L ; Podgorsak, Alexander R ; Bhurwani, Mohammad Mahdi Shiraz ; Davies, Jason M ; Levy, Elad I ; Siddiqui, Adnan H ; Ionita, Ciprian N</creator><creatorcontrib>Rava, Ryan A ; Snyder, Kenneth V ; Mokin, Maxim ; Waqas, Muhammad ; Allman, Ariana B ; Senko, Jillian L ; Podgorsak, Alexander R ; Bhurwani, Mohammad Mahdi Shiraz ; Davies, Jason M ; Levy, Elad I ; Siddiqui, Adnan H ; Ionita, Ciprian N</creatorcontrib><description>In acute ischemic stroke (AIS) patients, eligibility for endovascular intervention is commonly determined through computed tomography perfusion (CTP) analysis by quantifying ischemic tissue using perfusion parameter thresholds. However, thresholds are not uniform across all analysis methods due to dependencies on patient demographics and computational algorithms. This study aimed to investigate optimal perfusion thresholds for quantifying infarct and penumbra volumes using two post-processing CTP algorithms: Vitrea Bayesian and singular value decomposition plus (SVD+). We utilized 107 AIS patients (67 non-intervention patients and 40 successful reperfusion of thrombolysis in cerebral infarction (2b/3) patients). Infarct volumes were predicted for both post-processing algorithms through contralateral hemisphere comparisons using absolute time-to-peak (TTP) and relative regional cerebral blood volume (rCBV) thresholds ranging from +2.8 seconds to +9.3 seconds and –0.23 to –0.56 respectively. Optimal thresholds were determined by minimizing differences between predicted CTP and 24-hour fluid-attenuation inversion recovery magnetic resonance imaging infarct. Optimal thresholds were tested on 60 validation patients (30 intervention and 30 non-intervention) and compared using RAPID CTP software. Among the 67 non-intervention and 40 intervention patients, the following optimal thresholds were determined: intervention Bayesian: TTP = +4.8 seconds, rCBV = –0.29; intervention SVD+: TTP = +5.8 seconds, rCBV = –0.29; non-intervention Bayesian: TTP = +5.3 seconds, rCBV = –0.32; non-intervention SVD+: TTP = +6.3 seconds, rCBV = –0.26. When comparing SVD+ and Bayesian post-processing algorithms, optimal thresholds for TTP were significantly different for intervention and non-intervention patients. rCBV optimal thresholds were equal for intervention patients and significantly different for non-intervention patients. Comparison with commercially utilized software indicated similar performance.</description><identifier>ISSN: 1971-4009</identifier><identifier>EISSN: 2385-1996</identifier><identifier>DOI: 10.1177/1971400920934122</identifier><identifier>PMID: 32573337</identifier><language>eng</language><publisher>London, England: SAGE Publications</publisher><subject>Aged ; Aged, 80 and over ; Algorithms ; Bayes Theorem ; Blood Volume ; Cerebrovascular Circulation ; Cerebrovascular Diseases ; Contrast Media ; Female ; Humans ; Iohexol ; Ischemic Stroke - diagnostic imaging ; Ischemic Stroke - therapy ; Magnetic Resonance Imaging ; Male ; Middle Aged ; Radiographic Image Interpretation, Computer-Assisted - methods ; Retrospective Studies ; Thrombectomy ; Thrombolytic Therapy ; Tomography, X-Ray Computed - methods</subject><ispartof>The neuroradiology journal, 2020-08, Vol.33 (4), p.273-285</ispartof><rights>The Author(s) 2020</rights><rights>The Author(s) 2020 2020 SAGE Publications</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c434t-6705ceeb327105a5aab56acaecb1218af6e25ada6f1d5b5f24ca2876e36087103</citedby><cites>FETCH-LOGICAL-c434t-6705ceeb327105a5aab56acaecb1218af6e25ada6f1d5b5f24ca2876e36087103</cites><orcidid>0000-0001-6456-8445 ; 0000-0001-7049-0592</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.1177/1971400920934122$$EPDF$$P50$$Gsage$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7416348/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,21817,27922,27923,43619,43620,53789</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32573337$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Rava, Ryan A</creatorcontrib><creatorcontrib>Snyder, Kenneth V</creatorcontrib><creatorcontrib>Mokin, Maxim</creatorcontrib><creatorcontrib>Waqas, Muhammad</creatorcontrib><creatorcontrib>Allman, Ariana B</creatorcontrib><creatorcontrib>Senko, Jillian L</creatorcontrib><creatorcontrib>Podgorsak, Alexander R</creatorcontrib><creatorcontrib>Bhurwani, Mohammad Mahdi Shiraz</creatorcontrib><creatorcontrib>Davies, Jason M</creatorcontrib><creatorcontrib>Levy, Elad I</creatorcontrib><creatorcontrib>Siddiqui, Adnan H</creatorcontrib><creatorcontrib>Ionita, Ciprian N</creatorcontrib><title>Effect of computed tomography perfusion post-processing algorithms on optimal threshold selection for final infarct volume prediction</title><title>The neuroradiology journal</title><addtitle>Neuroradiol J</addtitle><description>In acute ischemic stroke (AIS) patients, eligibility for endovascular intervention is commonly determined through computed tomography perfusion (CTP) analysis by quantifying ischemic tissue using perfusion parameter thresholds. However, thresholds are not uniform across all analysis methods due to dependencies on patient demographics and computational algorithms. This study aimed to investigate optimal perfusion thresholds for quantifying infarct and penumbra volumes using two post-processing CTP algorithms: Vitrea Bayesian and singular value decomposition plus (SVD+). We utilized 107 AIS patients (67 non-intervention patients and 40 successful reperfusion of thrombolysis in cerebral infarction (2b/3) patients). Infarct volumes were predicted for both post-processing algorithms through contralateral hemisphere comparisons using absolute time-to-peak (TTP) and relative regional cerebral blood volume (rCBV) thresholds ranging from +2.8 seconds to +9.3 seconds and –0.23 to –0.56 respectively. Optimal thresholds were determined by minimizing differences between predicted CTP and 24-hour fluid-attenuation inversion recovery magnetic resonance imaging infarct. Optimal thresholds were tested on 60 validation patients (30 intervention and 30 non-intervention) and compared using RAPID CTP software. Among the 67 non-intervention and 40 intervention patients, the following optimal thresholds were determined: intervention Bayesian: TTP = +4.8 seconds, rCBV = –0.29; intervention SVD+: TTP = +5.8 seconds, rCBV = –0.29; non-intervention Bayesian: TTP = +5.3 seconds, rCBV = –0.32; non-intervention SVD+: TTP = +6.3 seconds, rCBV = –0.26. When comparing SVD+ and Bayesian post-processing algorithms, optimal thresholds for TTP were significantly different for intervention and non-intervention patients. rCBV optimal thresholds were equal for intervention patients and significantly different for non-intervention patients. Comparison with commercially utilized software indicated similar performance.</description><subject>Aged</subject><subject>Aged, 80 and over</subject><subject>Algorithms</subject><subject>Bayes Theorem</subject><subject>Blood Volume</subject><subject>Cerebrovascular Circulation</subject><subject>Cerebrovascular Diseases</subject><subject>Contrast Media</subject><subject>Female</subject><subject>Humans</subject><subject>Iohexol</subject><subject>Ischemic Stroke - diagnostic imaging</subject><subject>Ischemic Stroke - therapy</subject><subject>Magnetic Resonance Imaging</subject><subject>Male</subject><subject>Middle Aged</subject><subject>Radiographic Image Interpretation, Computer-Assisted - methods</subject><subject>Retrospective Studies</subject><subject>Thrombectomy</subject><subject>Thrombolytic Therapy</subject><subject>Tomography, X-Ray Computed - methods</subject><issn>1971-4009</issn><issn>2385-1996</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kc1u1TAQhS1E1V6V7rtCfoGAf-I42SChqhSkSmxgHU2cceIqiS3bqdQH4L3x5ZYKkJjNLL5zzlg-hFxz9o5zrd_zTvOasU6wTtZciFfkIGSrKt51zWtyOOLqyC_IVUoPrIxsO1W35-RCCqWllPpAftxaiyZTb6nxa9gzjjT71U8RwvxEA0a7J-c3GnzKVYjeYEpumygsk48uz2uihfqQ3QoLzXPENPtlpAmXknt0Wh-pdVuhbrMQy7FHv-wr0hBxdL80b8iZhSXh1fO-JN8_3X67-Vzdf737cvPxvjK1rHPVaKYM4iCF5kyBAhhUAwbQDFzwFmyDQsEIjeWjGpQVtQHR6gZlw9pikZfkwyk37MOKo8EtR1j6EMvj41PvwfV_k83N_eQfe13zRtZtCWCnABN9ShHti5ez_thK_28rxfL2z5svht8dFEF1EiSYsH_weyx_lf4f-BNueZoj</recordid><startdate>20200801</startdate><enddate>20200801</enddate><creator>Rava, Ryan A</creator><creator>Snyder, Kenneth V</creator><creator>Mokin, Maxim</creator><creator>Waqas, Muhammad</creator><creator>Allman, Ariana B</creator><creator>Senko, Jillian L</creator><creator>Podgorsak, Alexander R</creator><creator>Bhurwani, Mohammad Mahdi Shiraz</creator><creator>Davies, Jason M</creator><creator>Levy, Elad I</creator><creator>Siddiqui, Adnan H</creator><creator>Ionita, Ciprian N</creator><general>SAGE Publications</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-6456-8445</orcidid><orcidid>https://orcid.org/0000-0001-7049-0592</orcidid></search><sort><creationdate>20200801</creationdate><title>Effect of computed tomography perfusion post-processing algorithms on optimal threshold selection for final infarct volume prediction</title><author>Rava, Ryan A ; Snyder, Kenneth V ; Mokin, Maxim ; Waqas, Muhammad ; Allman, Ariana B ; Senko, Jillian L ; Podgorsak, Alexander R ; Bhurwani, Mohammad Mahdi Shiraz ; Davies, Jason M ; Levy, Elad I ; Siddiqui, Adnan H ; Ionita, Ciprian N</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c434t-6705ceeb327105a5aab56acaecb1218af6e25ada6f1d5b5f24ca2876e36087103</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Aged</topic><topic>Aged, 80 and over</topic><topic>Algorithms</topic><topic>Bayes Theorem</topic><topic>Blood Volume</topic><topic>Cerebrovascular Circulation</topic><topic>Cerebrovascular Diseases</topic><topic>Contrast Media</topic><topic>Female</topic><topic>Humans</topic><topic>Iohexol</topic><topic>Ischemic Stroke - diagnostic imaging</topic><topic>Ischemic Stroke - therapy</topic><topic>Magnetic Resonance Imaging</topic><topic>Male</topic><topic>Middle Aged</topic><topic>Radiographic Image Interpretation, Computer-Assisted - methods</topic><topic>Retrospective Studies</topic><topic>Thrombectomy</topic><topic>Thrombolytic Therapy</topic><topic>Tomography, X-Ray Computed - methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rava, Ryan A</creatorcontrib><creatorcontrib>Snyder, Kenneth V</creatorcontrib><creatorcontrib>Mokin, Maxim</creatorcontrib><creatorcontrib>Waqas, Muhammad</creatorcontrib><creatorcontrib>Allman, Ariana B</creatorcontrib><creatorcontrib>Senko, Jillian L</creatorcontrib><creatorcontrib>Podgorsak, Alexander R</creatorcontrib><creatorcontrib>Bhurwani, Mohammad Mahdi Shiraz</creatorcontrib><creatorcontrib>Davies, Jason M</creatorcontrib><creatorcontrib>Levy, Elad I</creatorcontrib><creatorcontrib>Siddiqui, Adnan H</creatorcontrib><creatorcontrib>Ionita, Ciprian N</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The neuroradiology journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rava, Ryan A</au><au>Snyder, Kenneth V</au><au>Mokin, Maxim</au><au>Waqas, Muhammad</au><au>Allman, Ariana B</au><au>Senko, Jillian L</au><au>Podgorsak, Alexander R</au><au>Bhurwani, Mohammad Mahdi Shiraz</au><au>Davies, Jason M</au><au>Levy, Elad I</au><au>Siddiqui, Adnan H</au><au>Ionita, Ciprian N</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effect of computed tomography perfusion post-processing algorithms on optimal threshold selection for final infarct volume prediction</atitle><jtitle>The neuroradiology journal</jtitle><addtitle>Neuroradiol J</addtitle><date>2020-08-01</date><risdate>2020</risdate><volume>33</volume><issue>4</issue><spage>273</spage><epage>285</epage><pages>273-285</pages><issn>1971-4009</issn><eissn>2385-1996</eissn><abstract>In acute ischemic stroke (AIS) patients, eligibility for endovascular intervention is commonly determined through computed tomography perfusion (CTP) analysis by quantifying ischemic tissue using perfusion parameter thresholds. However, thresholds are not uniform across all analysis methods due to dependencies on patient demographics and computational algorithms. This study aimed to investigate optimal perfusion thresholds for quantifying infarct and penumbra volumes using two post-processing CTP algorithms: Vitrea Bayesian and singular value decomposition plus (SVD+). We utilized 107 AIS patients (67 non-intervention patients and 40 successful reperfusion of thrombolysis in cerebral infarction (2b/3) patients). Infarct volumes were predicted for both post-processing algorithms through contralateral hemisphere comparisons using absolute time-to-peak (TTP) and relative regional cerebral blood volume (rCBV) thresholds ranging from +2.8 seconds to +9.3 seconds and –0.23 to –0.56 respectively. Optimal thresholds were determined by minimizing differences between predicted CTP and 24-hour fluid-attenuation inversion recovery magnetic resonance imaging infarct. Optimal thresholds were tested on 60 validation patients (30 intervention and 30 non-intervention) and compared using RAPID CTP software. Among the 67 non-intervention and 40 intervention patients, the following optimal thresholds were determined: intervention Bayesian: TTP = +4.8 seconds, rCBV = –0.29; intervention SVD+: TTP = +5.8 seconds, rCBV = –0.29; non-intervention Bayesian: TTP = +5.3 seconds, rCBV = –0.32; non-intervention SVD+: TTP = +6.3 seconds, rCBV = –0.26. When comparing SVD+ and Bayesian post-processing algorithms, optimal thresholds for TTP were significantly different for intervention and non-intervention patients. rCBV optimal thresholds were equal for intervention patients and significantly different for non-intervention patients. Comparison with commercially utilized software indicated similar performance.</abstract><cop>London, England</cop><pub>SAGE Publications</pub><pmid>32573337</pmid><doi>10.1177/1971400920934122</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-6456-8445</orcidid><orcidid>https://orcid.org/0000-0001-7049-0592</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1971-4009
ispartof The neuroradiology journal, 2020-08, Vol.33 (4), p.273-285
issn 1971-4009
2385-1996
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_7416348
source MEDLINE; SAGE Complete; PubMed Central
subjects Aged
Aged, 80 and over
Algorithms
Bayes Theorem
Blood Volume
Cerebrovascular Circulation
Cerebrovascular Diseases
Contrast Media
Female
Humans
Iohexol
Ischemic Stroke - diagnostic imaging
Ischemic Stroke - therapy
Magnetic Resonance Imaging
Male
Middle Aged
Radiographic Image Interpretation, Computer-Assisted - methods
Retrospective Studies
Thrombectomy
Thrombolytic Therapy
Tomography, X-Ray Computed - methods
title Effect of computed tomography perfusion post-processing algorithms on optimal threshold selection for final infarct volume prediction
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T08%3A22%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-sage_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effect%20of%20computed%20tomography%20perfusion%20post-processing%20algorithms%20on%20optimal%20threshold%20selection%20for%20final%20infarct%20volume%20prediction&rft.jtitle=The%20neuroradiology%20journal&rft.au=Rava,%20Ryan%20A&rft.date=2020-08-01&rft.volume=33&rft.issue=4&rft.spage=273&rft.epage=285&rft.pages=273-285&rft.issn=1971-4009&rft.eissn=2385-1996&rft_id=info:doi/10.1177/1971400920934122&rft_dat=%3Csage_pubme%3E10.1177_1971400920934122%3C/sage_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/32573337&rft_sage_id=10.1177_1971400920934122&rfr_iscdi=true